光响应偶氮聚芳醚材料的制备、表征及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮聚合物因其独特的光响应性质在光电通讯、光存储、光开关等领域有着重要的应用价值。本论文从分子设计出发,通过直接共聚和后接枝两种方法将偶氮基团引入到高玻璃化转变温度的聚芳醚的侧链中,制备了一系列高分子量的偶氮聚芳醚光响应材料。对一其进行了结构表征,并深入研究了所合成聚合物的光响应行为。探讨了聚芳醚光响应材料的玻璃化转变温度和聚合物链结构对偶氮聚合物光响应行为的影响。研究表明,大分子量有利于偶氮聚合物光诱导双折射稳定性的提高;偶氮聚合物的玻璃化转变温度越高,在线偏振光诱导下产生的双折射稳定性就越好,但是却不利于双折射信号响应速度的提高;柔性烷基链的引入有利于提高光诱导双折射的响应速度。我们还研究了偶氮聚合物光诱导表面起伏光栅性质,并利用飞秒激光直写技术在偶氮聚合物膜表面方便的加工出复杂的二维浮雕图案。为复杂微纳米图案化的制备提供了新方法的同时,也拓宽了飞秒激光直写技术可加工材料的范围。最后,我们制备了偶氮和稀土离子双功能化的聚合物,并借助偶氮基团的全息技术和飞秒激光直写技术,制备荧光色彩可调的,简单的荧光光栅和复杂多样的荧光图案。
Polymers containing azobenzene units in main chains or as pendant groups along the backbone have been attracting a great deal of attention because of their potential applications in optical data storage, optical switches, and electro-optical modulators. Azo-polymers have many attractive features, especially their unique reversible photoisomerization and the anisotropy of the azobenzene chromophores. The photoisomerization can cause significant changes in the bulk properties, surface properties and polarity of the polymers. In recent years, azobenzene chromophores have been introduced into some high-Tg aromatic polymers such as azo-PI and azo-PU because this strategy is helpful to improve the stability of azobenzene chromophores for optical storage applications. Poly(arylene ether)s (PAEs) are high-performance thermoplastics well known for their excellent thermal, mechanical, and environmental stabilities. These materials can be used in a wide range of demanding applications from aerospace to microelectronics. Functionalized poly(arylene ether)s have received much attention due to their potential applications in proton-exchange membranes, light-emitting materials, and optical materials.
     In this work, we designed and synthesized a series of photoresponsive azo-poly(arylene ether)s by direct copolymerization or post-functionalization. Their trans-cis isomerization and optical properties were investigated. The detailed researches were summarized as the following:
     (1) A series of di-azobenzene functionalized poly(arylene ether)s were successfully synthesized via a nucleophilic substitution polycondensation reaction. These polymers exhibit good solubility and thermal stability. Upon irradiation with 360 nm UV light, all polymers exhibited obvious photoisomerization behavior in DMF solution due to the existence of azobenzene groups. The rate constants of the photoisomerization of copolymers were 0.0210, 0.0253, and 0.0309 s~(-1) for 3b, 3c, and 3d, respectively. Copolymer 3b shows the lowest trans-to-cis photoisomerization rate due to the steric hindrance of the polymer chain configuration. Upon irradiation with a 532 nm Nd:YAG laser beam, copolymers presented large photoinduced birefringence with a remnant value greater than 85% of the saturation value, and no fatigue phenomena were observed after several cycles of inscription–erasure–inscription sequences. The photoinduced birefringence of copolymers has a strong dependence on temperature: at the beginning, the birefringence value increases with temperature until reaches its’maximum, and then decreases. Therefore the birefringence value can be controlled effectively by varying temperatures.
     (2) In order to improve the stability of photoinduced birefringence, a series of azobenzene functionalized poly(arylene ether)s with high glass transition temperature were successfully synthesized via post-functonalizaton reaction. These polymers exhibit high glass transition temperature (T_g>199 oC), good thermal stability (T_(d5) > 384 oC) and homogeneous photoisomerization behaviors. These azo-polymers presented large, high-quality, photoinduced birefringence with a remnant value up to 94%, indicating the excellent stability of the photoinduced orientation. This stability is mainly attributed to the rigidity of aromatic structures of polymers, which suppress the relaxation process of the photoalignment. Furthermore, multiple writing/erasing experiments indicate that the azo-polymers have potential applications in reversible optical storage.
     (3) Generally, the flexibility of polymer chains is helpful for the motion of azobenzene groups and increasing the growth rates of birefringence. Therefore, we prepared novel poly(arylene ether)s with flexible azobenzene pendants by classical esterification with DCC and DMAP as catalyst at room temperature. Low reaction temperature and weak basic reaction medium can give a mild condition to avoid side-reaction of azo-polymer. These polymers exhibit good solubility, thermal stability and homogeneous photoisomerization behaviors. The most important is that the introduction of flexible segments between azobenzene groups and aromatic main chains greatly increases the growth rates of birefringence.
     (4) Patterning organic luminescent molecules with ordered micro/nanoscopic features has attracted much attention for their applications in photonics, optoelectronics, fullcolor displays, and other related areas. Dip-pen nanolithography (DPN), inkjet printing, shadow mask patterning and other methods are commonly used to achieve these color patterns. However, most of them require dedicated equipments and involve multiple steps. Herein, we prepared poly(arylene ether)s containing both azobenzene and rare earth luminescent groups to achieve color patterns. The carboxyl-containing azo-PAEs were used as macromolecular ligands. Using europium (Eu~(3+)) or terbium (Tb~(3+)) as the central ion and 1,10-phenanthroline (Phen) as co-ligand, a series of novel rare earth coordination polymers were prepared. IR measurements indicate that both the oxygen atoms of carboxyl groups of azo-PAEs and the nitrogen atoms of 1,10-phenanthroline were coordinated with rare earth ions. XRD measurements indicate the rare earth ions have been distributed homogeneously within the polymer matrix due to the formation of coordination bonds between rare earth ions and the carboxyl groups of azo-PAEs. By exposing rare earth polymers films to an interference pattern of laser beams (355 nm) at modest intensity, stable and blight fluorescent surface relief gratings (SRGs) can be formed. Furthermore, we fabricated designable and various fluorescent two-dimensional micropatterns by combination of the fluorescent azobenzene-containing materials and femtosecond laser direct writing technique. It is notable that the patterns are erasable and the color of patterns can be tailored easily by tuning the central ion.
引文
[1] T. Ikeda, O. Tsutsumi, Optical switching and image storage by means of azobenzeneliquid-crystal films [J]. Science, 1995, 268: 1873-1875.
    [2] T Ikeda, S Horiuchi, DB Karanjit, et al. Photochemically induced isothermal phasetransition in polymer liquid crystals with mesogenic phenyl benzoate side chains.1.Calorimetric studies and order parameters [J]. Macromolecules, 1990, 23: 36-42.
    [3] Y.L. Yu, M Nakano, T. Ikeda, Photomechanics: Directed bending of a polymer film bylight [J]. Nature 2003, 425: 145.
    [4] M. Yamada, M. Kondo, J. Mamiya, et al. Photomobile polymer materials: towardslightdriven plastic motors [J]. Angew. Chem. Int. Ed. 2006, 45: 1378-1382.
    [5] K. Han, W. Su, M. Zhong, et al. Reversible photocontrolled swellingshrinking behaviorof micron vesicles selfassembled from azopyridinecontaining diblock copolymer [J].Macromol. Rapid Commun. 2008, 29: 1866-1870.
    [6] J. Zhou, J. Yang, Y. Ke, et al. Fabrication of polarization grating and surface relief gratingin crosslinked and non-crosslinking azopolymer by polarization holography method [J].Opt. Mater. 2008, 30: 1787-1795.
    [7] N.K. Viswanathan, D.Y. Kim, S. Bian, et al. Surface relief structures on azo polymer films[J]. J. Mater. Chem. 1999, 9: 1941-1955.
    [8] J. Zhou, J. Shen, J. Yang, et al. All-optical bandpass microwave filter based onanelectro-optic phase modulator [J]. Opt. Lett. 2006, 31: 1370-1372.
    [9] N.B. Holland, T. Hugel, G. Neuert, et al. Single molecule force spectroscopy ofazobenzene polymers: switching elasticity of single photochromic macromolecules [J].Macromolecules. 2003, 36: 2015-2023.
    [10] S.K. Yesodha, C. K. S. Pillai, N. Tsutsumi, Stable polymeric materials for nonlinearoptics: a review based on azobenzene systems [J]. Prog. Polym. Sci. 2004, 29: 45-74.
    [11]王耀.新型二阶非线性光学聚合物膜材料的设计、制备与性能研究[D].长春:吉林大学化学学院,2005.
    [12] R. Hagen, T. Bieringer, Photoaddressable polymers for optical data storage [J]. Adv.Mater. 2001, 13: 1805-1810.
    [13] Q Yan, Y Wu, X Wang, et al. Effects of absorption overlap on the modulation of thepolarized fluorescence of Eu (DBM) 3 Phen-doped azobenzene polymer films [J]. Chin.Phys. Lett. 2004, 21: 2445-2447.
    [14] J.P. Liu, Y.N. He, X.G. Wang. Photoinduced deformation of amphiphilic azo polymercolloidal spheres [J]. Langmuir 2009, 25: 5974-5979.
    [15] Y. Luo, Z. Li, R. Zheng, et al. Birefringent azopolymer long period fiber gratingsinduced by 532 nm polarized laser [J]. Opt. Commun. 2009, 282, 2348-2353.
    [16]薛小强.新型偶氮苯功能化聚合物的合成及其光学性能研究[D].苏州:苏州大学化学学院, 2010.
    [17]吴思.光响应偶氮苯聚合物复合材料的制备及性能研究[D].长沙:中国科技大学化学学院, 2010.
    [18]江涛.信息存储新领域-全息存储及其材料[J].信息记录材料,2006, 7(6): 32-36.
    [19] Rau, H., Photochemistry and Photophysics. CRC Press: Boca Raton, FL, 1990, 11:119–141.
    [20] S. Xie, A. Natansohn, P. Rochon. Recent developments in aromatic azo polymersresearch [J]. Chem. Mater. 1993, 5, 403-411.
    [21] G.S. Kumar, D. Neckers. Photochemistry of azobenzene-containing polymers. [J]Chemical Reviews.1989, 89(8): 1915-1925.
    [22] U. Wiesner, M. Antonietti, C. Bodffel. Dynamics of photoinduced isomerization ofazobenzene moieties in liquid & crystalline polymers [J]. Die Makromolekulare Chemie1990, 191(9): 2133-2149.
    [23] M.S. Ho, A. Natansohn, P. Rochon. Azo polymers for reversible optical storage. 8. Theeffect of polarity of the azobenzene groups [J]. Canadian journal of chemistry 1995,73(11): 1773-1778.
    [24] D. Gegiou, K.A. Muszkat, E. Fischer, Temperature dependence of photoisomerization. V.effect of substituents on the photoisomerization of stilbenes and azobenzenes [J]. J. Am.Chem. Soc., 1968, 15, 3907-3918.
    [25] C.H. Ho, K.N. Yang, S.N. Lee. Mechanistic study of trans-cis isomerization of thesubstituted azobenzene moiety bound on a liquid-crystalline polymer [J]. Polym. Sci.Part A: Polym. Chem., 2001, 39, 2296-2307.
    [26] Y. Zhao, T. Ikeda. Smart Light-Responsive Materials: Azobenzene-Containing Polymersand Liquid Crystals [M]. A John Wiley & Sons, Inc. 2009.
    [27] A. Altomare, F. Ciardelli, N. Tirelli, et al. 4-Vinylazobenzene: Polymerizability andphotochromic properties of its polymers [J]. Macromolecules 1997,30: 1298-1303.
    [28] T. Naito, K. Horie, I. Mita. Photochemistry in polymer solids. The effects of the Size ofreaction groups and the mode of photoisomerization on photochromic reactions inpolycarbonate film [J]. Macromolecules 1991, 24: 2907-2911.
    [29] F. L. Labarthet, T. Buffeteau, C. Sourisseau, Photofabrication of surface relief grating onfilms of azobenzene polymer with different dye functionalization [J]. J. Chem. Phys. B,1998, 102, 2654-2662.
    [30] S.K. Tripathy, D.Y. Kim, T.S. Lee, et al. Gradient force: The mechanism for surfacerelief grating formation in azobenzene functionalized polymers [J]. Polym. Prepr. 1996,37: 123.
    [31] R. Birabassov, N. Landraud, T.V. Galstyan, et al. Thick dye-doped poly(methylmethacrylate) films for real-time holography [J]. Appl. Opt., 1998, 37: 8264.
    [32] V. Toshchevikov, M. Saphiannikova, G. Heinrich, Microscopic theory of light-induceddeformation in amorphous side-chain azobenzene polymers [J]. J. Phys. Chem. B, 2009,113: 5032-5045.
    [33] T. Fujii, M. Shiotsuki, Y. Inai, et al. Synthesis of Helical Poly(N-propargylamides)carrying azobenzene moieties in side chains. Reversible arrangement-disarrangement ofhelical side chain arrays upon photoirradiation keeping helical main chain intact [J].Macromolecules, 2007, 40: 7079-7088.
    [34] K. Nishizawa, S. Nagano, T. Seki, Novel liquid crystalline organic-inorganic hybrid forhighly sensitive photoinscriptions [J]. Chem. Mater., 2009, 21: 2624-2631.
    [35] C Zhang, X Zhao, D Chao, et al. Rapid Bending of a Nonliquid Crystal Azobenzene Polymer Film and Characteristics of Surface Relief Gratings [J]. J. Appl. Polym. Sci., 2009, 113, 1330-1334.
    [36] P. Aruna, B. Raoa, S. Ionomeric, Poly(urethane semicarbazides) with Azobenzene Groups in the Main Chain-Studies on Photoswitching Behaviour and Mechanical Properties [J]. React. Funct. Polym., 2009, 69: 20-26.
    [37] A. Sanchez-Ferrer, H. Finkelmann, Uniaxial and shear deformations in smectic-C main-chain liquid-crystalline elastomers [J]. Macromolecules, 2008, 41: 970-980.
    [38] J.G.. Gao, Y.Y. Sun, Q.J. Zhang, et al. Preparation of Ag nanoparticles termini-protected side-chain liquid crystalline azobenzene polymers by RAFT polymerization [J]. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 5380-5386.
    [39] M. Marcos, R. Alcala, J. Barberá, et al. Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid[J]. Chem. Mater., 2008, 20: 5209-5217.
    [40] J. Gao, Y.N.He, X.G. Wang, et al. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings [J]. Chem. Mater. 2007, 19, 14-17.
    [41] J. Gao, Y.N.He, X.G. Wang, et al. Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings [J]. Chem. Mater., 2007, 19: 3877-3881.
    [42] J. Vapaavuori, A. Priimagi, M. Kaivola, Photoinduced surface-relief gratings in films of supramolecular polymer-bisazobenzene complexes [J]. J. Mater. Chem., 2010, 20: 5260-5264.
    [43] S. Wu, S Duan, Q.J. Zhang, et al. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording [J]. J. Mater. Chem., 2010, 20: 5202-5209.
    [44] A. Priimagi, J. Vapaavuori, F.J. Rodriguez, et al. Hydrogen-bonded polymer azobenzene complexes: enhanced photoinduced birefringence with high temporal stability throughinterplay of intermolecular interactions [J]. Chem. Mater., 2008, 20 (20), 6358-6363.
    [45] Weigert, F. Verh. Phys. Ges. 1919, 21: 485.
    [46] B.S. Neporent, O.V. Stolbova, Opt. Spectrosc., 1961, 10: 146.
    [47] T. Todorov, N. Tomova, L. Nikolova, High-sensitivity material with reversible photo-induced anisotropy [J]. Opt. Commun., 1983, 47: 123-126.
    [48] J.A. Delaire, K. Nakatani, Linear and nonlinear optical properties of photochromic molecules and materials [J]. Chem. Rev. 2000, 100:1817-1845.
    [49] Y. Wu, Y. Demachi, O. Tsutsumi, Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain l. Effect of light intensity on alignment behavior [J]. Macromolecules, 1998, 31: 349-354.
    [50] T. Bufeteau, M. Pézolet, Photoinduced orientation in azopolymers studied by infrared spectroscopy: cooperative and biaxial orientation in semi crystalline polymers [J]. Macromolecules, 1998, 31: 2631-2635.
    [51] L.P. Yu, Z.B. Zhang, X.L. Zhu, et al. Synthesis of tetrazole-containing azo polymers with properties of photo-induced birefringence and surface-relief-gratings via RAFT polymerization [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46: 682–691.
    [52] Dumont, M. Mol. Cryst. Liq. Cryst. 1996, 282: 437.
    [53] Lagugne Labarthet, F. Sourisseau, C. New J. Chem. 1997, 21: 879-887.
    [54]杨庆鑫.偶氮类有机薄膜的光物理特性研究[D].长春:吉林大学物理学院, 2000.
    [55]金明.新型偶氮苯类聚合物的设计、合成及其光诱导双折射性质研究[D].长春:吉林大学化学学院, 2004.
    [56]裴松皓新型卟啉,偶氮类功能材料的非线性光学性质研究[D].长春:吉林大学物理学院, 2010.
    [57]苏育志,梁兆熙.光致变色液晶聚合物的光致再取向性能研究进展.[J].感光科学与光化学, 2002, 20: 292-302.
    [58] X.B. Chen, Y.H. Zhang, Z.H. Jiang, et al. Novel photoactive hyperbranched poly(aryl ether)s containing azobenzene chromophores for optical storage [J]. J. Mater. Chem.,2008, 18: 5019-5026.
    [59] O.K. Song, C.H. Wang, M.A. Pauley, Dynamic processes of optically inducedbirefringence of azo compounds in a morphous polymers below Tg [J]. Macromolecules,1997, 30: 6913-6919.
    [60] A. Natasohn, P. Rochon, Comments on the Paper“Dynamic Processes of OpticallyInduced Birefringence of Azo Compounds in Amorphous Polymers below Tg”by O.-K.Song, C. H. Wang, and M. A. Pauley (Macromolecules 1997, 30, 6913) [J].Macromolecules, 1998, 31: 7960-7961.
    [61] P. Rochon, E. Batalla, A. Natansohn, Optically induced surface gratings on azoaromaticpolymer films [J]. Appl. Phys. Lett., 1995;66:136-138.
    [62] D.Y. Kim, S.K. Tripathy, L. Li, et al. Laserinduced holographic surface relief gratingson nonlinear optical polymer films [J]. Appl Phys Lett,1995;66:1166–1168.
    [63] R. Walker, H. Audorff, L. Kador, et al. Synthesis and structure–property relations of aseries of photochromic molecular glasses for controlled and efficient formation ofsurface relief nanostructures [J]. Adv. Funct. Mater., 2009, 16: 2630-2638.
    [64] Y.Y. Zhang, W. Zhang, X.L. Zhu, et al. Synthesis of novel three-Arm star azo side-chainliquid crystalline polymer via ATRP and photoinduced surface relief gratings [J].Journalof Polymer Science: Part A: Polymer Chemistry, 2008, 46: 777-789.
    [65] K.G. Yager, C.J. Barrett, All-optical patterning of azo polymer films [J]. Current Opinionin Solid State and Materials Science, 2001, 5: 487-494.
    [66] J. Kumar, L. Li, X.L. Jiang, et al. Gradient force: The mechanism for surface reliefgratings formation in azobenzene functionalized polymers [J]. Appl. Phys. Lett., 1998,72: 2096-2098.
    [67] C.J. Barrett, P.L. Rochon, A. Natansohn, Model of laser-driven mass transport in the thinfilms of dye-functionalized polymers [J]. J. Chem. Phys., 1998, 109: 1505-1516.
    [68] C.J. Barratt, A. Natansohn, P. Rochon, Mechanism of optically inscribed high-efficiencydiffraction gratings in azo polymer films [J]. J. Phys. Chem.,1996, 100: 8836-8842.
    [69] T.G. Pedersen, P.M. Johansen, N. Holme, et al. Mean-field theory of photoinducedformation of surface reliefs in side-chain azobenzene polymers [J]. Phys. Rev. Lett.,1998, 80: 89-92.
    [70]谢仲辉,黄淳,黄新邦等.偶氮苯聚合物的光致异构与分子链段的取向效应[J].光子学报, 1998, 27: 699-703.
    [71] R.H. Lambeth, J.S. Moore, Light-induced shape changes in azobenzene functionalizedpolymers prepared by ring-opening metathesis polymerization [J]. Macromolecules,2007, 40: 1838-1842.
    [72] Y.H. Deng, N. Li, X.G. Wang, et al. Hybrid colloids composed of two amphiphilic azopolymers: fabrication, characterization, and photoresponsive properties [J].Macromolecules 2007, 40: 6669-6678.
    [73] A. Natansohn, P. Rochon, Photoinduced Motions in Azo-Containing Polymers [J]. Chem.Rev. 2002, 102, 4139-4176.
    [74] T. Ikeda, Photomodulation of liquid crystal orientations for photonic applications [J]. J.Mater. Chem., 2003, 13: 2037-2057.
    [75] M. Eich, J. H. Wendorff, B. Reck, et al. Reversible digital and holographic opticalstorage in polymeric liquid crystals[J]. Makromol. Chem. Rapid Commun., 1987, 8:59-63.
    [76] S. Ivanov, I. Yakovlev, S. Kostromin, et al. Laser-induced birefringence in homeotropicfilms of photochromic comb-shaped liquid-crystalline copolymers with azobenzenemoieties at different temperatures [J]. Makromol. Chem. Rapid Commun., 1991, 12:709-715.
    [77] J. Stumpe, L. Müller, D. Kreysig, et al. Photoreaction in mesogenic media, 5.Photoinduced optical anisotropy of liquid-crystalline sidechain polymers withazochromophores by linearly polarized light of low intensity J]. Makromol. Chem.Rapid Commun.1991, 12, 81-87.
    [78] A. Natansohn, P. Rochon, J. Gosselin, et al. Azo polymers for reversible optical storage.1. Poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene] [J]. Macromolecules,1992, 25: 2268.
    [79] K. Ichimura, Photoalignment of liquid-crystal systems [J].Chem. Rev., 2000,100:1847-1874.
    [80] T. Seki, Dynamic photoresponsive functions in organized layer systems comprised ofazobenzene-containing polymers [J]. Polym. J. 2004, 36: 435-454.
    [81] J. Ashley, M. P. Bernal, G. W. Burr, et al. Holographic data storage technology [J]. IBMJ. Res. Develop., 2000, 44: 341–368.
    [82] L. Hesselink, S. S. Orlov, M. C. Bashaw, Proc. IEEE, 2004, 92:1231–1279.
    [83] S. Hvilsted, C. Sánchez,R. Alcalá, The volume holographic optical storage potential inazobenzene containing polymers [J]. J. Mater. Chem., 2009, 19, 6641–6648.
    [84] A. Priimagi, K. Lindfors, M. Kaivola, et al. Efficient surface-relief-gratings inhydrogen-bonded polymer?azobenzene complexes [J]. ACS Appl. Mater. Interfaces, 2009,1: 1183–1189.
    [85] S. Gorkhali, S. Cloutier, G. Crawford, Two-dimensional vectorial photonic crystalsformed in azo-dye-doped liquid crystals [J]. Opt. Lett., 2006, 31: 3336-3338.
    [86] GOLDERBERG L, GRITSAI Y, KULIKOVSKA O, STUMPE J. Three-dimensionalplanarized diffraction structures based on surface relief gratings in azobenzene materials[J]. Optics letter, 2008, 33: 1309-1311.
    [87] Y. Gritsai, L. Golderberg, O. Kulikovska, et al. 3D structures using surface reliefgratings of azobenzene materials [J]. J. Opt. A: Pure Appl. Opt., 2008,10: 125304.
    [88] M.C. Guo, Z.D. Xu, X.G Wang, et al. Photofabrication of Two -DimensionalQuasi-Crystal Patterns on UV-Curable Molecular Azo Glass Films [J]. Langmuir 2008,24: 2740-2745
    [89] E. Ishow, A. Brosseau, G. Clavier, et al. Two-photo fluorescent holographic rewritablemicropatterning [J]. J. Am. Chem. Soc., 2007, 129: 8970-8971.
    [90] S. Yang, K. Yang, J. Kumar, et al. Patterning of substrates using surface relief structureson an azobenzene-functionalized polymer film [J]. Adv. Mater., 2004, 16: 693-696.
    [91] N. Zettsu, T. Ogasawara, N. Mizoshita, et al. Photo-triggered surface relief gratingformation in supramolecular liquid crystalline polymer systems with detachableby collective mass migration [J]. J. Mater. Chem., 2009, 19: 8999–9005.azobenzene units [J]. Adv. Mater., 2008, 20: 516-521.
    [92] B. Liu, M. Wang, X. Wang, et al. Duplication of photoinduced azo polymersurface-relief gratings through a soft lithographic approach [J]. Langmuir, 2006,22:7405-7410.
    [93] Y.B. LI, Y.N. HE, X.G. Wang, et al. Photoinduced deformation of amphiphilic azopolymer colloidal spheres [J]. J. Am. Chem. Soc., 2005, 127: 2402-2403.
    [94] J.P. Liu, Y.N. He, X.G. Wang, et al. Azo polymer colloidal spheres containing differentamounts of functional groups and their photoinduced deformation behavior [J] Langmuir2008, 24, 678–682.
    [95] D.R. Wang, G. Ye, X.G. Wang, et al. Photoinduced mass-migration behavior of twoamphiphilic side-chain azo diblock copolymers with different length flexible spacers [J].Macromolecules 2009, 42: 2651-2657.
    [96] J.P. Liu, Y.N. He, X.G. Wang, et al. Size-dependent lght-driven effect observed for azopolymer colloidal spheres with different average diameters [J]. Langmuir 2009, 25:5974–5979.
    [97] E. Ishow, A. Brosseau, G. Clavier, et al. Two-photo fluorescent holographic rewritablemicropatterning [J]. J. Am. Chem. Soc., 2007, 129: 8970-8971.
    [98] A. Jacquart, P. Tauc, E. Ishow, et al. Formation of fluorescence reliefs photocontrolled
    [99] X.B. Chen, B.J. Liu, Z.H. Jiang, et al. Fabrication of fluorescent holographicmicropatterns based on azobenzene- containing host?guest complexes [J]. Langmuir,2009, 25: 10444–10446.
    [100] T. Attwook, P. Dawson, J. Freeman, et al. Synthesis and properties ofpolyaryletherketones [J]. Polymer, 1981, 22: 1096-1103.
    [101]陈兴波.含偶氮聚芳醚光响应材料的制备及其性能研究[D].长春:吉林大学化学学院,2009.
    [102] B.J. Liu, G.B. Wang, W. Hu, et al. Poly(aryl ether ketone)s with (3-methyl)phen -yland(3-trifluoromethyl)phenyl side groups [J]. J. Poly. Sci. A, 2002, 40: 3392-3398.
    [103] H.B. Zhang, J.H Pang, Z.H. Jiang, et al. Sulfonated poly(arylene ether nitrile ketone)and its composite with phosphotungstic acid as materials for proton exchangemembranes[J]. J. Membr. Sci., 2005, 264: 56-64.
    [104] J.H Pang, H.B. Zhang, Z.H. Jiang, et al. Novel wholly aromatic sulfonated poly(aryleneether) copolymers containing sulfonic acid groups on the pendants for proton exchangemembrane materials [J]. Macromolecules, 2007, 40: 9435-9442.
    [105] X.B. Chen, J.J. Zhang, Z.H. Jiang, et al. Preparation and nonlinear optical studies of anovel thermal stable polymer containing azo chromophores in the side chain [J] DyesPigments, 2008, 77: 223–228.
    [106] Y. LI, C. Cao, S. Kulprthipanja, et al. The effects of polymer chain rigidification,zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrixmembranes [J] J. Membr. Sci., 2005, 260: 45-55.
    [107] L. Chen, Y. Yu, W. Zhang, et al. Synthesis of a new electroactive poly(aryl ether ketone)[J]. Polymer, 2005, 46: 2825-2829.
    [108] X.Y. MA, G.B. Wang, Z.H. Jang, et al. Crosslinkable fluorinated poly(aryl etherketone)s containing pendent phenylethynyl moieties for optical waveguide devices [J].J.Photochem. Photobio. A, 2007, 188: 43-50.
    [109] Y.H. Zhang, X.B. Sun, Z.H. Jang, et al. Synthesis and characterization of novelpoly(aryl ether ketone)s with metallophthalocyanine pendant unit from a new bisphenolcontaining dicyanophenyl side group [J]. Polymer, 2006, 47: 1569-1574.
    [110] G.S. Kumar, D.C. Neckers, Photochemistry of azobenzene-containing polymersChem.Rev., [J].1989, 89: 1915-1925.
    [111] X.Q. Xue, W. Zhang, X.L, Zhu, et al. A novel azo-containing dithiocarbamate used forliving radical polymerization of methyl acrylate and styrene [J]. J. Polym. Sci. Part A:Polym. Chem., 2008, 46: 5626-5637.
    [112] X.Q. Xue, J. Zhu, X.L, Zhu, et al. Preparation and characterization of novel main-chainazobenzene polymers via step-growth polymerization based on click chemistry [J].Polymer, 2009, 50: 4512-4519.
    [113] L Pan, Q Yang, M Jin, et al. Temperature dependence of photo-induced birefringence inazo-doped polymers containing different substitutions [J]. J. Phys. D: Appl. Phys. 2004,37: 1002-1006.
    [114] Fernando F. Dall’Agnol, O. N. Oliveira, Jr., Jose A. Giacometti, Influence from the freevolume on the photoinduced birefringence in azocompound-containing polymers[J].Macromolecules 2006, 39: 4914-4919.
    [115] M. Schonhoff, M. Mertesdorf, M. Losche, Mechanism of photoreorientation ofazobenzene dyes in molecular films [J]. J. Phys. Chem. 1996, 100: 7558-7565.
    [116] L. Angiolini, T. Benelli, L. Giorgini, et al. Improvement of photoinduced birefringenceproperties of optically active methacrylic polymers through copolymerization ofmonomers bearing azoaromatic moieties [J]. Macromolecules, 2006, 39: 489-497.
    [117]王东.超支化聚芳醚酮的功能化研究[D]长春:吉林大学化学学院2008.
    [118] X. Meng, A. Natansohn, C. Barrett, et al. Azo polymers for reversible optical storage.10. Cooperative motion of polar side groups in amorphous polymers [J].Macromolecules, 1996, 29: 946-952.
    [119] C. Maertens, P. Dubois, R. Jerome, et al. Dynamics of the photo-induced orientationand relaxation of new polymethacrylates containing carbazolyl and azobenzene pendantgroups [J]. Polym Int. 1999, 48: 205-211.
    [120] Y.Y. Zhang, Z.P, Cheng, X.L. Zhu, et al. Synthesis and photoresponsive behaviors ofwell-defined azobenzene-containing polymers via RAFT polymerization [J].Macromolecules, 2007, 40: 4809-4817.
    [121] P. Rochon, J. Cosselin, A. Natansohn, et al. Optically induced and eraed birefringenceand dichroism in azoaromatic polymers [J]. Appl. Phy. Lett., 1992, 60: 4-5.
    [122]周敏甲基橙掺杂聚合物薄膜光致双折射的应用研究[D]长春:东北师范大学物理学院2009.
    [123] M. JIN, Q.X. YANG, R. LU, ea lt. Syntheses of bisazo-containing polymethacrylatesusing atom transfer radical polymerization and the photoalignment behavior [J]. J.Polym. Sci. Part A: Polym. Chem., 2004, 42: 4237–4247.
    [124] M.J. Kim, E.M.Seo, Dong-Yu Kim, ea lt. Photodynamic properties of azobenzenemolecular films with triphenylamines [J]. Chem. Mater., 2003, 15: 4021-4027.
    [125] Y.Y. Zhang, Z.P, Cheng, X.L. Zhu, et al. Synthesis and photoresponsive behaviors ofwell-defined azobenzene-containing polymers via RAFT polymerization [J].Macromolecules, 2007, 40: 4809-4817.
    [126]姜振华,王冬,姜伟,魏红,王贵宾,吴忠文含有羧基侧基的聚芳醚类高性能共聚物及制备方法:中国200410010927.X [P]. 2006-04-19.
    [127] Y.L. Luo, Q.P. Ran, S.S. Wu, ea lt. Synthesis and characterization of a poly(acrylicacid)-graft-methoxy poly(ethylene oxide) comblike copolymer [J]. J. Appl. Polym. Sci.,2008, 109: 3286–3291.
    [128] J. Whelan, J.T.C. Wojtyk, E. Buncel, Enhanced bistability of a photochromicmicroparticle in condensed medium [J]. Chem. Mater., 2008, 20: 3797-3799.
    [129] J.S. Marois, J.F. Morin, Synthesis and surface self-assembly of [3] rotaxane#porphyrinconjugates: toward the development of a supramolecular surface tweezer for C [J].Langmuir, 2008, 24: 10865-10873.
    [130]苏育志,梁兆熙.光致变色液晶聚合物的光致再取向性能研究进展[J].感光科学与光化学, 2002, 20: 292-302.
    [131] MELE E, CAMPOSEO A, MARCO C, et al. Patterning photo-curable light-emittingorganic composites by vertical and horizontal capillarity: a general route to photonicnanostructures [J]. Nanotechnology, 2008, 19: 335301.
    [132] VASILOPOULOU M, GEORGIADOU D, PISTOLIS G, ARGITIS P. Tuning theemitting color of organic light-emitting diodes through photochemically inducedtransformations: towards single-layer, patterned, full-color displays and white-lightingapplications [J]. Adv. Funct. Mater., 2007, 17: 3477-3485.
    [133] WU S, LUO Y, ZENG F, CHEN J, CHEN Y, TONG Z. Photoreversible fluorescencemodulation of a rhodamine dye by supramolecular complexation with photosensitivecyclodextrin [J]. Angew. Chem. Int. Ed., 2007, 46: 7015-7018.
    [134] CHEN L, DEGENAAR P, BRADLEY D. Polymer transfer printing: application tolayer coating, pattern definition, and diode dark current blocking [J]. Adv. Mater., 2008,20: 1679-1683.
    [135] PERSANO L, MOLLE S, GIRARDO S, et al. Soft nanopatterning on light-emittinginorganic-organic composites [J]. Adv. Funct. Mater., 2008, 18: 2692-2698.
    [136] FICHET G, CORCORAN N, HO P, et al. Self-organized photonic structures in polymerlight-emitting diodes [J]. Adv. Mater., 2004, 16: 1908-1912.
    [137] NA K, JUNG J, SHIN B, HYUN J. Micropatterning of cell-repellent polymer on a glasssubstrate for the highly resolved virus microarray [J]. Langmuir, 2006, 22: 10889-10892.
    [138] X.Y. Jiang, X.B. Chen, H.B. Zhang, et al. Synthesis and characterization of photoactivepoly(arylene ether sulfone)s containing azobenzene moieties in their main chains [J].React. Funct. Polym., 2010,70: 616-621.
    [139]陈磊利用飞秒激光在蓝宝石内制备光波导的研究[D]长春:吉林大学电子科学与工程学院2009.
    [140]吴东.基于激光技术的复杂结构和功能性器件研究[D]长春:吉林大学电子科学与工程学院2010.
    [141] D. Liu, Z.G. Wang, Novel polyaryletherketones bearing pendant carboxyl groups andtheir rare earth complexes, Part I: Synthesis and characterization [J]. Polymer 2008, 49:4960–4967.
    [142]刘丹.新型聚芳醚酮稀土配合物的制备及其荧光性能[D]大连:大连理工大学化学学院2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700