可溶液加工的有机小分子绿光材料的合成、表征及其电致发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对于溶液加工分子型有机光电材料的研究日益受到重视。一方面,可溶性有机分子光电材料通常情况下可用常规有机分离纯化方法,得到高纯度样品,从而可给出较为明确的分子结构-光电性能关系,为进一步分子、器件设计提供了可靠的依据。另外一方面,相对于依赖“真空蒸镀”成膜的有机分子材料,溶液加工分子型有机光电材料可降低器件制作成本、适合于制备大面积光电器件。
     在本论文中,我们围绕高性能可溶液加工的非掺杂电致绿光材料展开研究。在分子设计上,着重提高材料的溶解性、可成膜性、薄膜形貌稳定性、电子注入/传输特性、光致、电致光谱色纯度以及光致、电致发光效率。
     对于电致发光材料,非对称结构的分子设计可以较好的防止分子聚集态的形成,提高发光效率。我们首次合成了以2,1,3-苯并噻二唑为核、不对称结构的绿光小分子化合物,命名为1a和1b。这两个化合物以2,1,3-苯并噻二唑为核,在其4,7-位分别引入咔唑的衍生物和烷氧基取代的苯基树枝。结构为:ITO/PEDOT:PSS(50 nm)/PVK(40nm)/1a(45 nm)/Ba (4 nm)/Al(120 nm)的电致发光器件表现出电流效率为10.6 cd/A的高效绿光发射,色坐标为(0.34, 0.58),比较接近纯绿光发射。
     基于以上工作,我们发现:化合物1a和1b在引入PVK的双层器件在高电流密度下,器件效率会显著下降。为了深入理解材料的电荷传输性质,我们在2,1,3-苯并噻二唑的4-位和7-位对称引入了咔唑和芴的衍生物基团,合成了化合物1c和1d,并将化合物1c和第二章的两个化合物1a和1b进行器件表征方面的比较研究。器件结构为ITO/PEDOT:PSS (50 nm)/1a(1b, 1c, 45 nm)/TPBI (30 nm)/LiF (2 nm)/Al (120 nm)的电致发光器件,进一步提高了器件的性能,化合物1a的最大电流效率为12.8 cd/A的高效绿光发射。该材料在增加了电子传输层的电致发光器件中,在高电流密度下电流效率下降较为平缓,在电流密度为20 mA/cm2的时候,电流效率依然有11.2 cd/A,最大亮度达到29271 cd/cm2。
     为了简化合成,我们采用了结构简单且易形成非晶态的结构单元咔唑的衍生物和1,3-双(1-萘)基苯,合成了两个以2,1,3-苯并噻二唑为核的玻璃态小分子材料CzFBTB和NBBTB。分子一端的刚性树枝赋予了材料的内在稳定的玻璃态性质,另一端增溶性的烷氧基取代的苯基树枝使得材料具有较好的溶解性。以CzFBTB为活性层的电致发光器件ITO/PEDOT:PSS (50 nm)/PVK (40 nm)/CzFBTB (45 nm)/Ba (4 nm)/Al (120 nm)电流效率达3.5 cd/A。
     在保证材料的空穴注入性能和成膜性的前提下,我们引入了4,7-二苯基-2,1,3-苯并噻二唑作为核,合成了不对称取代的4,7-二苯基-2,1,3-苯并噻二唑的衍生物NCFPBT,该化合物在电致发光器件中获得了比较好的器件效率和色纯度。在器件结构:ITO/PEDOT: PSS (50 nm)/PVK (40 nm)/NCFPBT(45 nm)/CsF (2 nm)/Al (120 nm)中,在未优化的情况下,化合物NCFPBT即表现出7.66 cd/A的最大电流效率,电致发光光谱的半峰宽相对减小,相对于第二章的两个化合物1a和1b的色坐标为(0.34, 0.59)。
     更进一步改进材料的电子注入/传输特性,我们设计并合成了含有二苯基磷氧键取代噻吩为端基,2,1,3-苯并噻二唑为核的发光材料,该化合物发光颜色为黄绿光。缺电子的二苯基磷氧基团使该材料具有比较好的电子注入性质,同时具有较高的光致发光效率。我们对化合物的合成、表征和光物理性质进行了初步的探索,器件表征正在进一步研究。
Solution-processable molecular semiconductors have received increasing attention. Withrespect to their polymer counterparts, small molecular active compounds present theadvantages of a monodisperse unequivocal chemical structure and thus of a potentially betterreproducibility of synthesis and purification and more straightforward analysis ofstructurep?roperties relation-ships. Furthermore, when adequately solubilized by design thesesolution-processable molecular materials afford the possibility of low-cost large areaelectronics with respect to vacuum deposition-based device processing techlelogy.
     The research of this thesis has focused on the design, preparation and characterization ofnew efficient non-doped solution-processible green light-emitting molecular materials. Theemphases of molecular designs have been placed on the issues such as solution solubility,film-forming property, morphological stability, electron injection and transport,photoluminescent and electroluminescent efficiency and emission color purity.
     For the molecule design of electroluminescent materials, non-symmetrical moleculestructure may prevent the formation of molecular aggregation state thus increasingluminescent efficiency. We first synthesized a series of green light-emitting compoundswhich were named as 1a and 1b, based on an asymmetrically 4,7-disubstituted2,1,3-benzothiadiazole. The building block containing the derivative of carbazole wasintroduced on the 4-position of the core 2,1,3-benzothiadiazole core, while the alkoxysubstituted phenyl dendritic block was introduced on the 7-position of 2,1,3-benzothiadiazole.The devices with structure of ITO/PEDOT: PSS (50 nm)/PVK (40 nm)/1a (45 nm)/Ba (4nm)/Al (120 nm) exhibited a current efficiency of 10.6 cd/A. The color coordinates of thehigh-performance green emission were (0.34, 0.58) which were very close to pure greenemission.
     Based on the above results, it was noticed that the efficiencies of compounds 1a and 1bdecreased significantly in in double-layer devices with PVK at high current density. In orderto understand the properties of charge transport, we synthesised compounds 1c and 1dthrough introducing the derivative of carbazole and alkylfluorene at both the 4-position and7-positin of the core 2,1,3-benzothiadiazole. In comparison with compounds 1a and 1b inChapter 2, we prepared the similar device characterizations in the device structure:ITO/PEDOT: PSS (50 nm)/1a (1b, 1c, 45 nm)/TPBI (AlQ3, 30 nm)/LiF (2 nm) /Al (120 nm).We improved the performance of the devices. Compound 1a showed a high current efficiencyof 12.8 cd/A while the electron transport layer TPBI was introduced in the electroluminescent devices. The efficiency roll-off was improved and the efficiency decreased more slowly athigh current density. The current efficiency still maintained on a level of 11.2 cd/A at acurrent density of 20 mA/cm2. The maximum brightness of all devices reached 29271 cd/cm2.
     To simplify the synthesis, we synthesised two small molecular emitters CzFBTB andNBBTB with the derivative of carbazole and 1,3-di(naphthalen-1-yl)benzene which bear asimple structure and trend to form amorphous film. The two molecules with 2,1,3 -benzothiadiazole core exhibited intrinsicly amorphous glass state owing to the rigidmolecular dendrons at one end of molecule. The solubility of compounds was ensured bysolubilized diphenylphenyl moiety at the other end of molecule. The electroluminescentdevice ITO/PEDOT: PSS (50 nm)/PVK (40 nm)/CzFBTB (45 nm)/Ba (4 nm)/Al (120 nm)showed a current efficiency of 3.5 cd/A.
     A new asymmetrically substituted green emitter NCFPBT was prepared by theintroduction of the core 4,7-diphenyl-2,1,3-benzothiadiazole, which preserved hole injectionability and the film-forming property of material. The compounds obtained a relatively bettercolor purity and efficiency in electroluminescent devices. In the device structure: ITO/PEDOT: PSS (50 nm)/PVK (40 nm)/NCFPBT (45 nm)/CsF (2 nm)/Al (120 nm), thecompound NCFPBT exhibited a maximum current efficiency of 7.66 cd/A withoutoptimization of devices. The half peak width of electroluminescence spectra was relativelysmaller than compounds 1a and 1b in Chapter 2 and the color coordinates were (0.34, 0.59).
     For further enhancement electron injection/transport properties, we designed andsynthesized a yellow-green light-emitting compound in which diphosphine oxide groupsubstituted at thiophene as terminal group at both sides of the core 2,1,3-benzothiadiazole.The electron-deficient functional diphosphine oxide groups may endow the material withgood electron injection and transport properties and high photoluminescence efficiency. Apreliminary exploration of the synthesis, characterization and photophysical properties of thenew compound were done. The device characterizations are currently underway in ourlaboratory.
引文
[1] Tang C.W.; VanSlyke S.A. Organic electroluminescent diodes. Applied PhysicsLetters 1987,51: 913-915
    [2] Pope M, Kallmann H.P.; Magnante P. Electroluminescence in Organic Crystals. TheJournal of chemical physics, 1963, 38: 2042-2043
    [3] Vincett P.S.; Barlow W.A.; Hann R.A.; et al. Electrical conduction and low voltageblue electroluminescence in vacuum-deposited organic films. Thin Solid Films 1982,94: 171-183
    [4] Burroughes J.H.; Bradley D.D.C; Brown A.R.; et al. Light-emitting diodes based onconjugated polymers. Nature (London) 1990, 347: 539-541.
    [5] Braun D, Heeger AJ. Visible light emission from semiconducting polymer diodes.Applied Physics Letters 1991, 58: 1982-1984
    [6] Lai W.Y.; Zhu R.; Fan Q.L.; et al. Monodisperse Six-Armed Triazatruxenes:Microwave- Enhanced Synthesis and Highly Efficient Pure-Deep-BlueElectroluminescence. Macromolecules 2006, 39: 3707-3709
    [7] Huang J.; Li C.; Xia Y.J.; et al. Amorphous fluorescent organic emitters for efficientsolution-processed pure red electroluminescence: Synthesis, purification, morphology,solid-state photoluminescence, and device characterizations. J. Org. Chem., 2007, 72:8580-8583
    [8] Huang J.; Qiao X.F.; Xia. Y.J.; et al. A Dithienylbenzothiadiazole Pure Red MolecularEmitter with Electron Transport and Exciton Self-Confinement for Nondoped OrganicRed-Light-Emitting Diodes. Adv. Mater., 2008, 20: 4172-4176
    [9] Huang J.; Liu Q.; Zou J.H.; et al. Electroluminescence and Laser Emission of SolublePure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole. Adv.Funct. Mater 2009, 19: 2978-2986
    [10] Lo S.C.; Burn P.L. Development of dendrimers: macromolecules for use in organiclight-emitting diodes and solar cells. Chem. Rev., 2007, 107: 1097-1116
    [11] Kwon W.T.; Alam M.M.; Jenekhe S.A. n-Type Conjugated Dendrimers: ConvergentSynthesis, Photophysics, Electroluminescence, and Use as Electron-TransportMaterials for Light-Emitting Diodes. Chem. Mater., 2004, 16: 4657-4666
    [12] Cao X.Y.; Zhou X.H.; Zi H.; et al. Novel blue-light-emitting truxene-containinghyperbranched and zigzag type copolymers: synthesis, optical properties, andinvestigation of thermal spectral stability. Macromolecules, 2004, 37: 8874-8882
    [13] Luo J.; Zhou Y.; Niu Z.Q.; et al. Three-dimensional architectures for highly stable pureblue emission. J. Am. Chem. Soc., 2007, 129 : 11314-11315
    [14] Gong X.; Ma W.L.; Ostrowski J.C.; et al. White electrophosphorescence fromsemiconducting polymer blends. Adv. Mater., 2004, 16: 615-619
    [15] Sun Y.H.; Zhu X.H.; Chen Z.; et al. Potential solution processible phosphorescentiridium complexes toward applications in doped light-emitting diodes: rapid synthesesand optical and morphological characterizations, J. Org. Chem., 2006, 71: 6281-6284.
    [16] Rehmann N.; Ulbricht C.; Kohnen A.; et al. Advanced device architecture for highlyefficient organic light-emitting diodes with an orange-emitting crosslinkableiridium(III) complex. Advanced Materials, 2008, 20: 129-133
    [17] Kim T.H.; Yoo D.H.; Park J.H.; et al. Enhanced electrophosphorescence via highlyefficient energy transfer from conjugated polymer. Applied Physics Letters, 2005,86:171108-171110
    [18] Gong X.; Robinson M.R.; Ostrowski J.C.; et al. High-efficiency polymer-basedelectrophosphorescent devices. Adv. Mater., 2002, 14: 581-585
    [19] Yeh H.C.; Chien C.H.; Shih P.I.; et al. Polymers derived from 3,6-fluorene andtetraphenylsilane derivatives: Solution-processable host materials for greenphosphorescent OLEDs. Macromolecules, 2008, 41: 3801-3807
    [20] Wu F.I.; Su H.J.; Shu C.F.; et al. Tuning the emission and morphology ofcyclometalated iridium complexes and their applications to organic light-emittingdiodes. Journal of Materials Chemistry 2005, 15: 1035-1042
    [21] Huang S.P.; Jen T.H.; Chen Y.C.; et al. Effective shielding of triplet energy transfer toconjugated polymer by its dense side chains from phosphor dopant for highly efficientelectrophosphorescence. Journal of the American Chemical Society, 2008, 130:4699-4707
    [22] Hwang F.M.; Chen H.Y.; Chen P.S.; et al. Iridium (III) complexes with orthometalatedquinoxaline ligands: Subtle tuning of emission to the saturated red color. InorganicChemistry, 2005, 44: 1344-1353
    [23] Kulkarni A.P.; Tonzola C.J.; Jenekhe S.A.; et al. Electron Transport Materials forOrganic Light-Emitting Diodes Chem. Mater., 2004, 16: 4556-4573
    [24] Parker I.D. Carrier tunneling and device characteristics in polymer light-emittingdiodes. Journal of Applied Physics, 1994, 75: 1656-1666
    [25]黄春辉,李富友,黄维,《有机电致发光材料与器件导论》,复旦大学出版社,2005年第一版第一次印刷
    [26] Cao Y,; Parker I.D.; Yu G.; et al. Improved quantum efficiency forelectroluminescence in semiconducting polymers. Nature (London) 1999, 397:414-417
    [27] Braun D. and Heeger A.J. Electroluminescence from light-emitting diodes fabricatedfrom conducting polymers; Thin Solid Films, 1992, 216: 96-98
    [28] Hung L.S.; Tang C.W.; Mason M.G. Enhanced electron injection in organicelectroluminescent devices using an Al/LiF electrode. Appl. Phys. Lett, 1997, 70:152-154
    [29] Yan M.; Rothberg L.J.; Papadimitrakopoulos F.; et al. Defect quenching of conjugatedpolymer luminescence. Physical Review Letters 1994, 73: 744-747
    [30] Sutherland D.G.J.; Carlisle J.A.; Elliker P.; et al. Photo-oxidation of electroluminescentpolymers studied by core-level photoabsorption spectroscopy. Applied Physics Letters1996, 68: 2046-2048
    [31] Rehahn M.; Schluter A.D.; Wegner G.; et al. Soluble poly(para-phenylene)s. 1.Extension of the Yamamoto synthesis to dibromobenzenes substituted with flexibleside chains. Polymer 1989, 30: 1054-1059
    [32] Greenham N.C.; Moratti S.C.; Bradley D.D.C.; et al. Efficient light-emitting diodesbased on polymers with high electron affinities. Nature 1993, 365: 628-630
    [33] Yang Y.; Pei Q.; Heeger A.J. Efficient blue polymer light-emitting diodes from a seriesof soluble poly(paraphenylene)s. Journal of Applied Physics 1996, 79: 934-939
    [34] Ohmori Y, Uchida M, Muro K, Yoshino K. VISIBLE-LIGHT ElectroluminescentDiodes Utilizing Poly(3-alkylthiophene). Japanese Journal of Applied Physics Part2-Letters 1991, 30: L1938-L1940
    [35] Groenendaal B.L.; Jonas F.; Freitag D.; et al. Poly(3,4-ethylenedioxythiophene) and itsderivatives: Past, present, and future. Advanced Materials, 2000, 12: 481-494
    [36] Pei J.;Yu W.L.; Huang W.; et al. The synthesis and characterization of an efficientgreen electroluminescent conjugated polymer: poly [2,7-bis(4-hexylthienyl)-9,9-dihexylfluorene]. Chemical Communications, 2000: 1631-1632
    [37] Chao C.S.; Whang W.T.; Hung C.H.; et al. Effect of side chain alkyl length on theelectroluminescence characteristics of carbazole-based light emitting polymers.Macromolecular Chemistry and Physics 2001, 202: 2864-2871
    [38] Beouch L.; Van F.T.; Stephan O.; et al. Optical and electrochemical properties ofsoluble N-hexylcarbazole-co-3,4-ethylenedioxythiophene copolymers. SyntheticMetals 2001, 122: 351-358
    [39] Huang J.; Niu Y.; Yang W.; et al. Novel Electroluminescent Polymers Derived fromCarbazole and Benzothiadiazole. Macromolecules 2002, 35: 6080-6082
    [40] [40] Masahiko Fukuda K.S.K.Y. Synthesis of fusible and soluble conductingpolyfluorene derivatives and their characteristics. Journal of Polymer Science Part A:Polymer Chemistry, 1993, 31: 2465-2471.
    [41] Pei Q.B.; Yang Y. Efficient photoluminescence and electroluminescence from asoluble polyfluorene. J Am Chem Soc 1996,118: 7416-7417.
    [42] Ranger M.; Leclerc M. New Base-Doped Polyfluorene Derivatives. Macromolecules1999, 32: 3306-3313
    [43] Leclerc M. Polyfluorenes: twenty years of progress. Journal of Polymer Science, PartA: Polymer Chemistry 2001, 39: 2867-2873
    [44] Inbasekaran M, Woo EP, Wu W, Bernius M. Fluorene copolymers and devices madetherefrom. PCT Patent. Application vol. WO046321A1, 2000
    [45] Ranger M, Rondeau D, Leclerc M. New Well-Defined Poly(2,7-fluorene) Derivatives:Photoluminescence and Base Doping. Macromolecules, 1997, 30: 7686-7691
    [46] Niu Y.H.; Yang W.; Cao Y. High-efficiency blue-light-emitting diodes with narrowlinewidth based on blends of poly[2-(2'-ethylhexyloxy)-1,4-phenylene] andpoly(dialkyl- fluorene-co-dibenzothiophene). Applied Physics Letters 2002, 81:2884-2886.
    [47] Hou Q.; Xu Y.S.; Yang W.; et al. Novel red-emitting fluorene-based copolymers. J.Mater. Chem. 2002, 12: 2887-2892
    [48] Ego C.; Grimsdale A.C.; Uckert F.; et al. Triphenylamine-substituted polyfluorene- Astable blue-emitter with improved charge injection for light-emitting diodes. AdvancedMaterials, 2002, 14: 809-811
    [49] Doi S.; Kuwabara M.; Noguchi T.; et al. Organic electroluminescent devices havingpoly(dialkoxy-p-phenylene vinylenes) as a light emitting material. Synth. Met., 1993,57: 4174-4179
    [50] Greenham N.C.; Moratti S.C.; Bradley D.D.C.; et al. Efficient light-emitting diodesbased on polymers with high electron affinities. Nature, 1993, 365: 628-630
    [51] Spreitzer H.; Becker H.; Kluge E.; et al. Soluble phenyl-substituted PPVs-newmaterials for highly efficient polymer LEDs. Advanced Materials 1998, 10: 1340-1343
    [52] Becker H.; Spreitzer H.; Kreuder W.; et al. Soluble PPVs with EnhancedPerformance-a Mechanistic Approach. Advanced Materials 2000, 12: 42-48
    [53] Chen Z.K.; Pan J.Q.; Xiao Y.; et al. Fully soluble poly(p-phenylenevinylene)s viapropagation control of the polymer chain conjugated lengths. Thin Solid Films 2000,363: 98-101
    [54] Pei Q.B.; Yang Y. Efficient photoluminescence and electroluminescence from asoluble polyfluorene. J Am Chem Soc 1996, 118: 7416-7417
    [55] Inbasekaran M.; Woo E.P.; Wu W.; et al. Fluorene copolymers and devices madetherefrom. PCT Patent. Application, vol. WO046321A1, 2000
    [56] Ranger M.; Rondeau D.; Leclerc M. New Well-Defined Poly(2,7-fluorene) Derivatives:Photoluminescence and Base Doping. Macromolecules 1997, 30: 7686-7691
    [57] Romero D.B.; Schaer M.; Leclerc M.; et al. The role of carbazole in organiclight-emitting devices. Synthetic Metals|Synthetic Metals 1996, 80: 271-277
    [58] Liu G.; Li A.Y.; Zhu X.H.; et al. An Ionic Molecular Glass as Electron Injection Layerfor Efficient Polymer Light-Emitting Diode. Macromol. Rapid. Commun.; 2009, 30:1484–1491
    [59] Liu Z.T.; Zou J.H.; Chen J.W.; et al. Largely enhanced LED efficiency of carbazole-fluorene-silole copolymers by using TPBI hole blocking layer. Polymer, 2008, 49:1604-1610
    [60] Liu J.; Tu G.L.; Zhou Q.G.; et al. Highly efficient green light emitting polyfluoreneincorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. J. Mater.Chem., 2006, 16: 1431–1438
    [61] Liu J.; Bu L.J.; Dong J.P.; et al. Green light-emitting polyfluorenes with improvedcolor purity incorporated with 4,7-diphenyl-2,1,3-benzothiadiazole moieties J. Mater.Chem., 2007, 17: 2832–2838
    [62] Yoon K.J.; Park J.S.; Lee S.J.; et al. Synthesis and Characterization of Fluorene-BasedConolvmers Containinp Benzothiadiazole Derivative for Light-Emitting DiodesApplications. Journal of Polymer Science Part a-Polymer Chemistry 2008, 46:6762-6769
    [63] Bouffard J.; Swager TM. Fluorescent conjugated polymers that incorporate substituted2,1,3-benzooxadiazole and 2,1,3-benzothiadiazole units. Macromolecules 2008, 41:5559-5562
    [64] Wang E.G.; Li C.; Zhuang WL.; et al. High-efficiency red and green light-emittingpolymers based on a novel wide bandgap poly( 2,7-silafluorene). Journal of MaterialsChemistry 2008, 18: 797-801
    [65] Bernius M.; Inbasekaran M.; Woo E.; et al. Fluorene-based polymers-preparation andapplications. Journal of Materials Science: Materials in Electronics 2000, 11: 111-116
    [66] Herguth P.; Jiang X.; Liu MS.; et al. Highly Efficient Fluorene- andBenzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes.Macromolecules 2002, 35: 6094-6100
    [67] Bernius MT.; Inbasekaran M.; O'Brien J.; et al. Progress with Light-Emitting Polymers.Advanced Materials 2000, 12: 1737-1750
    [68] Muller CD.; Falcou A.; Reckefuss N.; et al.Multi-colour organic light-emittingdisplays by solution processing. Nature 2003, 421: 829-833
    [69] Mancilha F.S.; Neto B.A.D.; Lopes A.S.; et al. Are molecular 5,8-pi-extendedquinoxaline derivatives good chromophores for photoluminescence applications?European Journal of Organic Chemistry, 2006:4924-4933
    [70] Neto B.A.D.; Lopes A.S.A.; Ebeling G.; et al. Photophysical and electrochemicalproperties of pi-extended molecular 2,1,3-benzothiadiazoles. Tetrahedron, 2005, 61:10975- 10982
    [71] Zhang X.L.; Yamaguchi R.; Moriyama K.; et al. Highly dichroic benzo-2,1,3-thia-diazole dyes containing five linearly pi- conjugated aromatic residues, with fluorescentemission ranging from green to red, in a liquid crystal guest-host system. Journal ofMaterials Chemistry 2006, 16: 736-740
    [72] Yang R.; Garcia A.; Korystov D.; et al. Control of Interchain Contacts, Solid-StateFluorescence Quantum Yield, and Charge Transport of Cationic ConjugatedPolyelectrolytes by Choice of Anion. Journal of the American Chemical Society 2006,128: 16532-16539
    [73] Zhang X.; Gorohmaru H.; Kadowaki M.; et al. Benzo-2,1,3-thiadiazole-based, highlydichroic fluorescent dyes for fluorescent host-guest liquid crystal displays. Journal ofMaterials Chemistry 2004, 14: 1901-1904
    [74] Sakurai H.; Ritonga M.T.S.; Shibatani H.; et al. Synthesis and characterization ofp-phenylenediamine derivatives bearing an electron-acceptor unit. Journal of OrganicChemistry 2005, 70: 2754-2762
    [75] Ritonga M.T.S.; Sakurai H.; Hirao T. Synthesis and characterization of p-phenylene-diamine derivatives bearing a thiadiazole unit. Tetrahedron Letters 2002, 43:9009-9013.
    [76] Kato S.; Matsumoto T.; Ishi T.; et al. Strongly red-fluorescent novel donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D) type 2,1,3-benzothiadiazoles with enhancedtwo-photon absorption cross-sections. Chemical Communications, 2004, 2342-2343
    [77] Zhou Y.; He Q.G.; Yang Y.; et al. Binaphthyl-Containing Green- and Red-EmittingMolecules for Solution-Processable Organic Light-Emitting Diodes. Adv. Funct.Mater., 2008, 18: 3299–3306
    [78] Chen C.T.; Evolution of Red Organic Light-Emitting Diodes:Materials and Devices.,Chem. Mater., 2004, 16: 4389-4400
    [79] Tao S.L.; Li L.; Yu J.S.; et al. Bipolar Molecule as an Excellent Hole-Transporter forOrganic-Light Emitting Devices. Chem. Mater. 2009, 21: 1284-1287
    [80] Lee Y.T.; Chiang C.L.; Chen C.T.; et al. Solid-state highly fluorescentDiphenylaminospirobifluorenylfumaro- nitrile red emitters for non-doped organiclight-emitting diodes. Chem. Commun., 2008, 217–219
    [81] Wang L.; Jiang Y.; Luo J.; et al. Highly Efficient and Color-Stable Deep-Blue OrganicLight-Emitting Diodes Based on a Solution-Processible Dendrimer. Adv. Mater., 2009,21:4854–4858
    [82] Chen C.H.; Huang W.S.; Lai M.Y.; et al. Versatile, Benzimidazole/ Amine-BasedAmbipolar Compounds for Electroluminescent Applications: Single-Layer, Blue,Fluorescent OLEDs, Hosts for Single-Layer, Phosphorescent OLEDs. Adv. Funct.Mater., 2009, 19: 2661–2670
    [83] Liu F.; Lai W.Y.; Tang C.; et al. Synthesis and characterization of pyrene-centeredstarburst oligofluorenes. Macromol. Rapid Commun., 2008, 29: 659-664
    [84] Hancock J.M.; Gifford A.P.; Zhu Y.; et al. n-Type Conjugated Oligoquinoline andOligoquinoxaline with Triphenylamine Endgroups: Efficient Ambipolar Light Emittersfor Device Applications. Chem. Mater., 2006, 16: 4556-4564
    [85] Ku S.Y.; Chi L.C.; Hung W.Y.; et al. High-luminescence non-doped green OLEDsbased on a 9,9-diarylfluorene-terminated 2,1,3-benzothiadiazole derivative. J. Mater.Chem., 2009, 19: 773–780
    [86] Li H.Z.; Wong M.S.; Tao Y. Two-dimensional oligoarylenes: synthesis andstructure–properties relationships. Tetrahedron, 2005, 61: 5277–5285
    [87] Lo M.Y.; Zhen C.G.; Sellinger A.; et al. Organic-Inorganic Hybrids Based on PyreneFunctionalized Octavinyl-silsesquioxane Cores for Application in OLEDs. J. AM.CHEM. SOC., 2007, 129: 5808-5809
    [88] Siove A.; Ades D. Synthesis by oxidative polymerization with FeCl3 of a fullyaromatic twisted poly (3,6-carbazole) with a blue-violet luminescence. Polymer, 2004,45: 4045-4049
    [89] Kim J.K.; Hong S.I.; Cho H.N.; et al. An alternating copolymer for a bluelight-emitting diode. Polymer Bulletin, 1997, 38: 169-176
    [90] Kim H.K.; Ryu M.K.; Kim K.D.; et al. Novel silicon-containing poly(p-phenylenevinylene)-related polymers for blue light-emitting diodes. SyntheticMetals 1997, 91: 297-299
    [91] Hwang S.W.; Chen Y. Synthesis and electrochemical and optical properties of novelpoly(aryl ether)s with isolated carbazole and p-quaterphenyl chromophores.Macromolecules, 2001, 34: 2981-2986
    [92] Hosokawa C.; Higashi H.; Nakamura H.; et al. Highly efficient blueelectroluminescence from a distyrylarylene emitting layer with a new dopant. AppliedPhysics Letters, 1995, 67: 3853-3855
    [93] Dijken A.; Bastiaansen J.J.A.M.; Kiggen N.M.M.; et al. Carbazole Compounds as HostMaterials for Triplet Emitters in Organic Light-Emitting Diodes: Polymer Hosts forHigh-Efficiency Light-Emitting Diodes. J. Am. Chem. Soc. 2004, 126: 7718-7727
    [94] [92] Wu YZ, Zheng XY, Zhu WQ, Sun RG, Jiang XY, Zhang ZL, Xu SH. Highlyefficient pure blue electroluminescence from1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene. Applied Physics Letters 2003, 83:5077-5079
    [95] Jin SH, Sun YK, Sohn BH, Kim W. Synthesis and electro-optical properties ofelectroluminescent polymers containing carbazole unit. European Polymer Journal2000, 36: 957-963
    [96] Song SY, Jang MS, Shim HK, Hwang DH, Zyung T. Highly efficient light-emittingpolymers composed of both hole and electron affinity units in the conjugated mainchain. Macromolecules 1999, 32: 1482-1487
    [97] Carrard M, Goncalves-Conto S, Si-Ahmed L, Ades D, Siove A. Improved stability ofinterfaces in organic light emitting diodes with high T-g materials and self-assembledmonolayers. Thin Solid Films 1999, 352: 189-194
    [98] Lu JP, Tao Y, D'Iorio M, Li YN, Ding JF, Day M. Pure deep blue light-emitting diodesfrom alternating fluorene/carbazole copolymers by using suitable hole-blockingmaterials. Macromolecules 2004, 37: 2442-2449
    [99] Li Y.; Ding J.; Day M.; et al. Synthesis and Properties of Random and AlternatingFluorene/Carbazole Copolymers for Use in Blue Light-Emitting Devices. Chemistry ofMaterials 2004, 16: 2165-2173
    [100] Morin J.F.; Leclerc M.; Ades D.; et al. Polycarbazoles: 25 years of progress.Macromolecular Rapid Communications 2005, 26: 761-778
    [101] Kim H.K.; Ryu M.K.; Kim K.D.; et al. Tunable electroluminescence from silicon-containing poly(p-phenylenevinylene)-related copolymers with well-defined structures.Macromolecules 1998, 31: 1114-1123
    [102] Holmes R.J.; Forrest S.R.; Tung Y.J.; et al. Blue organic electrophosphorescence usingexothermic host-guest energy transfer. Applied Physics Letters 2003, 82: 2422-2424
    [103] Ahn T.; Song S.Y.; Shim H.K. Highly photoluminescent and blue-greenelectroluminescent polymers: New silyl- and alkoxy-substituted poly(p-phenylenevinylene) related copolymers containing carbazole or fluorene groups.Macromolecules 2000, 33: 6764-6771
    [104] Kim S.; Seo J.; Jung H.K.; et al. White luminescence from polymer thin filmscontaining excited-states intramolecular proton-transfer dyes. Adv. Mater., 2005, 17:2077-2082
    [105] Yang R.Q.; Tian R.Y.; Yan J.A.; et al. Deep-red electroluminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers forlight-emitting diodes and photovoltaic devices, Macromolecules, 2005, 38: 244-253
    [106] Negres R.A.; Gong X.; Ostrowski J.C.; et al. Origin of efficient light emission from aphosphorescent polymer/organometallic guest-host system. Physical Review B. 2003,68: 115209-115216
    [107] Herguth P.; Jiang X.; Liu M.S.; et al. Highly Efficient Fluorene- andBenzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes.Macromolecules, 2002, 35: 6094-6100
    [108] Muller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H,Nuyken O, Becker H, Meerholz K. Multi-colour organic light-emitting displays bysolution processing. Nature 2003, 421: 829-833
    [109] Zhang XL, Yamaguchi R, Moriyama K, Kadowaki M, Kobayashi T, Ishi-i T,Thiemann T, Mataka S. Highly dichroic benzo-2,1,3-thiadiazole dyes containing fivelinearly pi- conjugated aromatic residues, with fluorescent emission ranging fromgreen to red, in a liquid crystal guest-host system. Journal of Materials Chemistry 2006,16: 736-740
    [110] Kato S, Matsumoto T, Ishi T, Thiemann T, Shigeiwa M, Gorohmaru H, Maeda S,Yamashita Y, Mataka S. Strongly red-fluorescent novel donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D) type 2,1,3-benzothiadiazoles with enhanced two-photonabsorption cross-sections. Chemical Communications, 2004:2342-2343
    [111] Ritonga M.T.S.; Sakurai H.; Hirao T. Synthesis and characterization of p-phenyl-enediamine derivatives bearing a thiadiazole unit. Tetrahedron Letters 2002, 43:9009-9013
    [112] Sakurai H.; Ritonga M.T.S.; Shibatani H.; et al. Synthesis and characterization ofp-phenylenediamine derivatives bearing an electron-acceptor unit. Journal of OrganicChemistry 2005, 70: 2754-2762
    [113] Freeman, A.W.; Urvoy, M.; Criswell, M.E. Triphenylphosphine-Mediated ReductiveCyclization of 2-Nitrobiphenyls: A Practical and Convenient Synthesis of Carbazoles.J. Org. Chem. 2005, 70: 5014-5019
    [114] Leeuw D.M.D.; Simenon M.M.J.; Brown A.R.; et al., Stability of n-type dopedconducting polymers and consequences for polymeric microelectronic devices, Synth.Met., 1997, 87: 53-59
    [115] D’Andrade B.W.; Datta S.; Forrest, S. R.; et al. Relationship between the ionizationand oxidation potentials of molecular organic semiconductors. Organ. Electron.,2005, 6: 11-20
    [116] Anthopoulos, T.D.; Markham, J.P.J.; Namdas, E.B.; et al. Highly efficient single-layerdendrimer light-emitting diodes with balanced charge transport, Appl. Phys. Lett.,2003, 82: 4824-4826
    [117] Lo, S.C.; Male, N.A.H.; Mrkham, J.P.J.; et al. Green phosphorescent dendrimer forlight-emitting diodes, Adv. Mater.,, 2002, 14: 975-979.
    [118] Markham J.P.J.; Lo S.C.; Magennis S.W.; et al. High-efficiency greenphosphorescence from spin-coated single-layer dendrimer light-emitting diodes, Appl.Phys. Lett., 2002, 80: 2645-2647
    [119] Markham, J.P.J.; Samuel, I.D.W.; Lo, S.C.; et al. Charge transport in highly efficientiridium cored electrophosphorescent dendrimers, J. Appl. Phys., 2004, 95: 438-445
    [120] Ding, J.Q.; Gao, J.; Cheng, Y. X.; et al. Highly efficient green-emitting phosphorescentiridium dendrimers based on carbazole dendrons, Adv. Funct. Mater., 2006, 16,575-581
    [121] Lo, S.C.; Namdas, E.B.; Burn, P.L.; et al. Synthesis and properties of highly efficientelectroluminescent green phosphorescent iridium cored Ddendrimers, Macromolecules,2003, 36: 9721-9730
    [122] Tokito S.; Suzuki M.; Sato F.; et al. High-efficiency phosphorescent polymer light-emitting devices. Organic Electronics 2003, 4: 105-111
    [123] Cho M.J.; Hong C.S.; Kim Y.M.; et al. Highly Soluble Green-Emitting Ir(III)Complexes with 9-(6-Phenyl-pyridin-3- ylmethyl)-9H-Carbazole Ligands and TheirApplication to Polymer Light-Emitting Diodes. Journal of Polymer Science Parta-Polymer Chemistry 2008, 46: 7419-7428
    [124] Zhao C.; Changyun J.; Qiaoli N.; et al. Enhanced green electrophosphorescence byusing polyfluorene host via interfacial energy transfer from polyvinyl- carbazole.Organic Electronics 2008, 9: 1002-1009
    [125] Thomas K.R.J.; Velusamy M.; Lin J.T.; et al. Energy harvesting star-shaped moleculesfor electroluminescence applications Chem. Commun.; 2004, 2328-2329.
    [126] Li Z.H.; Wong M.S.; Fukutani H.; et al. Full emission color tuning in bis-dipolardiphenylamino-endcapped oligoarylfluorenes. Chem. Mater., 2005, 17: 5032-5040.
    [127] Chen C.T.; Wei Y.; Lin, J.S.; et al. Doubly ortho-linked quinoxaline/diphenylfluorenehybrids as bipolar fluorescent chameleons for optoelectronic applications. J. Am.Chem. Soc., 2006, 128: 10992-10993
    [128] Thomas K.R.J.; Lin J.T.; Velusamy M.; et al. Color tuning in benzo[1,2,5]thia-diazole-based small molecules by amino conjugation/deconjugation: Brightred-light-emitting diodes. Adv. Mater., 2006, 14, 83-90
    [129] Iraqi A.; Simmance T.G.; Yi H.; et al. Preparation and Properties of 4-Dialkyl-amino-phenyl N-Functionalized 2,7-Linked Carbazole Polymers. Chem. Mater., 2006,18: 5789-5797
    [130] Benmansour H.; Shioya T.; Sato Y.; et al. Anthracene-Containing BinaphtholChromophores for Light-Emitting Diode (LED) Fabrication. Adv. Funct. Mater., 2003,13: 883-886.
    [131] Whitaker C. M.; McMahon R.J. Synthesis and characterization of organic materialswith conveniently accessible supercooled liquid and glassy phases: isomeric1,3,5-tris(naphthyl)benzenes, J. Phys. Chem., 1996, 100: 1081-1090.
    [132] Shih H.T.; Lin C.H.; Shih H.H.; et al. High-performance Blue ElectroluminescentDevices Based on a Biaryl. Adv. Mater., 2002, 14, 83-89.: 1409-1412.
    [133] Wu K.C.; Ku P.J.; Lin C.S; et al. The Photophysical Properties of Dipyrenylbenzenesand Their Application as Exceedingly Efficient Blue Emitters for ElectroluminescentDevices. Adv. Funct. Mater., 2008, 18: 67-75.
    [134] Thomas K.R.J.; Lin J.T.; Tao Y.Y; et al. Novel Green Light-Emitting CarbazoleDerivatives: Potential Electroluminescent Materials. Adv. Mater., 2006, 16: 575-581
    [135]陈金鑫,黄孝文,《有机电激发光材料与元件》,台北:五南图书出版股份有限公司,2006
    [136] Li Y.; Li A.Y.; Li B.X.; et al. Asymmetrically 4,7-Disubstituted Benzothiadiazoles asEfficient Non-doped Solution- Processable Green Fluorescent Emitters. Organic letters,2009, 11:5318-5321
    [137] Chien C.H.; Chen C.K.; Shu C. F.; et al. Multifunctional Deep-Blue EmitterComprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups. Adv.Funct. Mater., 2009, 19: 560–566
    [138] Hsu F.M.; Chien C.H.; Shu C.F.; et al. A Bipolar Host Material ContainingTriphenylamine and Diphenylphosphoryl- Substituted Fluorene Units for HighlyEfficient Blue Electrophosphorescence. Adv. Funct. Mater., 2009, 19: 2834-2843
    [139] Jeon S.O.; Yook K.S.; Joo C.W.; et al. Phenylcarbazole-Based Phosphine Oxide HostMaterials For High Efficiency In Deep Blue Phosphorescent Organic Light-EmittingDiodes. Adv. Funct. Mater., 2009, 19: 3644-3649
    [140] Polikarpov E, Swensen J.S.; Chopra N.; et al. An ambipolar phosphine oxide-basedhost for high power efficiency blue phosphorescent organic light emitting devices.Applied Physics Letters. 2009, 94: 223304-223306
    [141] Hsu F.M.; Chien C.H.; Shih P.I.; et al. Phosphine-Oxide- Containing Bipolar HostMaterial for Blue Electrophosphorescent Devices. Chem. Mater., 2009, 21: 1017–1022
    [142] Saito A.; Miyajima T.; Nakashima M.; et al. Acenaphtho[1, 2-c]phosphole P-Oxide: APhosphole-Naphthalene p-Conjugated System with High Electron Mobility. Chem. Eur.J, 2009, 15, 10000 10000-10004
    [143] Jeon S.O.; Yook K.S.; Joo C.W.; et al. A phosphine oxide derivative as a universalelectron transport material for organic light-emitting diodes. J. Mater. Chem., 2009, 19:5940–5944
    [144] Romero-Nieto C.; Durben S.; Kormos I.M.; et al. Simple and Efficient Generation ofWhite Light Emission From Organophosphorus Building Blocks. Adv. Funct. Mater.,2009, 19: 3625-3631
    [145] Ohshita J.; Kurushima Y.; Lee K.H.; et al. Synthesis of Bis(diarylphosphino)-dithienosilole Derivatives as Novel Photo- and Electroluminescence Materials.Organometallics, 2007, 26: 6591–6595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700