再生聚苯颗粒外保温砂浆的研制与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实施建筑节能必须大幅度提高外围护结构,尤其是外墙的热工性能。保温砂浆以其热工性能好、施工方便,可以通过改变保温砂浆容重和厚度调节墙体热阻、工程造价低的特点,是建筑节能拟采取的主要节能措施之一。近年来,我国聚苯乙烯泡沫塑料EPS发展迅速,每年有上千万立方的废弃EPS因不能进行处理与降解而成为危害环境的白色污染。将废弃EPS破碎成粒度小于5mm的颗粒作为轻集料来配制施工性、热工性、耐候性优良的保温砂浆,变废为宝,是废弃EPS建材资源化的有效途径。
     本文以提高EPS保温砂浆的施工和易性,热工性能、耐候性为研究重点,配制性价比优异的再生EPS保温砂浆。选用级配优良的再生聚苯颗粒作为轻骨料,充分利用其颗粒热阻大、耐碱蚀、化学稳定性好、韧性较大、表面不规则的特点,提高保温砂浆的热工、耐水、施工和易性等性能,通过实验分析确定了EPS粒径级配形式;通过掺加可再分散乳胶粉粘结剂对再生聚苯颗粒表面进行改性处理,使其表面由憎水性变为亲水性,成功地解决了无机胶凝材对聚苯颗粒不润湿、混合料和易性差、粘结强度低的技术难题;采用纤维素醚保水剂的保水增稠作用,配合乳胶粉粘结剂来改善产品的保水性和内聚性,提高了保温砂浆的施工和易性能;利用聚丙烯纤维增韧措施,提高保温砂浆韧性与抗裂性能,有效降低了砂浆的线性收缩率;通过有机硅防水剂的改性作用,有效提高了保温砂浆的耐水粘结强度、降低了体积吸水率,增强了保温砂浆的耐水、抗渗性能。
     通过实验研究各组分对EPS保温砂浆性能的影响,确定各主要组分的种类和最佳掺量如下:42.5R普通硅酸盐水泥162kg/m3;粒径为0~5mm的再生EPS颗粒1200L/m3;大连化学DA-1410可再分散乳胶粉5.0~6.0kg/m3;山东瑞泰纤维素醚1.5~1.7kg/m3;6mm聚丙烯纤维0.9~1.1kg/m3;有机硅防水剂0.6kg/m3。本文根据目前外墙外饰面情况的不同,结合聚苯颗粒外保温砂浆产品自身的优良性能,确定了两种不同的EPS保温砂浆外保温构造体系:涂料饰面构造体系和面砖饰面构造体系,并建立了各自的施工工艺,有效保证了施工的规范性和系统的使用性能。
     工程应用表明:本EPS保温砂浆外保温系统具有施工和易性好、热工性能高、耐候性优良、施工方便、工程造价低的特点,产品性价比优势明显,是极具市场竞争力的保温材料,可广泛应用于外墙外保温工程中。
The implementation of building energy-saving must be a substantial increase on the thermal insulation properties of outer building envelope, especially the external walls. Insulation mortar is to be taken one of the major energy-saving measures because of its thermal insulation properties, convenient construction, low cost and can adjust the thermal resistance of wall with changing the density and thickness of insulation mortar. In recent years, expanded polystyrene(EPS)develops rapidly in China, about 10 million cubic meters of waste EPS need to be dealt with each year, because they can not be treated and degraded and then become the white pollution to the environment. The insulation mortar with excellent construction, thermal and weatherability is prepared by the waste EPS which be broken into particles with the granularity of less than 5 mm as the lightweight aggregate, recycling waste, and becomes the effective way for waste EPS as resources of building materials.
     This paper focuses on increasing the workability of construction, thermal properties and weatherability of EPS insulation mortar, preparation of renewable EPS insulation mortar with excellent cost-effective. Selecting renewable polystyrene particles with excellent grading as a lightweight aggregate, making full use of its large thermal resistance, alkali-resistant corrosion, chemical stability, larger toughness, and irregular surface characteristics of its particles, improving the thermal, water-resistant, workability of construction, and other properties of insulation mortar, the granularity and grading of EPS are confirmed through test analysis; Modificating the surface of renewable polystyrene through the mixing of redispersiable latex powder binder particles from hydrophobic to hydrophilic, having successfully resolved the technical problems such as the inorganic gelling materials and polystyrene particles being not wet with each other, poor workability of mixture, and low bond strength; Improving workability of the insulation mortar by using water-retentive and thickening action of the cellulose ethers and using latex powder binder to improve the water-retentive and cohesion of the products; Using polypropylene fiber toughened measures to improve the toughness and crack resistance of insulation mortar, effectively reducing the linear shrinkage of mortar; Using the modified role of organosilicon waterproofing agent to effectively improve the water-resistant mortar bond strength of the insulation mortar and reduce the water absorption in volume and enhance the water-resistant and impermeability of the mortar.
     The influence of various components on the properties of EPS insulation mortar is studied by experiments, the type and the best dosage of the major components are identified as follows: ordinary portland cement of 42.5 R with dosage of 162kg/m3; 0~5mm renewable EPS particles with dosage of 1200L/m3; redispersiable latex powder binder particles of Dalian Chemical DA-1410 with dosage of 5.0~ 6.0kg/m3; Cellulose ether of Shandong Ruitai with dosage of 1.5~ 1.7kg/m3; polypropylene fiber 6mm length with dosage of 0.9~ 1.1kg/m3; organosilicon waterproofing agent with dosage of 0.6kg/m3.
     Based on the current situation in the external walls of the different finishes, combining with the excellent performance of their products of polystyrene insulation mortar, two different external thermal insulation structure system that using EPS are identified: paint finishes structure system and tile finishes structure system, and establish their own construction technology, effectively guaranteed the specification of the construction and the application of the system.
     Application of engineering indicates that: the EPS insulation mortar thermal insulation system has good workability, high thermal properties, good weatherability and convenient construction, and low cost for engineering, and its products having obvious advantages on cost-effective, being the highly competitive insulation materials, can be widely used in the exterior insulation works.
引文
[1]徐绍峰.中国能源状况与经济社会可持续发展分析[J].经济论坛, 2005, (7):8-11.
    [2]陈学俊,袁旦庆编著.能源工程[M].西安:西安交通大学出版社,2002.8.
    [3]陈学俊.能源工程的发展与展望[J].西安交通大学学报(社会科学版), 2003, (2):3-4.
    [4]陈东佐,贾保林等.建筑节能与可持续发展[J].科技情报开发与经济, 2002, (1):72-73.
    [5]张志莹.建筑节能与可持续发展[J].住宅科技, 2006, (2):l-34.
    [6]夏燕,建筑节能的现状、存在的问题及应对措施[J].广东建材, 2007, (12):126-127.
    [7]建设部标准定额所.建筑外墙外保温技术导则[M].北京:中国建筑工业出版社, 2005.
    [8]罗文英,谌汉初.我国建筑节能现状分析及其发展前景[J].中国经济评论, 2005, (5):53-56.
    [9]张泽.节能降耗中的政府策略[J].环境, 2006, (9):28-29.
    [10]付祥钊,冯雅,张智强等.建筑节能技术[M].北京:中国建筑工业出版社出版, 2004.
    [11]薛志峰等.超低能耗建筑技术及应用[M].北京:中国建筑工业出版社, 2005.
    [12]刘洪涛.几种常见的外墙保温形式及材料[J].建筑技术与应用, 2001, (1):39-40.
    [13]李寅.建筑节能之外墙保温方式探讨[J].建筑节能, 2007, (2):22-23.
    [14]王楠,郑新山.具有发展前途的外墙外保温技术[J].砖瓦, 2004, (2):46.
    [15]陈圣汗.外墙保温技术[J].中国科技信息, 2005, (3):5-6.
    [16]卢文英.建筑外墙外保温系统与建筑节能[J].福建建设科技, 2005, (5):21-23.
    [17]涂逢祥.外墙外保温大发展的历史机遇[J].外墙保温应用技术, 2005, (11):6-7.
    [18]沈燕华.浅谈住宅建筑外墙外保温技术现状与发展[J].煤炭工程,2007, (2):35-36.
    [19]曾焕丽,外墙外保温抹胶粉聚苯颗粒浆料施工工艺[J].山西建筑, 2006, (5):136-137.
    [20]徐猛勇,胶粉聚苯颗粒外墙外保温系统特点及施工中的问题[J].科技资讯导报, 2007, (12):57-59.
    [21]吴昶,李传涛,胶粉聚苯颗粒外墙外保温系统之浅析[J].江苏建材, 2006, (3):39-41.
    [22]黄振利,朱青,张玉祥.聚苯颗粒复合硅酸盐保温材料[J].新型建筑材料, 2000, (3):26-28.
    [23]栗静娴,秦忠民..一种新型节能墙体保温材料—胶粉聚苯颗粒浆料[J],节能, 2003,(5):35.
    [24]黄振利,刘刚.外墙保温体系面层裂缝产生原因及其控制技术(一)[J].墙材革新与建筑节能, 2005, (1):41- 46.
    [25]黄振利,刘刚.外墙保温体系面层裂缝产生原因及其控制技术(二)[J].墙材革新与建筑节能, 2005, (2):36- 40.
    [26]何永清,李素贞.国外新型建材发展的现状与展望[J].建材工业信息, 2005, (1):45-47.
    [27]赵海滨,陈超明,薛燕.浅谈外墙保温技术及节能材料[J].石河子科技, 2005, (2):35-37.
    [28]梁至柔,王培铭,张国防.聚合物干粉改性EPS保温砂浆及实用性研究[J].新型建筑材料, 2004, (10):48-51.
    [29]戴民华,王培铭.高效外墙保温砂浆的研究[J].上海建材, 2006, (5):16-18.
    [30] Gao. J.M.et.al. The Properties of polymer Modified Concrete[J]. Southeast University. 1996.
    [31] Etsuo Sakai and Jun Sugita. Composite mechanism of polymer modified cement[J]. Cement and Concrete Research. 1995. 01.
    [32] Musarrat Ullah Khan Afridi and Zia Ullah Chaudhary etc. Morphological characterization of low sulphoaluminate type(AFM) crystals. hollow tubules and hollow crystals in polymer- modified mortars[J]. Cement and Concrete Research. 1995. 02.
    [33] Yoshihiko Ohama. Handbook of Polymer-Modified Concrete and Mortars[J]. USA Noyes publications. 1995.
    [34] Zhong Shiyun.et al. Research and development of polymers in concrete in China.Proceedings of the Third Asia Symposium on Polymers in Concrete[J]. China.2000:3-13.
    [35] Yamasaki. T.. Myakava. K.. A Study on the rheological mix design of dnsaturated polymester resin concrete. 5th International Congress on Polymers in Concrete[J]. Bringhton.England1987.
    [36]刘莹琨.外保温抗裂砂浆材料性能影响因素分析[J].中国涂料, 2006, (2):38-41.
    [37]乔渊.李运北等.可再分散聚合物乳胶粉对水泥砂浆微结构性能的研究[J].新型建筑材料, 2006, (7):4-5.
    [38]周竹发,王淑梅,寇秀蓉,吴铭敏.可再分散乳胶粉在EPS保温砂浆中的作用机理及性能[J].新型建筑材料, 2007,(10): 54-57.
    [39] Kim J H,Robertson R E.Prevention of air void formation in polymer modifiedcement mortar by pre- wetting[J].Cement and Concrete Research, 1997, 27(2):171- 176.
    [40] Afridi M U K,Ohama Y,Demura K,et al. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars[J]. Cement and Concrete Research, 2003, 33(11):1715- 1721.
    [41] P.S.Magat, M.K.Limbachiya. Repair material properties which influence long- term performance of concrete structures[J].Concrete and Building materials, 1995, 9(2):81- 90.
    [42] Roger Zurbriggen, ELOTEX,张量,译.可再分散胶粉对瓷砖粘结砂浆性能的影响[J].化学建材, 2003, (8):24- 27.
    [43] Joachim Schulze, Otmar Killermann. Long term performance of redispersible powders in mortars [J].Cement and Concrete Research, 2001, (11):357- 362.
    [44]王翚.有机胶结料对外墙保温聚苯颗粒料浆性能的改善[J].山东建材, 2005, (3):66- 68.
    [45]张发爱.纤维素醚及其应用[J].化工新型材料, 2001, (11):15-17.
    [46]刘啸武.羟丙基甲基纤维素生产技术和发展前景[J].江汉石油职工大学学报, 2004, (6): 23-36.
    [47]鞠丽艳,张雄,李春荣.干粉砂浆的组分及其作用机理[J].新型建筑材料, 2002, (7): 18-20.
    [48] J.Breckwoldt, W.Lange, etc.甲基纤维素醚的特性及应用[J].新型建筑材料, 2002, (2):37.
    [49]黄连根.纤维素醚对水泥砂浆性能的影响[J].江西建材, 1995, (3):13-15.
    [50]易松林,郭玉顺,王贤磊.高性能胶粉聚苯颗粒保温浆料的组成及性能研究[J].新型筑材料, 2006, (10):35-38.
    [51]蔡焕琴,吕艳荣.聚丙烯纤维防水砂浆的工程应用研究[J].河北建筑工程学院学报, 2002, (3):9-11.
    [52] Sezan Orak. Investigation of vibration damping on polymer concrete with polyester resin. Concrete[J]. Cement.Research. 2000, (30).
    [53] Fu Xuli, Chung D D L. Vibration damping admixture for cement. Concrete[J]. Cement. Research. 1996, (26).
    [54] Fu Xuli, Li Xiaohui, Chung D D L. Improving the vibration damping capacity of cement[J]. Materials Science, 1998, (33).
    [55] P.P.Kraai. A Proposed Test to Determine the Cracking Potential Due to Drying Shrinkage of Concrete [J]. Construction, 1985:775-778.
    [56] Parviz Soroushian and Siavosh Ravanbakhs. Control of Plastic Shrinkage Cracking with Speciality Cellulous Fibers [J]. ACI Materials Journal. 1998, 95(4):429-435.
    [57] Paul J. Uno.Plastic Shrinkage Cracking and Evaporation Formula [J]. ACI Materials Journal. 1998, 95(4):365-375.
    [58]周述光,刘红叶,王振军.改性有机硅防水剂对混凝土性能影响[J].新型建筑材料, 2006, (4):15-17.
    [59]宋金伦,李迁,朱效荣,夏伟民.有机硅混凝土防水剂的研究[J].辽宁建材, 2006, (2).
    [60]朱淮军.建筑用有机硅防水剂[J].有机硅材料, 2007, 21(6):338-340.
    [61] Emst K, Tean F. Method and silanes and/or siloxane for water-proofing mineral material structures, especially concert structures, and use of the method. PCT Int. Appl: WO95/ 25706. 1995.
    [62] Nobuo H,Tetsuro A.Novel ambient temperature curable two-component waterborne silicone acrylic coating[J]. Journal of Coatings Technology. 1998, 70(880).
    [63]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社, 2000.
    [64]徐彩萱,陆文雄.有机硅化合物的疏水性能及其在水性建筑涂料中的应用研究进展[J].上海大学学报(自然科学版), 2000, (5):31-38.
    [65]史淑兰, Jakob Wolfisberg,夏晔煦.可再分散胶粉及憎水性添加剂在薄抹灰外墙外保温系统中的应用[J].新型建筑材料, 2004, (3):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700