光学活性螺旋聚炔纳米粒子的制备与诱导对映体选择性结晶应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋聚合物的设计合成,一直以来都是聚合物科学研究领域的热点和重点之一。在已合成的螺旋聚合物中,有关螺旋聚炔的研究最为深入。尽管如此,制备所得具有螺旋结构聚炔普遍具有低溶解性特征,这就在极大程度上限制了其应用,这是我们所不希望看到的。本课题中,我们摒弃传统有机溶剂溶液聚合方法,首次采用催化微乳液聚合法制备取代乙炔类螺旋聚合物乳液,以其为种子乳液,进而制备一系列具有光学活性新型核壳纳米粒子,并研究其手性诱导异构选择结晶性能。主要研究内容如下:
     采用催化微乳液聚合法在水相体系中制备取代乙炔类螺旋聚合物。制备所得粒子约为70-110纳米左右。粒子由手性取代乙炔螺旋聚合物组成,故能够显示出很强光学活性。聚合在油溶性铑金属催化剂催化条件下,以SDS和曲拉通X-100为乳化剂,DMF为助乳化剂,成功制备得到四种取代乙炔螺旋聚合物,分别为两种手性聚炔丙磺酰胺(po1y1和po1y2)、一种手性聚炔丙脲(po1y3)、一种非手性聚炔丙酰胺(po1y4)。制备所得手性聚合物乳液纳米粒子及除去乳化剂助乳化剂所得螺旋聚合物均具有很强光学活性,聚合物具有规整二级结构,相比较采用传统有机溶剂催化聚合制备所得螺旋聚合物,光学活性和稳定性大大增强。催化微乳液聚合能够使聚合物更倾向于生成单手螺旋构造。
     在此基础上,选用手性聚合物1(poly 1, PSA)光学活性微乳液,通过在同一体系中引入水相催化微乳液聚合和自由基聚合,制备得到新型核壳纳米粒子乳液。核壳纳米粒子内核由光学活性螺旋取代聚乙炔组成,壳层则由烯类聚合物组成,因此能够表现出很强光学活性。烯类聚合物壳层交联可进一步增强粒子性能。同一体系中引入催化微乳液聚合和自由基聚合思路对于制备新型核壳纳米粒子意义重大,同时也实现了单一种类材料“手性”和“纳米”概念的渗透融合。
     遵循上述制备思路,通过在同一体系中引入取代乙炔单体SA的催化微乳液聚合和TEOS的sol-gel approach,制备得到新型杂化核壳纳米粒子。粒子内核同样由具有光学活性螺旋取代聚乙炔组成,壳层则由无机硅(silica)构成。Silica壳层使制备所得杂化核壳纳米粒子具有很强光学活性和稳定性,进一步保护内核PSA。有机螺旋聚合物和无机硅两大研究领域在同一体系中首次结合,实现了重大突破。所得杂化核壳纳米粒子可用于对丙氨酸异构体手性诱导异构选择结晶分离,具有广阔应用前景。
     同一体系中引入制备PBA内核的自由基聚合,制备PSA中间壳层的催化微乳液聚合及制备silica外部壳层的sol-gel approach,通过去除PBA内核,制备得到新型空心有机-无机杂化双层纳米粒子,中间壳层由光学活性PSA组成,外层壳由silica构成。空心双层纳米粒子可以实现大小及壳层厚度可控。手性取代聚乙炔PSA中间层使空心双层纳米粒子具有很强光学活性。空心双层纳米粒子作为手性模板可以实现对丙氨酸异构体手性诱导异构选择结晶分离,且手性分离效率较高,这一结果预示着空心纳米粒子在手性材料技术领域所具有的潜在应用前景。TEM, SEM表征可观测到诱导结晶全过程。同一体系中引入自由基聚合、催化微乳液聚合和sol-gel approach制备空心多层纳米粒子方法具有高度重要性和新颖性。
     最后,合成螺旋聚乙炔被用于在有机溶剂均相体系中,对BOC-alanine异构体进行诱导异构选择结晶,并取得了较好的手性分离效果。油相体系中所进行的诱导结晶实验,是人工合成螺旋聚合物应用于诱导结晶的直接证据。
     本课题为螺旋聚合物及基于螺旋聚合物的新型手性材料制备提供了新思路新方法。
Design and synthesis of polymers with well-defined structures has always been one of the most active fields in polymer chemistry. Acetylene-based helical polymers are typical synthetic helical polymers. However, these helical polymers unfortunately exhibited low solubilities, thus severely hampering any investigations with regard to their potential applications. In the present research, a series of stable helical polymer enmulsions were obtained by catalytic microemulsion polymerization of substituted acetylene monomers in aqueous systems, following which the novel categories of functional core/shell NPs were successfully prepared and further employed for enantioselective crystallization of amino acid enantiomers on the basis of our earlier investigations.
     The catalytic microemulsion polymerization supported for the synthesis of substituted polyacetylenes with helical structure in aqueous medium, providing NPs (70-110nm in diameter) consisting of helical polymers and exhibiting large optical activities. Four types of substituted acetylenes:one achiral N-propargylamide (poly4), two chiral N-propargylsulfamides (polyl and 2), and chiral N-propaygylureas (poly3) were polymerized in the presence of hydrophobic Rh-based catalyst and with SDS/Triton X-100 as emulsifier and DMF as co-emulsifier. The NPs and thus-prepared polymers after removing the emulsifier and coemulsifier showed much stronger CD signals, the helices were found to have higher thermal stability when compared with the corresponding polymers synthesized via catalytic polymerizations in organic solvents. Catalytic microemulsion polymerization enable the polymers to form predominantly one-handed helical structures.
     A new class of core/shell nanoparticles were synthesized by combining aqueous catalytic microemulsion polymerization and free radical polymerization in one specific system by using polyl (PSA) microemulsion as seeded emulsion. The NPs consist of a unique core (composed of an optically active helical-substituted polyacetylene) and a shell (composed of a vinyl polymer) and thus exhibit optical activities. The shells could be further cross-linked for improving the properties of particles. This novel methodology for preparing new class of core/shell NPs are of high importance for combining catalytic polymerization and free radical polymerization in one system and the integration of "chirality" and "nano" concepts in one single material.
     By following above investigations, a novel category of hybrid NPs consisting of a unique organic core (composed of optically active helical polyacetylene) and an inorganic shell (composed of silica) was synthesized by combining the aqueous catalytic microemulsion polymerization of SA to form the core and the sol-gel approach of TEOS to form the silica shell also in one system. The silica shells enabled the emulsions to exhibit high stability, and the NPs possessed large optical activities, arising from the helical polymer chains constituting the core, two diverse research fields (organic helical polymers and inorganic materials) combining for the first time in a specific system was unprecedented. The obtained novel core/shell NPs induced enantioselective crystallization of alanine enantiomers, attesting to the potential applications of the hybrid core/shell NPs.
     n-butyl acrylate (BA) underwent free radical polymerization to form PBA cores, followed by the subsequential formation of two shells respectively by catalytic polymerization of SA and sol-gel approach of TEOS, a novel category of hollow organic@inorganic hybrid two-layered NPs, in which the inner layer was formed by optically active PSA while the outer layer by silica were preapred by removing PBA cores. The size and shell thickness of the NPs were tunable. Such NPs showed remarkable optical activity arising from helical substituted polyacetylenes forming the inner layer. The hollow NPs were further successfully used as chiral templates to induce enantioselective crystallization of racemic alanines with considerable e.e. value demonstrating the significant potential applications of the interesting hollow chiral NPs in chiral technologies. The detailed process of the induced crystallization was observed by TEM and SEM. The present strategy for preparing the hollow hybrid chiral NPs is worthy to be highlighted since it combines for the first time free radical polymerization, catalytic polymerization with sol-gel process in a single system.
     Finally, synthetic helical polyacetylenes were investigated for inducing enantioselective crystallization of BOC-alanine enantiomers from initial homogeneous solutions with considerable e.e. value. This is the first direct evidence of the role of synthetic helical polymers in inducing enantioselective crystallization.
     The present study opens new possibilities for preparing helical polymers and novel chiral materials based on helical polymers, a large number of advanced functional materials will be accessible.
引文
[1]Yashima E, Maeda K, Iida H, Furusho Y, Naga K. Helical polymers:synthesis, structures, and functions[J]. Chem. Rev.,2009,109:6102-6211
    [2]Nakano T, Okamoto Y. Synthetic helical polymers:conformation and function[J]. Chem. Rev., 2001,101:4013-4038
    [3]Natta G, Pino P, Corradini P, Danusso F, Mantica E, Nazzanti G, Moraglio G. Crystalline high polymers of a-olefins[J]. J. Am. Chem. Soc.,1955,77:1708-1781
    [4]Maeda K, Okamoto Y. Synthesis and conformational characteristics of poly(phenyl isocyanate)s bearing an optically active ester group[J]. Macromolecules,1999,32:974-980
    [5]Pino P, Lorenzi G P. Optically active vinyl polymers Ⅱ the optical activity of isotactic and block polymers of optically active a-olefins in dilute hydrocarbon solution[J]. J. Am. Chem. Soc., 1960,82:4745-4749
    [6]Cornelissen J J L M, Rowan A E, Nolte R J M, Sommerdijk N A J M. Chiral architectures from macromolecular building blocks[J]. Chem. Rev.,2001,101:4039-4070
    [7]Goodman M, Chen S C. Optically active polyisocyanates[J]. Macromolecules,1970,3: 398-402
    [8]Nolte R J M, van Beijnen A J M, Drenth W. Chirality in polyisocyanides[J]. J. Am. Chem. Soc., 1974,96:5932-5937
    [9]Ciardelli F, Lanzillo S, Pieroni O. Optically active polymers of 1-alkynes[J]. Macromolecules, 1974,7:174-179
    [10]Ikai T, Okamoto Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography[J]. Chem. Rev.,2009,109:6077-6101
    [11]Moore J S, Gorman C B, Grubbs R H. Soluble, chiral polyacetylenes:syntheses and investigation of their solution conformation[J]. J. Am. Chem. Soc.,1991,113:1704-1709
    [12]Onouchi H, Miyagawa T, Furuko A, Maeda K, Yashima E. Enantioselective esterification of prochiral phosphonate pendants of a polyphenylacetylene assisted by macromolecular helicity: storage of a dynamic macromolecular helicity memory[J]. J. Am. Chem. Soc.,2005,127: 2960-2965
    [13]Yashima E, Matsushima T, Okamoto Y. Poly((4-carboxyphenyl)acetylene) as a probe for chirality assignment of amines by circular dichroism[J]. J. Am. Chem. Soc.,1995,117: 11596-11561
    [14]Sanda F, Araki H, Masuda T. Synthesis and properties of serine- and threonine-based helical polyacetylenes[J]. Macromolecules,2004,37:8510-8516
    [15]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Effects of steric repulsion on helical conformation of poly(N-propargylamides) with phenyl groups[J]. Macromolecules,2004,37: 7156-7162
    [16]Ashida Y, Sato T, Morino K, Maeda K, Okamoto Y, Yashima E. Helical structural change in poly((4-carboxyphenyl)acetylene) by acid-base complexation with an optically active amine[J]. Macromolecules,2003,36:3345-3350
    [17]Simionescu C I, Percec V. Progress in polyacetylene chemistry[J]. Prog. Polym. Sci.,1982,8: 133-139
    [18]Ute K, Hirose K, Kashimoto H, Hatada K, Vogl O. Helix-sense reversal of isotactic chloral oligomers in solution[J]. J. Am. Chem. Soc.,1991,113:6305-6311
    [19]Frey H, Mooller M, Matyjaszewski K. Chiral poly(dipentylsilylene) copolymers[J]. Macromolecules,1994,27:1814-1818
    [20]Fujiki M. Ideal exciton spectra in single- and double-screw-sense helical polysilanes[J]. J. Am. Chem. Soc.,1994,116:6017-6023
    [21]Fujiki M. Optically active polysilane homopolymer:spectroscopic evidence of double-screw-sense helical segmentation and reconstruction of a single-screw-sense helix by the "cut-and-paste" technique[J]. J. Am. Chem. Soc.,1994,116:11976-11981
    [22]Lehn J -M, Pino P, Carlini C, Chiellini E, Ciardelli F, Salvadori P. Dissymmetrically perturbed aromatic chromophore in stereoregular copolymers of (R)-3,7-dimethyl-l-octene with styrene[J]. J. Am. Chem. Soc.,1968,90:5025-5027
    [23]William J, Edwin T. Polymers. Ⅲ. synthesis of optically active stereoregular polyolefins[J]. J. Org. Chem.,1960,25:1800-1804
    [24]Rigault A, Moras D. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations:structure of an inorganic double helix[J]. Proc. Natl. Acad. Sci., 1987,84:2565-2569
    [25]Hug W, Ciardelli F, Tinoco I. Optically active hydrocarbon polymers with aromatic side chains. VI. chiroptical properties of helical copolymers with aromatic side chains[J]. J. Am. Chem. Soc.,1974,96:3407-3410
    [26]Nakano T, Okamoto Y, Hatada K. Asymmetric polymerization of triphenylmethyl methacrylate leading to a one-handed helical polymer:mechanism of polymerization[J]. J. Am. Chem. Soc., 1992,114:1318-1329
    [27]Peishoff C E, Bean J W, Kopple K D. Conformation of a cyclic heptapeptide in solution:an NMR constrained distance geometry search procedure[J]. J. Am. Chem. Soc.,1991,113: 4416-4421
    [28]Okamoto Y, Habaue S, Isobe Y. Lewis acid-catalyzed tacticity control during radical polymerization of (meth)acrylamides[J]. ACS Symposium Series,2003,854:59-71
    [29]Habaue S, Ajiro H, Okamoto Y. Anionic polymerization of o-substituted styrene derivatives: control of reactivity and stereochemistry by aminomethyl group[J]. Journal of Polymer Science Part A:Poly. Chem., Chemistry,2000,38:4088-4094
    [30]Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. Supermolecular polymers[J]. Chem. Rev.,2001,101:4071-4098
    [31]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Synthesis and characterization of Poly(N-propargylsulfamides)[J]. Macromolecules,2004,37:5538-5543
    [32]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Conformational transition between random coil and helix of poly(N-propargylamides)[J]. Macromolecules,2004,37:1891-1896
    [33]Zhang Z G, Deng J P, Zhao W G, Wang J M, Yang W T. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci. Part A:Poly. Chem., 2007,47:500-508
    [34]Yashima E, Matsushima T, Okamoto Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation[J]. J. Am. Chem. Soc., 1997,119:6345-6359
    [35]Aoki T, Shinohara K, Kaneko T, Oikawa E. Enantioselective permeation of various racemates through an optically active poly{1-[dimethyl(10-pinanyl)silyl]-1-propyne} membrane[J]. Macromolecules,1996,29:4192-4198
    [36]Yashima E, Nimura T, Matsushima T, Okamoto Y. Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism[J]. J. Am. Chem. Soc.,1996,118:9800-9801
    [37]Langeveld Voss B M W, Janssen R A J, Christiaans M P T, Meskers S C J, Dekkers H P J M, Meijer E W. Circular dichroism and circular polarization of photoluminescence of highly ordered poly{3,4-di[(S)-2-methylbutoxy]thiophene}[J]. J. Am. Chem. Soc.,1996,118: 4908-4909
    [38]LangeveldVoss B M W, Christiaans M P T, Janssen R A J, Meijer E W. Inversion of optical activity of chiral polythiophene aggregates by a change of solvent[J]. Macromolecules,1998, 31:6702-6704
    [39]Sanda F, Nishiura S, Shiotsuki M, Masuda T. Synthesis secondary structure of cis-stereoregular poly(N-propargylcarbamates) having various side chains[J]. Macromolecules,2005,38: 3075-3078
    [40]Zhao H, Sanda F, Masuda T. Tuning of fluorescence by controlling the secondary structure of amino acid-based poly(N-propargylamides) having pendant pyrene groups[J]. Macromolecules, 2004,37:8893-8896
    [41]Nomura R, Tabei J, Masuda T. Biomimetic stabilization of helical structure in a synthetic polymer by means of intramolecular hydrogen bonds[J]. J. Am. Chem. Soc.,2001,123: 8430-8431
    [42]Nomura R, Tabei J, Nishiura S, Masuda T. A helix in helices:a helical conjugated polymer that has helically arranged hydrogen-bond strands[J]. Macromolecules,2003,36:561-564
    [43]Hoshikawa N, Hotta Y, Okamoto Y. Stereospecific radical polymerization of N-triphenylmethylmethacrylamides leading to highly isotactic helical polymers[J]. J. Am. Chem. Soc.,2003,125:12380-12382
    [44]Maeda K, Okamoto Y. Synthesis and conformation of optically active poly(phenyl isocyanate)s bearing an ((S)-(R-Methylbenzyl)carbamoyl) group[J]. Macromolecules,1998,31:1045-1051
    [45]Tang K, Green M M, Cheon K -S, Selinger J V, Garetz B A. Chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers:from dilute solution to the lyotropic liquid crystal state[J]. J. Am. Chem. Soc.,2003,125:7313-7323
    [46]Ute K, Fukunishi Y, Jha S K, Cheon K-S, Munoz B, Hatada K, Green M M. Dynamic NMR determination of the barrier for interconversion of the left- and right-handed helical conformations in a polyisocyanate[J]. Macromolecules,1999,32:1304-1307
    [47]Li J, Schuster G B, Cheon K -S, Green M M, Selinger J V. Switching a helical polymer between mirror images using circularly polarized light[J]. J. Am. Chem. Soc.,2000,122:2603-2612
    [48]Jha S K, Cheon K -S, Green M M, Selinger J V. Chiral optical properties of a helical polymer synthesized from nearly racemic chiral monomers highly diluted with achiral monomers[J]. J. Am. Chem. Soc.,1999,121:1665-1673
    [49]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Dynamically stable helices of poly (N-propargylamides) with bulky aliphatic groups [J]. Macromolecules,2004,37:5149-5154
    [50]Jr T M., Henne A L, Shepard A F, Renoll M W. Natural and synthetic rubber. XV. oxygen in rubber[J]. J. Am. Chem. Soc.,1935,57:2318-2321
    [51]Satoh K, Kamigaito M, Sawamoto M. Metal triflates and tetrafluoroborates as water-tolerant lewis acids for cationic polymerization in aqueous media[J]. Macromolecules,2000,33: 5836-5840
    [52]Shinoda K, Friberg S. Microemulsions:colloidal aspects[J]. Adv. Colloid Interface Sci.,1975, 4:281-300
    [53]Hoar T P, Schulman J H. Transparent of water-in-oil dispersions:the oleopathic hydro-micelle[J]. Nature,1943,152:102-103
    [54]Zetterlund P B, Kagawa Y, Okubo M. Controlled/living radical polymerization in dispersed systems[J]. Chem. Rev.,2008,108:3747-3794
    [55]盛维琛,曹顺生,袁新华.无皂乳液聚合制备阳离子纳米聚苯乙烯微球[J].化工新型材料,2010,25(10):125-130
    [56]王晓春,吴江勇,黄凤兴.反相乳液聚合法制备驱油用高分子表面活性剂[J].石油化工,2010,39(7):1023-1027
    [57]哈润华,侯斯健,栗付平,等.微乳液结构和丙烯酰胺反相微乳液聚合[J].高分子通报,1995,2(1):10-19
    [58]廖勇勤,王琪,王良文.超声辐照引发MMA微乳液聚合产物结构表征[J].高分子材料科学与工程,2000,16(6):144-150
    [59]Xu H, Cui L L, Tong N H, Gu H C. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization[J]. J. Am. Chem. Soc.,2006,128:15582-15583
    [60]Gan L M, Chew C H, Lye I. Growth of poly(methyl methacrylate) particles in three-component cationic microemulsions[J]. J. Polym. Sci. Part A:Polym. Chem.,1995,33:1161-1168
    [61]徐相凌.偶氮二异丁腈引发甲基丙烯酸甲酯微乳液聚合[J].中国科学技术大学学报,2000,30(1):62-68
    [62]Antonietti M, Basten R, Lohmann S. Polymerization in microemulsions, a new approach to ultrafine, highly functionalized polymer dispersions[J]. Macromol. Chem. Phys.,1995,196: 441-466
    [63]张志成,徐相凌.过硫酸钾引发丙烯酰胺微乳液聚合[J].高分子学报,1995,1(1):23-27
    [64]Harkins W. D. A general theory of the reaction loci in emulsion polymerization.Ⅱ[J]. J. Chem. Phys.,1946,14:47-56
    [65]Harkins W. D. A general theory of the reaction loci in emulsion polymerization[J]. J. Chem. Phys.,1945,13:381-397
    [66]Harkins W. D. A general theory of the mechanism of emulsion polymerization[J]. J. Am. Chem. Soc.,1947,69:1428-1444
    [67]Smith W. V. Chain initiation in styrene emulsion polymerization[J]. J. Am. Chem. Soc.,1949, 71:4077-4082
    [68]Smith W V, Ewart R H. Kinetics of emulsion polymerization[J]. J. Chem. Phys.,1948,16: 592-599
    [69]届小中,唐亚林,陈柳生,等.纳米聚苯乙烯胶乳颗粒的特殊成膜性质[J].科学通报, 2001,46(3):205-208
    [70]徐相凌.甲基丙烯酸甲酯微乳液聚合中粒子成长过程的探讨[J].高分子学报,1998,11(6):658-663
    [71]Chern C -S, Peohlein G W. Polymerization in nonuniform latex particles. III. kinetics of grafting in emulsion polymerization[J]. J. Polym. Sci. Part A:Polym. Chem.,1990,28: 3073-3099
    [72]Chern C S, Poehlein G W. Polymerization in nonuniform latex particles:distribution of free radicals[J]. J. Polym. Sci. Part A:Polym. Chem.,1987,25:617-635
    [73]Mills M F, Gibert R G, Napper D H. Effect of polymerization kinetics on particle morphology in heterogeneous systems[J]. Macromolecules,1990,23:4247-4252
    [74]Kim S, Fisher B, Eisler H -J, Bawendi M. Type-II quantum dots:CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell)heterostructures[J]. J. Am. Chem. Soc.,2003,125:11466-11467
    [75]宋吉照,顾利霞.核壳乳液聚合综述.上海化工,2000,11(6):29-32
    [76]Pecher J, Mecking S. Nanoparticles of conjugated polymers[J]. Chem. Rev.,2010,110: 6260-6279
    [77]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem, Rev.,2004,104:3893-3946
    [78]Bagchi B. Water dynamics in the hydration layer around proteins and micelles[J]. Chem, Rev., 2005,105:3197-3219
    [79]Guo J S, Sudol E D, Vanderhof J W. Microemulsion polymerization of styrene[J]. J. Polym. Sci. Part A:Polym. Chem.,1989,30:691-710
    [80]Mark H, Bidales N M, Overberger C G, Menges G. Encyclopedia of polymer Science and Engineering[M].2nd ed, Wiley-Inter Science, New York:1987
    [81]徐相凌,殷亚东.微乳液聚合研究进展[J].高等学校化学学报,1999,20(3):479-480
    [82]Candau F, Leong Y S, Fitch R M. Kinetic study of the polymerization of acrylamide in inverse microemulsion[J]. J. Polym. Sci. Part A:Polym. Chem.,1985,23:193-214
    [83]Bleger F, Murthy A K, Pia F. Particle nucleation during microemulsion polymerization of methyl methacrylate[J]. Macromolecules,1994,27:2559-2567
    [84]Chieng T H, Gan L M, Chew C H. Formation of microporous polymeric materials by microemulsion polymerization of methyl methacrylate and 2-hydroxyethyl methacrylate[J]. J. Appl. Poly. Sci.,1996,60:1561-1568
    [85]Croxton C A, Mills M F, Gilbert R G, Napper D H. Spatial inhomogeneities in emulsion polymerizations:repulsive wall calculations[J]. Macromolecules,1990,26:3563-3571
    [86]Szkurhan A R, Georges M K. Stable free-radical emulsion polymerization[J]. Macromolecules, 2004,37:4776-4782
    [87]Bruyn H D, Miller C M, Bassett D R, Gilbert R G. Emulsion polymerization of vinyl neo-decanoate, a "water-insoluble" monomer[J]. Macromolecules,2002,35:8371-8377
    [88]张心亚,涂伟萍.核壳乳液聚合中影响乳胶粒形态的因素[M].化学工程,2002,9(4):19-22
    [89]Jonsson J E L, Hassander H, Jsson L H, Toernell B. Morphology of two-phase polystyrene/poly(methyl methacrylate) latex particles prepared under different polymerization conditions [J]. Macromolecules,1991,24:126-131
    [90]段明,胡星琪.核壳乳液聚合及其在涂料中的应用.西南石油学院学报,2002,24(2):59-63
    [91]Akira F, Yoshiaki S. Core-shell emulsion composition for architecture coating[P]. JP 11-925708,1999
    [92]刘杰凤,农兰平,王志辉.聚合工艺对核壳乳液聚合的影响[J].科学实验,2003(2):14--16
    [93]黄鹤,程时远,李建宗.合成聚合物乳液的研究与开发[J].湖北化工,1997(1):13-16
    [94]沈宁祥,等.聚甲基丙烯酸酯/聚丙烯酸乙酯复合乳液聚合物的结构和性能[J].高分子材料科学与工程,1987(3):21-26
    [95]刘国杰,耿耀宗.涂料应用科学与工艺学[M].北京:中国轻工业出版社,1994
    [96]谢金万.核壳乳液的性质、制备和应用[J].粘合剂,1990(2):44-47
    [97]张心亚,瞿金清,蓝仁华.核壳聚合与核壳结构聚合物乳液[M].现代化工,2002:58-61
    [98]吴自强,余新文,王圣军.引发剂和乳化剂对苯丙核壳乳液合成的影响[J].涂料工业,1998:7-8
    [99]邱光鸿.种子聚合在乳液聚合中的应用[J].涂料工业,1996:23-24
    [100]黄天宝,龙运德.对映体选择性配体交换膜的制备和D,L-氨基酸的拆分[J].合成化学,2000,8(3):317-320
    [101]Ciriminna R, Sciortino M, Alonzo G, Schrijver A D, Pagliaro M. From molecules to systems: sol-gel microencapsulation in silica-based materials[J]. Chem. Rev.,2011,111:765-789
    [102]Maruyama A, Adachi N, Takatsuki T. Enantioselective permeation of a-amino acid isomers through poly(amino acid)-derived membranes[J]. Macromolecules,1990,23:2748-2752
    [103]Pirkle W H, Pochapsky T C. Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers[J]. Chem. Rev.,1989,89:347-362
    [104]Ikai T, Okamoto Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography[J]. Chem. Rev.,2009,109:6077-6101
    [105]Fornstedt T, Sajonz P, Guiochon G. Thermodynamic study of an unusual chiral separation. propranolol enantiomers on an immobilized cellulase[J]. J. Am. Chem. Soc.,1997,119: 1254-1264
    [106]Aoki T, Shinohra K, Kancko T, Oikawa E. Enantioselective permeation of various racemates through an optically active poly{1-[dimethyl(10-pinanyl)silyl]-1-propyne}membrane[J]. Macromolecules,1996,29:4192-4198
    [107]Mastai Y. Enantioselective crystallization on nanochiral surfacespart of the nanoscale chirality themed issue[J]. Chem. Soc. Rev.,2009,38:772-780
    [108]Medina D D, Goldshtein J, Margel S, Mastai Y. Enantioselective crystallization on chiral polymeric microspheres[J]. Adv. Funct. Mater.,2007,17:944-950
    [109]Huang T, Hu Z, Zhao A, Wang H Q, Wang B, Yang J L, Hou J G. Quasi chiral phase separation in a two-dimensional orientationally disordered system:6-nitrospiropyran on Au(111) [J]. J. Am. Chem. Soc.,2007,129:3857-3862
    [110]Farina A, Meille S V, Messina M T. Resolution of racemic 1,2-dibromohexafluoropropane through halogen-bonded supramolecular helices[J]. Angew. Chem. Int. Ed.,1999,38: 2433-2436
    [111]Corkey B K, Toste F D. Catalytic enantioselective conia-ene reaction[J]. J. Am. Chem. Soc., 2005,127:17168-17169
    [112]Tulashie S K, Lorenz H,-Morgenstern A S. Potential of chiral solvents for enantioselective crystallization.2. evaluation of kinetic effects[J]. Cryst. Growth Des.,2009,9:2387-2393
    [113]Tulashie S K, Lorenz H, Hilfert L, Edelmann F T,-Morgenstern A S. Potential of chiral solvents for enantioselective crystallization.1. evaluation of thermodynamic effects[J]. Cryst. Growth Des.,2008,8:3408-3414
    [114]Shosuke K, Kyoko T. Enantioselective crystallization of d,1-amino acids induced by spontaneous asymmetric resolution of d,l-asparagine[J]. Chem. Commun.,2001,1980-1981
    [115]Nakanishi T, Banno N, Matsunaga M, Asahi T, Osaka T. Chem. Senses.,2004,20,862
    [116]Kempe M, Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase[J]. J. Chromatogr A,1994,664:276-279
    [1]Skotheim T A, Elsenbaumer R L, Reynolds J R. Handbook of conducting polymers[M].2nd ed, Dekker:New York,1997
    [2]Bredas J L, Silbey R J. Conjugated polymers[M]. Kluwer:Dordrecht,1991
    [3]Masuda T, Abdul K S M, Nomura R. J. Mol. Catal. A Synthesis of acetylene-based widely conjugated polymers by metathesis polymerization and polymer properties[J].2000,160: 125-131
    [4]Nalwa H S, Rohwer L S. Handbook of luminescence, display materials, and devices[M]. Americal Scientific Publishers:Stevenson Ranch,2003
    [5]Pron A, Rannou P. Processible conjugated polymers:from organic semiconductors to organic metals and superconductors[J]. Prog. Polym. Sci.,2002,27:135-190
    [6]Shirakawa H. The discovery of polyacetylene film:the dawning of an era of conducting polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed.,2001,40:2574-2580
    [7]MacDiarmid A G. "Synthetic metals":a novel role for organic polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed.,2001,40:2581-2590
    [8]Heeger A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials (Nobel Lecture)[J]. Angew. Chem. Int. Ed.,2001,40:2591-2611
    [9]Lam J E Y, Tang B Z. Functional polyacetylenes[J]. Acc. Chem. Res.,2005,38:745-754
    [10]Miyasaka A. Nakamura M. Mawatari Y. Orito K. Tabata M. A novel transparent polyacetylene bearing a triphenylamine moiety prepared with a [Rh(norbornadiene)Cl]2 catalyst[J]. Macromol. Symp.,2006,239:13-20
    [11]Ostoja-Starzewski K A. Bayer G M. Polyacetylene in polyacrylonitrile matrix:novel soluble matrix polyacetylenes by ylide-nickel catalysis[J]. Angew. Chem. Int. Ed. Engl.,1991,30: 961-962
    [12]Kim B J, Oh S G, Han M Q Im S S. Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium[J]. Langmuir,2000,16:5841-5845
    [13]Mangeney C, Bousalem S, Connan C, Vaulay M J, Bernard S, Chehimi M M. Latex and hollow particles of reactive polypyrrole:preparation, properties, and decoration by gold nanospheres[J]. Langmuir,2006,22:10163-10169
    [14]Masuda T, Sanda F. in Handbook of metathesis (Ed.:Grubbs G H)[M]. Wiley-VCH:Weinheim, 2003
    [15]Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization[J]. Chem. Rev.,2000,100:1169-1203
    [16]Edwards J, Fisher R, Vincent B. Polyacetylene latices:preparation and characterisation[J]. Macromol. Rapid. Commun.,1983,4:393-397
    [17]Starzewski K A O. in Late transition metal polymerization catalysis (Eds.:Rieger B, Baugh L S, Kacker S, Striegler S)[M]. Wiley-VCH:Weinheim,2003
    [18]Krause J Q, Zarka M T, Anders U, Weberskirch R, Nuyken O, Buchmeiser M R. Simple synthesis of poly(acetylene) latex particles in aqueous media[J]. Angew. Chem. Int. Ed.,2003, 42:5965-5969
    [19]Huber J, Mecking S. Processing of polyacetylene from aqueous nanoparticle dispersions[J]. Angew. Chem. Int. Ed.,2006,45:6314-6317
    [20]Huber J, Mecking S. Aqueous polyalkyne dispersions[J]. Polym. Mater.:Sci. Eng.,2007,96: 306-307
    [21]Monteil V, Wehrmann P, Mecking S. A general route to very small polymer particles with controlled microstructures[J]. J. Am. Chem. Soc.,2005,127:14568-14569
    [22]Chern C S. Emulsion polymerization mechanisms and kinetics[J]. Prog. Polym. Sci.,2006,31: 443-486
    [23]Asua J M. Miniemulsion polymerization[J]. Prog. Polym. Sci.,2002,27:1283-1346
    [24]Claverie J P, Soula R. Catalytic polymerizations in aqueous medium[J]. Prog. Polym. Sci., 2003,28:619-662
    [25]Mecking S, Held A, Bauers F M. Aqueous catalytic polymerization of olefins[J]. Angew. Chem. Int. Ed.,2002,41:544-561
    [26]Jang J, Oh J H, Stucky G D. Fabrication of ultrafine conducting polymer and graphite nanoparticles[J]. Angew. Chem. Int. Ed.,2002,41:4016-4019
    [27]Oh S G, Im S S. Electroconductive polymer nanoparticles preparation and characterization of PANI and PEDOT nanoparticles[J]. Curr. Appl. Phys.,2002,2:273-277
    [28]Cunningham M F. Controlled/living radical polymerization in aqueous dispersed systems[J]. Prog. Polym. Sci.,2008,33:365-398
    [29]Nakano T, Okamoto Y. Synthetic helical polymers:conformation and function[J]. Chem. Rev., 2001,101:4013-4038.
    [30]Zhang Z G, Deng J P, Zhao W G, Wang J M, Yang W T. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci.:Part A:Polym. Chem.,2007,45:500-508
    [31]Zhang Z G, Deng J P, Li J W, Yang W T. Influence of solvent on the secondary structure of helical poly(N-propargyl-(1R)-camphor-10-sulfamide)[J]. Polym. J.,2008,40:436-441
    [32]Deng J P, Luo X F, Zhao W G, Yang W T. A novel type of optically active helical polymers: Synthesis and characterization of poly(N-propargylureas)[J]. J. Polym. Sci.:Part A:Polym. Chem.,2008,46:4112-4121
    [33]Deng J P, Zhao W G, Wang J M, Zhang Z G, Yang W T. The formation of a stable, helical conformation in poly(N-propargylamides) through synergic effects among their pendent groups[J]. Macromol. Chem. Phys.,2007,208:218-223
    [34]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Conformational transition between random coil and helix of poly(N-propargylamides)[J]. Macromolecules,2004,37:1891-1896
    [35]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Effects of steric repulsion on helical conformation of poly(N-propargylamides) with phenyl groups[J]. Macromolecules,2004,37: 7156-7162
    [36]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Dynamically stable helices of poly(N-propargylamides) with bulky aliphatic groups[J]. Macromolecules,2004,37: 5149-5154
    [37]Tabata M, Sone T, Sadahiro Y. Precise synthesis of monosubstituted polyacetylenes using Rh complex catalysts. Control of solid structure and π-conjugation length[J]. Macromol. Chem. Phys.,1999,200:265-282
    [38]Maeda K, Goto H, Yahima E. Stereospecific polymerization of propiolic acid with rhodium complexes in the presence of bases and helix induction on the polymer in water[J]. Macromolecules,2001,34:1160-1164
    [39]Tang B Z, Poon W H, Leung S M, Leung W H, Peng H. Synthesis of stereoregular poly(phenylacetylene)s by organorhodium complexes in aqueous media[J]. Macromolecules, 1997,30:2209-2212
    [40]Joo K S, Kim S Y, Chin C S. Synthesis, reactions, and catalytic activities of water soluble rhodium and iridium-sulfonated triphenylphosphine complexes.1. polymerization of terminal alkynes[J]. Bull. Korean Chem. Soc.,1997,18:1296-1301
    [41]Green M M, Park J W, Sato T, Teramoto A, Lifson S, Selinger R L B, Selinger J V. The macromolecular route to chiral amplification[J]. Angew. Chem. Int. Ed.,1999,38:3138-3154
    [42]Wilson A J, Masuda M, Sijbesma R, Meijer E W. Chiral amplification in the transcription of supramolecular helicity into a polymer backbone[J]. Angew. Chem. Int. Ed.,2005,44: 2275-2279
    [43]Peng W, Motonaga M, Koe J R. Chirality control in optically active polysilane aggregates [J]. J. Am. Chem. Soc.,2004,126:13822-13826
    [44]Nakashima H, Koe J R, Torimitsu K, Fujiki M. Transfer and amplification of chiral molecular information to polysilylene aggregates[J]. J. Am. Chem. Soc.,2001,123:4847-4848
    [45]Sun S, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science,2000,287:1989-1992
    [46]Shinoda K, Lindman B. Organized surfactant systems:microemulsions[J]. Langmuir,1987,3: 135-139
    [47]Langevin D. Micelles and microemulsions[J]. Annu. Rev. Phys. Chem.,1992,43:341-369
    [48]Sasthav M, Cheung H M. Characterization and polymerization of middle-phase microemulsions in styrene/water systems[J]. Langmuir,1991,7:1378-1382
    [49]Palani Raj W R, Sathav M, Cheung H M. Formation of porous polymeric structures by the polymerization of single-phase microemulsions formulated with methyl methacrylate and acrylic acid[J]. Langmuir,1992,7:2586-2591
    [50]Palani Raj W R, Sathav M, Cheung H M. Polymerization of microstructured aqueous systems formed using methyl methacrylate and potassium undecenoate[J]. Langmuir,1992,8: 1931-1936
    [51]Becher P. Emulsions:theory and practice,2nd ed[M]. Reinhold:New York,1966
    [52]Shinoda K, Saito H J. The Stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers:The emulsification by PIT-method[J]. Colloid Interface Sci.,1969,30: 258-263
    [53]McClements D J, Dickinson E, Dungan S R, Kinsella J E, Ma J G, Povey M J W. Effect of emulsifier type on the crystallization kinetics of oil-in-water emulsions containing a mixture of solid and liquid droplets[J]. Colloid Interface Sci.,1993,160:293-297
    [54]Stauffer D, Aharony A. Introduction to pcolation theory,2nd ed[M]. Taylor & Francis:London, 1992
    [55]Friberg S J. Microemulsions containing nonionic surfactants-the importance of the pit value[J]. Colloid Interface Sci.,1976,56:19-32
    [56]Lindman B, Kamenka N, Kathopoulis T M. Translational diffusion and solution structure of microemulsions[J]. J. Phys. Chem.,1980,84:2485-2490
    [57]O'Donnell J, Kaler E W. Microstructure, kinetics, and transport in oil-in-water microemulsion polymerizations[J]. Macromol. Rapid. Commun.,2007,28:1445-1454
    [58]Hermanson K D, Kaler E W. Transition from microemulsion to emulsion polymerization: mechanism and final properties [J]. J. Polym. Sci., Part A:Polym. Chem.,2004,42:5253-5261
    [59]Bleger F, Murthy A K, Pla F, Kaler E W. Particle nucleation during microemulsion polymerization of methyl methacrylate[J]. Macromolecules,1994,27:2559-2565
    [60]Shi X, Shen M, Mohwald H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials[J]. Prog. Polym. Sci.,2004,29:987-1019
    [61]Shchukin D, Sukhorukov G B. Nanoparticle synthesis in engineered organic nanoscale reactors[J]. Adv. Mater.,2004,16:671-682
    [62]Schrock R R, Osborn J A..pi.-Bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I)[J]. Inorg. Chem.,1970,9:2339-2343
    [1]Balmer J A, Schmid A, Armes S P. Colloidal nanocomposite particles[J]. J. Mater. Chem.,2008, 18:5722-5730
    [2]Salgueirino-Maceira V, Correa-Duarte M A. Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications[J]. Adv. Mater.,2007,19:4131-4144
    [3]Caruso F. Nanoengineering of particle surfaces[J]. Adv. Mater.,2001,13:11-22
    [4]Shi W, Zeng H, Sahoo Y, Ohulchanskyy T Y, Dind Y, Wang Z L, Swihart M, Prasad P N. A general approach to binary and ternary hybrid nanocrystals[J]. Nano Lett.,2006,6:875-881
    [5]Shevchenko E V, Bodnarchuk M I, Kovalenko M V, Talapin D V, Smith R K, Aloni S, Heiss W, Alivisatos A P. Gold/Iron oxide core/hollow-shell nanoparticles[J]. Adv. Mater.,2008,20: 4323-4329
    [6]Schmid A, Armes S P, Leite C A P, Galembeck F. Efficient preparation of polystyrene/silica colloidal nanocomposite particles by emulsion polymerization using a glycerol-functionalized silica sol[J]. Langmuir,2009,25:2486-2494
    [7]Li W H, Stover H D H. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization[J]. Macromolecules,2000,33:4354-4360
    [8]Kim H, Achermann M, Balet S P, Hollingsworth J A, Klimov V I. Synthesis and characterization of Co/CdSe core/shell nanocomposites:bifunctional magnetic-optical nanocrystals[J]. J. Am. Chem. Soc.,2005,127:544-546
    [9]Choi K M, Augustine A, Choi J H, Lee J H, Shin W H, Yang S H, Lee J Y, Kang J K. A facile way to control the number of walls in carbon nanotubes through the synthesis of exposed-core/shell catalyst nanoparticles[J]. Angew. Chem. Int. Ed.,2008,47:9904-9907
    [10]Alayoglu S, Eichhorn B. Rh-Pt bimetallic catalysts:synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles[J]. J. Am. Chem. Soc.,2008,130: 17479-17486
    [11]Lee H, Yoon T J, Weissleder R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system[J]. Angew. Chem. Int. Ed.,2009,48:5657-5660
    [12]Gil P R, Parak W J. Composite nanoparticles take aim at cancer[J]. ACS Nano,2008,2: 2200-2205
    [13]Pitukmanorom P, Yong T -H, Ying J Y. Tunable release of proteins with polymer-inorganic nanocomposite microspheres[J]. Adv. Mater.,2008,20:3504-3509
    [14]Shirakawa H. The discovery of polyacetylene film:the dawning of an era of conducting polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed.,2001,40:2574-2580
    [15]MacDiarmid A G. "Synthetic metals":a novel role for organic polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed.,2001,40:2581-2590
    [16]Heeger A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials (Nobel Lecture)[J]. Angew. Chem. Int. Ed.,2001,40:2591-2611
    [17]Cardin D J. Encapsulated conducting polymers[J]. Adv. Mater.,2002,14:553-563
    [18]Jang J, Ha J, Lim B. Synthesis and characterization of monodisperse silica-polyaniline core-shell nanoparticles. Chem. Commun.,2006,1622-1624
    [19]Jang J, Nam Y, Yoon H. Fabrication of polypyrrole-poly(N-vinylcarbazole) core-shell nanoparticles with excellent electrical and optical properties[J]. Adv. Mater.,2005,17: 1382-1386
    [20]Yeh C F, Huang P Z, Pai W W, Wang L. Synthesis and direct visualization of electroactive unimolecular core-shell nanoparticle[J]. Macromolecules,2009,42:3873-3876
    [21]Mecking S. Polymer dispersions from catalytic polymerization in aqueous systems[J]. Coll. Polym. Sci.,2007,285:605-619
    [22]Deng J P, Chen B, Luo X F, Yang W T. Synthesis of nano-latex particles of optically active helical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems[J]. Macromolecules,2009,42:933-938
    [23]Yuan W Z, Qin A, Lam J W Y, Sun Z J, Dong Y, Haussler A, Liu J, Xu H P, Zheng Q, Tang B Z. Disubstituted polyacetylenes containing photopolymerizable vinyl groups and polar ester functionality:polymer synthesis, aggregation-enhanced emission, and fluorescent pattern formation[J]. Macromolecules,2007,40:3159-3166
    [24]Hua J L, Lam J W Y, Dong H, Wu L, Wong K S, Tang B Z. Synthesis, light emission, and photo-cross-linking of luminescent polyacetylenes containing acrylic pendant groups[J]. Polymer,2006,47:18-22
    [25]Zhang Z G, Deng J P, Zhao W G, Wang J M, Yang W T. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci.:Part A:Polym. Chem.,2007,45:500-508
    [26]Deng J P, Luo X F, Zhao W G, Yang W T. A novel type of optically active helical polymers: synthesis and characterization of poly(N-propargylureas)[J]. J. Polym. Sci.:Part A:Polym. Chem.,2008,46:4112-4121
    [27]Deng J P, Zhao W G, Wang J M, Zhang Z G, Yang W T. The Formation of a stable, helical conformation in poly(N-propargylamides) through synergic effects among their pendent groups[J]. Macromol. Chem. Phys.,2007,208,218-223
    [28]Ding L, Jiao X F, Deng J P, Zhao W G, Yang W T. Catalytic polymerizations of hydrophobic, substituted, acetylene monomers in an aqueous medium by using a monomer/hydroxypropyl-β-cyclodextrin inclusion complex[J]. Macromol. Rapid Commun., 2009,30:120-125
    [29]Fujiki M. Helix generation, amplification, switching, and memory of chromophoric polymers[J]. Top. Curr. Chem.,2008,284:119-186
    [30]Yashima E, Maeda K. Chirality-responsive helical polymers[J]. Macromolecules,2008,41: 3-12
    [31]Lam J W Y, Tang B Z. Functional polyacetylenes[J]. Acc. Chem. Res.,2005,38:745-754
    [32]Aoki T, Kaneko T, Maruyama N, Sumi A, Takahashi M, Sato T, Teraguchi M. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system[J]. J. Am. Chem. Soc.,2003,125:6346-6347
    [33]Nomura R, Tabei J, Masuda T. Biomimetic stabilization of helical structure in a synthetic polymer by means of intramolecular hydrogen bonds[J]. J. Am. Chem. Soc.,2001,123: 8430-8431
    [34]Meijer E W. Chiroptical molecular switch[J]. J. Am. Chem. Soc.,1991,113:5468-5470
    [35]Novak B M. Stable helical polyguanidines:poly{N-(1-anthryl)-N'-[(R)-and/or (S)-3,7-dimethyloctyl]guanidines}[J]. J. Am. Chem. Soc.,2004,126:3722-3723
    [36]Green M M. DNA-protein interactions as the source of large-length-scale chirality evident in the liquid crystal behavior of filamentous bacteriophages[J]. J. Am. Chem. Soc.,2007,129: 3367-3375
    [37]Percec V. Steric communication of chiral information observed in dendronized polyacetylenes[J]. J. Am. Chem. Soc.,2006,128:16365-16372
    [38]Schrock R R, Osborn J A..pi.-Bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I) [J]. Inorg. Chem.,1970,9:2339-2343
    [1]Landfester K. Miniemulsion Polymerization and the structure of polymer and hybrid nanoparticles[J]. Angew. Chem. Int. Ed.,2009,48:4488-4507
    [2]Guerrero-Martinez A, P6rez-Juste J, Liz-Marzan L M. Recent progress on silica coating of nanoparticles and related nanomaterials[J]. Adv. Mater.,2010,22:1182-1195
    [3]Corma A, Diaz U, Arrica M, Fernandez E, Ortega I. Organic-inorganic nanospheres with responsive molecular gates for drug storage and release[J]. Angew. Chem. Int. Ed.,2009,48: 6247-6250
    [4]Jin Y, Li A, Hazelton S G, Liang S, John C L, Selid P D, Pierce D T, Zhao J X J. Amorphous silica nanohybrids:synthesis, properties and applications[J]. Chem. Rev.,2009,253: 2998-3014
    [5]Kuschel A, Sievers H, Polarz S. Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces[J]. Angew. Chem. Int. Ed.,2008,47:9513-9517
    [6]Hoffmann F, Cornelius M, Morell J M, Froba M. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angew. Chem. Int. Ed.,2006,45:3216-3251
    [7]Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Prog. Polym. Sci.,2003,28:83-114
    [8]Kwak G, Kim S-Y, Fujiki M, Masuda T, Kawakami Y, Aoki T. Versatile and facile preparation of chiral polyacetylene-based gel film and organic-inorganic composites[J]. Chem. Mater., 2004,16:1864-1868
    [9]Tang J, Zhou X, Zhao D, Lu Q G, Zou J, Yu C. Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials[J]. J. Am. Chem. Soc.,2007,129:9044-9048
    [10]Yuan J J, Mykhaylyk O O, Ryan A J, Armes S P. Cross-linking of cationic block copolymer micelles by silica deposition[J]. J. Am. Chem. Soc.,2007,129:1717-1723
    [11]Sertchook H, Elimelech H, Makarov C, Khalfin R, Cohen Y, Shuster M, Babonneau F, Avnir D. Composite particles of polyethylene@silica[J]. J. Am. Chem. Soc.,2007,129:98-108
    [12]Huo Q, Liu J, Wang L Q, Jiang Y, Lambert T N, Fang E. A new class of silica cross-linked micellar core-shell nanoparticles [J]. J. Am. Chem. Soc.,2006,128:6447-6453
    [13]Caruso F. Nanoporous protein particles through templating mesoporous silica spheres [J]. Adv. Mater.,2006,18:795-800
    [14]Jang J, Lim B. Facile fabrication of inorganic-polymer core-shell nanostructures by a one-step vapor deposition polymerization[J]. Angew. Chem. Int. Ed.,2003,42:5600-5603
    [15]Cardin D J. Encapsulated conducting polymers[J]. Adv. Mater.,2002,14:553-563
    [16]Salgueirino-Maceira V S, Spasova M, Farle M. Water-stable, magnetic silica-cobalt/cobalt oxide-silica multishell submicrometer spheres[J]. Adv. Funct. Mater.,2005,15:1036-1040
    [17]Graff C, Vossen D L J, Imhof A, Blaaderen A V. A general method to coat colloidal particles with silica[J]. Langmuir,2003,19:6693-6700
    [18]Kobayashi Y, Horie M, Konno M, Rodriguez-Gonzalez B, Liz-Marzan L M. Preparation and properties of silica-coated cobalt nanoparticles[J]. J. Phys. Chem. B,2003,107:7420-7425
    [19]Pesek J J, Matyska M T J. Our favorite materials:silica hydride stationary phases[J]. Sep. Sci., 2009,32:3999-4011
    [20]Bamba T, Fukusaki E J. Separation of hydrophobic metabolites using monolithic silica column in high-performance liquid chromatography and supercritical fluid chromatography[J]. Sep. Sci.,2009,32:2699-2706
    [21]Pasqua L, Cundari S, Ceresa C, Cavaletti G. Recent development, applications, and perspectives of mesoporous silica particles in medicine and biotechnology[J]. Curr. Med. Chem.,2009,16:3054-3063
    [22]L. Wang, W. Zhao, W. Tan, Bioconjugated silica nanoparticles:development and applications[J]. Nano Res.,2008,1:99-115
    [23]Han W S, Lee H Y, Jung S H, Lee S J, Jung J H. Silica-based chromogenic and fluorogenic hybrid chemosensor materials[J]. Chem. Soc. Rev.,2009,38:1904-1915
    [24]Pagliaro M, Ciriminna R, Palmisano G J. Silica-based hybrid coatings[J]. Mater. Chem.,2009, 19:3116-3126
    [25]Knopp D, Tang D, Niessner R. Review:bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles[J]. Anal. Chem. Acta,2009, 647:14-30
    [26]Webster A, Compton S J, Aylott J W. Optical calcium sensors:development of a generic method for their introduction to the cell using conjugated cell penetrating peptides[J]. Analyst,2005, 130:163-170
    [27]Sathiyamoorthy K, Vijayan C, Varma S. Nonlinear optical response of chloroaluminiumphthalocyanine encapsulated by silica core-shell particles[J]. Langmuir,2008, 24:7485-7491
    [28]Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U. Core/shell fluorescent silica nanoparticles for chemical sensing:towards single-particle laboratories[J]. Small,2006,2: 723-726
    [29]Wu C, Szymanski C, McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles[J]. Langmuir,2006,22:2956-2960
    [30]Wang J, Yang X. Raspberry-like polymer/silica core-corona composite by self-assemble heterocoagulation based on a hydrogen-bonding interaction[J]. Colloid Polym. Sci.,2008,286: 283-291
    [31]Armini S, Vakarelski I U, Whelan C M, Maex K, Higashitani K. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy[J]. Langmuir,2007,23:2007-2014
    [32]Yashima E, Maeda K, Iika H, Furusho Y, Nagai K. Helical polymers:synthesis, structures, and functions[J]. Chem. Rev.,2009,109:6102-6211
    [33]Rudick J G, Percec V. Induced helical backbone conformations of self-organizable dendronized polymers[J]. Acc. Chem. Res.,2008,41:1641-1652
    [34]Fujiki M. Helix generation, amplification, switching, and memory of chromophoric polymers[J]. Top. Curr. Chem.,2008,284:119-186
    [35]Masuda T. Substituted polyacetylenes[J]. J. Polym. Sci., Part A:Polym. Chem.,2007,45: 165-180
    [36]Lam J E Y, Tang B Z. Functional Polyacetylenes[J]. Acc. Chem. Res.,2005,38:745-754
    [37]Aoki T, Kaneko T, Maruyama N, Sumi A, Takahashi M, Sato T, Teraguchi M. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system[J]. J. Am. Chem. Soc.,2003,125:6346-6347
    [38]Nakano T, Okamoto Y. Synthetic helical polymers:conformation and function[J]. Chem. Rev., 2001,101:4013-4038
    [39]Ky Hirschberg J H K, Brunsveld L, Ramzi A, Jef Vekemans A J M, Sijbesma R P, Meijer E W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs[J]. Nature,2000,407:167-170
    [40]Novak B M. Stable helical polyguanidines:poly{N-(1-anthryl)-N'-[(R)- and/or (S)-3,7-dimethyloctyl]guanidines}[J]. J. Am. Chem. Soc.,2004,126:3722-3723
    [41]Green M M, Park J W, Sato T, Teramoto A, Lifson S, Selinger R L B, Selinger J V. The macromolecular route to chiral amplification[J]. Angew. Chem. Int. Ed.,1999,38:3138-3154
    [42]Lee H-Y, Rwei S -P, Wang L, Chen P -H. Preparation and characterization of core-shell polyaniline-polystyrene sulfonate@Fe3O4 nanoparticles[J]. Mater. Chem. Phys.,2008,112: 805-809
    [43]O'Mullane A P, Dale S E, Macpherson J V, Unwin P R. Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites[J]. Chem. Commun.,2004,1606-1607
    [44]Niu Z, Yang Z, Hu Z, Lu Y, Han C C. Polyaniline-silica composite conductive capsules and hollow spheres[J]. Adv. Funct. Mater.,2003,13:949-954
    [45]Wang J, Sun L, Mpoukouvalas K, Lienkamp K, Lieberwirth I, Fassbender B, Bonaccurso E, Brunklaus G, Muehlebach A, Beierlein T, Tilch R, Butt H -J, Wegner G. Construction of redispersible polypyrrole core-shell nanoparticles for application in polymer electronics[J]. Adv. Mater.,2009,21:1137-1141
    [46]Xing S, Tan L H, Chen T, Yang Y, Chen H. Facile fabrication of triple-layer (Au@Ag)@polypyrrole core-shell and (Au@H2O)@polypyrrole yolk-shell nanostructures[J]. Chem. Commun.,2009,1653-1654
    [47]Mangeney C, Fertani M, Bousalem S, Ma Z, Ammar S, Herbst F, Beaunier P, Elaissari A, Chehimi M M. Magnetic Fe2O3-polystyrene/PPy core/shell particles:bioreactivity and self-assembly[J]. Langmuir,2007,23:10940-10949
    [48]Hong J -Y, Kwon E, Jang J. Fabrication of silica/polythiophene core/shell nanospheres and their electrorheological fluid application[J]. Soft Matter,2009,5:951-953
    [49]Zhang Z, Wang F, Chen F, Shi G. Preparation of polythiophene coated gold nanoparticles[J]. Mater. Lett.,2006,60:1039-042
    [50]Chen B, Deng J P, Yang W T. Novel category of optically active core/shell nanoparticles:the core consisting of a helical-substituted polyacetylene and the shell consisting of a vinyl polymer[J]. Macromolecules,2010,43:3177-3182
    [51]Huber J, Mecking S. Processing of polyacetylene from aqueous nanoparticle dispersions[J]. Angew. Chem. Int. Ed.,2006,45:6314-6317
    [52]Mecking S. Polymer dispersions from catalytic polymerization in aqueous systems[J]. Coll. Polym. Sci.,2007,285:605-619
    [53]Deng J P, Chen B, Luo X F, Yang W T. Synthesis of nano-latex particles of optically active helical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems[J]. Macromolecules,2009,42:933-938
    [54]Luo X F, Kang N W, Li L, Deng J P, Yang W T. Nanoparticles consisting of optically active helical polymers:Preparation via aqueous catalytic miniemulsion polymerization and the effects of particles size on their optical activity[J]. J. Polym. Sci. Part A:Polym. Chem.,2010, 48:1661-1668
    [55]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interf. Sci.,1968,26:62-69
    [56]Zhou K, Tong L Y, Deng J P, Yang W T. Hollow polymeric microspheres grafted with optically active helical polymer chains:preparation and their chiral recognition ability[J]. J. Mater. Chem.,2010,20:781-789
    [57]Du X Y, Liu J B, Deng J P, Yang W T. Synthesis and chiral recognition of optically active hydrogels containing helical polymer chains[J]. Polym. Chem.,2010,1:1030-1038
    [58]Kofi T S, Heike L,-Morgenstern S. Potential of chiral solvents for enantioselective crystallization.2. Evaluation of kinetic effects[J]. Cryst. Growth Des.,2009,9:2387-2392
    [59]Kofi T S, Heike L, Liane H, Thomas E F, Morgenstern S. Potential of chiral solvents for enantioselective crystallization.1. Evaluation of thermodynamic effects[J]. Cryst. Growth Des., 2008,8:3408-3414
    [60]Wu J C, Chow Y, Li R J, Carpenter K. Enzyme-mediated enantioselective crystallization of racemic ketoprofen in organic solvents[J]. Sep Purif. Technol.,2007,53:144-147
    [61]Nakanishi T, Banno N, Matsunaga M, Asahi T, Osaka T. Chem. Senses.,2004,20,862
    [62]Shosuke K, Kyoko T. Enantioselective crystallization of D,L-amino acids induced by spontaneous asymmetric resolution of D,L-asparagine[J]. Chem. Commun.,2001,1980-1981
    [63]Mastai Y. Enantioselective crystallization on nanochiral surfaces[J]. Chem. Soc. Rev.,2009,38: 772-780
    [64]Medina D D, Goldshtein J, Margel S, Mastai Y. Enantioselective crystallization on chiral polymeric microspheres[J]. Adv. Funct. Mater.,2007,17:944-950
    [65]Zhang Z G, Deng J P, Zhao W G, Wang J M, Yang W T. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci.:Part A:Polym. Chem.,2007,45:500-508
    [66]Luo X F, Li L, Deng J P, Guo T T, Yang W T. Asymmetric catalytic emulsion polymerization in chiral micelles[J]. Chem. Commun.,2010,2745-2747
    [67]Ding L, Jiao X F, Deng J P, Zhao W G, Yang W T. Catalytic polymerizations of hydrophobic, substituted, acetylene monomers in an aqueous medium by using a monomer/hydroxypropyl-β-cyclodextrin inclusion complex[J]. Macromol. Rapid Commun., 2009,30:120-125
    [68]Terada K, Masua T, Sanda F. Synthesis and secondary structure of polyacetylenes carrying diketopiperazine moieties. the first example of helical polymers stabilized bys-cis-Amide-Based hydrogen bonding[J]. Macromolecules,2009,42:913-920
    [69]Deng J P, Luo X F, Zhao W G, Yang W T. A novel type of optically active helical polymers: synthesis and characterization of poly(N-propargylureas)[J]. J. Polym. Sci.:Part A:Polym. Chem.,2008,46:4112-4121
    [70]Schrock R R, Osborn J A..pi.-Bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I)[J]. Inorg. Chem.,1970,9:2339-2343
    [71]Lee A Y, Ulman A, Myerson A S. Crystallization of amino acids on self-assembled monolayers of rigid thiols on gold[J]. Langmuir,2002,18:5886-5898
    [72]Ma Y, Colfen H, Antonietti M. Morphosynthesis of alanine mesocrystals by pH control[J]. J. Phys. Chem. B,2006,110:10822-10828
    [1]Caruso F. Hollow capsule processing through colloidal templating and self-assembly[J]. Chem. Eur. J.,2000,6:413-419
    [2]Meier W. Polymer nanocapsules[J]. Chem. Soc. Rev.,2000,29:295-303
    [3]Shi X, Shen M, Mohwald H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials[J]. Prog. Polym. Sci.,2004,29:987-1019
    [4]Ras R H A, Kemell M, Wit J D, Ritala M, Brinke G T. Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates[J]. Adv. Mater.,2007,19:102-106
    [5]Zhong Z, Yin Y, Gates B, Xia Y. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads[J]. Adv. Mater.,2000, 12:206-209
    [6]Lou X W, Wang Y, Yuan C, Lee J Y L, Archer A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Adv. Mater.,2006,18: 2325-2329
    [7]Xu X L, Asher S A. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J] J. Am. Chem. Soc.,2004,126:7940-7945
    [8]Wattendorf U, Kreft O, Textor M, Sukhorukov G B, Merkle H P. Stable stealth function for hollow polyelectrolyte microcapsules through a poly(ethylene glycol) grafted polyelectrolyte adlayer[J]. Biomacromolecules,2008,9:100-108
    [9]Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G. In2O3 hollow microspheres:synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis[J]. Langmuir,2006,22:9380-9385
    [10]Zhao Q, Gao Y, Bai X, Wu C, Xie Y. Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts[J]. Eur. J. Inorg. Chem.,2006: 1643-1648
    [11]Amabilino D B. Chirality at the Nanoscale:Nanoparticles, Surfaces, Materials, and more, ed[M]. Wiley-VCH,2009
    [12]Shukla N, Bartel M A, Gellman A J. Enantioselective separation on chiral Au nanoparticles[J]. J. Am. Chem. Soc.,2010,132:8575-8580
    [13]Qi H, Hegmann T. Postsynthesis racemization and place exchange reactions. another step to unravel the origin of chirality for chiral ligand-capped gold nanoparticles[J]. J. Am. Chem. Soc.,2008,130:14201-14206
    [14]Shemer G, Krichevski O, Markovich G, Molotsky T, Lubitz I, Kotlyar A B. Chirality of silver nanoparticles synthesized on DNA[J]. J. Am. Chem. Soc.,2006,128: 11006-11007
    [15]Au A, Yee G T, Lin W J. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones[J]. J. Am. Chem. Soc.,2005,127:12486-12487
    [16]Chen B, Deng J P, Yang W T. Novel category of optically active core/shell nanoparticles: the core consisting of a helical-substituted polyacetylene and the shell consisting of a vinyl polymer[J]. Macromolecules,2010,43:3177-3182
    [17]Chen B, Deng J P, Tong L Y, Yang W T. Optically active helical polyacetylene@silica hybrid organic-inorganic core/shell nanoparticles:preparation and application for enantioselective crystallization[J]. Macromolecules,2010,43:9613-9619
    [18]Luo X F, Li L, Deng J P, Guo T T, Yang W T. Asymmetric catalytic emulsion polymerization in chiral micelles:preparation, characterization and CD spectra of the polymer emulsions[J]. Chem. Commun.,2010,2745-2747
    [19]Luo X F, Kang N W, Li L, Deng J P, Yang W T. Nanoparticles consisting of optically active helical polymers:Preparation via aqueous catalytic miniemulsion polymerization and the effects of particles size on their optical activity [J]. J. Polym. Sci. Part A:Polym. Chem.,2010,48:1661-1668
    [20]Deng J P, Chen B, Luo X F, Yang W T. Synthesis of nano-latex particles of optically active helical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems [J]. Macromolecules,2009,42:933-938
    [21]Mastai Y. Enantioselective crystallization on nanochiral surfacespart of the nanoscale chirality themed issue[J]. Chem. Soc. Rev.,2009,38:772-780
    [22]Medina D D, Goldshtein J, Margel S, Mastai Y. Enantioselective crystallization on chiral polymeric microspheres[J]. Adv. Funct. Mater.,2007,17:944-950
    [23]Menahem T, Mastai Y. Chiral soluble polymers and microspheres for enantioselective crystallization [J]. J. Polym. Sci. Part A:Polym. Chem.,2006,44:3009-3017
    [24]Mastai Y, Sedlak M, Colfen H, Antonietti M. The separation of racemic crystals into enantiomers by chiral block copolymers[J]. Chem. Eur. J.,2002,8:2429-2437
    [25]Lin Z J, Slawin A M A, Morris R E. Chiral induction in the ionothermal synthesis of a 3-D coordination polymer[J]. J. Am. Chem. Soc.,2007,129:4880-4881
    [26]Holder S J, Achilleos M, Jones R G Increasing molecular weight parameters of a helical polymer through polymerization in a chiral solvent[J]. J. Am. Chem. Soc.,2006,128: 12418-12419
    [27]Ovitt T M, Coates G W. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms[J]. J. Am. Chem. Soc.,2002,124:1316-1326
    [28]Yashima E, Maeda K, Iika H, Furusho Y, Nagai K. Helical polymers:synthesis, structures, and functions[J]. Chem. Rev.,2009,109:6102-6211
    [29]Rudick J G, Percec V. Induced helical backbone conformations of self-organizable dendronized polymers[J]. Acc. Chem. Res.,2008,41:1641-1652
    [30]Fujiki M. Helix generation, amplification, switching, and memory of chromophoric polymers[J]. Top. Curr. Chem.,2008,284:119-186
    [31]Lam J E Y, Tang B Z. Functional polyacetylenes[J]. Acc. Chem. Res.,2005,38: 745-754
    [32]Novak B M. Stable helical polyguanidines:poly{N-(1-anthryl)-N'-[(R)- and/or (S)-3,7-dimethyloctyl]guanidines}[J]. J. Am. Chem. Soc.,2004,126:3722-3723
    [33]Masuda T J. Substituted polyacetylenes[J]. Polym. Chem. Part A:Polym. Chem.,2007, 45:165-180
    [34]Aoki T, Kaneko T, Maruyama N, Sumi A, Takahashi M, Sato T, Teraguchi M. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system[J]. J. Am. Chem. Soc.,2003,125:6346-6347
    [35]Nakano T, Okamoto Y. Synthetic helical polymers:conformation and function[J]. Chem. Rev.,2001,101:4013-4038
    [36]Ky Hirschberg J H K, Brunsveld L, Ramzi A, Jef Vekemans A J M, Sijbesma R P, Meijer E W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs[J]. Nature,2000,407:167-170
    [37]Schrock R R, Osborn J A..pi.-Bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I)[J]. Inorg. Chem.,1970,9:2339-2343
    [38]Zhang Z G, Deng J P, Li J W, Yang W T. Influence of solvent on the secondary structure of helical poly(N-propargyl-(1R)-camphor-10-sulfamide)[J]. Polym. J.,2008,40: 436-441
    [39]Deng J P, Luo X F, Zhao W G, Yang W T. A novel type of optically active helical polymers:synthesis and characterization of poly(N-propargylureas)[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46:4112-4121
    [40]Zhang Z G, Deng J P, Zhao W G, Wang J M, Yang W T. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci.:Part A: Polym. Chem.,2007,45:500-508
    [41]Deng J P, Zhao W G, Wang J M, Zhang Z G, Yang W T. The formation of a stable, helical conformation in poly(N-propargylamides) through synergic effects among their pendent groups[J]. Macromol. Chem. Phys.,2007,218-223
    [42]Deng J P, Yu Y, Dun S, Yang W T. Hollow polymer particles with nanoscale pores and reactive groups on their rigid shells:preparation and application as nanoreactors[J]. J. Phys. Chem. B,2010,114:2593-2601
    [43]Zhou K, Tong L Y, Deng J P, Yang W T. Hollow polymeric microspheres grafted with optically active helical polymer chains:preparation and their chiral recognition ability[J]. J. Mater. Chem.,2010,20:781-789
    [44]Du X Y, Liu J B, Deng J P, Yang W T. Synthesis and chiral recognition of optically active hydrogels containing helical polymer chains. Polym. Chem.,2010,1:1030-1038
    [45]Sakurai S, Okoshi K, Kumakiand J, Yashima E. Two-dimensional surface chirality control by solvent-induced helicity inversion of a helical polyacetylene on graphite[J]. J. Am. Chem. Soc.,2006,128:5650-5651
    [46]Maeda K, Kamiya N, E. Yashima. Poly(phenylacetylene)s bearing a peptide pendant: helical conformational changes of the polymer backbone stimulated by the pendant conformational change[J]. Chem. Eur. J.,2004,10:4000-4010
    [4-7]Shu H Y, Colfen H. Bio-inspired crystal morphogenesis by hydrophilic polymers[J]. J. Mater. Chem.,2004,14:2124-2147
    [48]Nomura R, Tabei J, Masuda T. Biomimetic stabilization of helical structure in a synthetic polymer by means of intramolecular hydrogen bonds[J]. J. Am. Chem. Soc., 2001,123:8430-8431
    [49]Lee A Y, Ulman A, Myerson A S. Crystallization of amino acids on self-assembled monolayers of rigid thiols on gold[J]. Langmuir,2002,18:5886-5898
    [50]Ma Y, Colfen H, Antonietti M. Morphosynthesis of alanine mesocrystals by pH control[J]. J. Phys. Chem. B,2006,110:10822-10828
    [1]Sattler M, Liang H, Nettesheim D, Meadows R P, Harlan J E, Eberstadt M. Structure of bcl-xL-bak peptide complex:recognition between regulators of apoptosis[J]. Science, 1997,275:983-986
    [2]Saenger W. Principles of Nucleic Acid Structure. Springer-Verlag, New York:1984
    [3]Green M M, Park J -W, Sato T, Teramoto A, Lifson S, Selinger R L B. The macromolecular route to chiral amplification[J]. Angew. Chem. Int. Ed.,1999,38: 3138-3154
    [4]Schmuck C. Molecules with helical structure:how to build a molecular spiral staircase[J]. Angew. Chem. Int. Ed.,2003,42:2448-2452
    [5]Nakano T, Okamoto Y. Synthetic helical polymers:conformation and function[J]. Chem. Rev.,2001,101:4013-4038
    [6]Hill D G, Mio M J, Prince R B, Hughes T S, Moore J S. A field guide to foldamers[J]. Chem. Rev.,2001,101:3893-4012
    [7]Fujiki M J. Switching handedness in optically active polysilanes[J]. Organomet. Chem., 2003,685:15-34
    [8]Yashima E, Maeda K, Nishimura T. Detection and amplification of chirality by helical polymers[J]. Chem. Eur. J.,2004,10:42-51
    [9]Lam J W Y, Tang B Z. Functional polyacetylenes[J]. Acc. Chem. Res.,2005,38: 745-754
    [10]Mayer S, Zentel R. Chiral polyisocyanates, a special class of helical polymers[J]. Prog. Polym. Sci.,2001,26:1973-2013
    [11]Hida N, Takei F, Onitsuka K, Shiga K, Asaoka S, Iyoda T. Helical, chiral polyisocyanides bearing ferrocenyl groups as pendants:synthesis and properties[J]. Angew. Chem. Int. Ed.,2003,42:4349-4352
    [12]Okamoto Y, Nakano T. Asymmetric polymerization[J]. Chem. Rev.,1994,94:349-372
    [13]Pu L. 1,1'-Binaphthyl dimers, oligomers, and polymers:molecular recognition, asymmetric catalysis, and new materials[J]. Chem. Rev.,1998,98:2405-2494
    [14]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Conformational transition between random coil and helix of poly(N-propargylamides)[J]. Macromolecules,2004,37: 1891-1896
    [15]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Effects of steric repulsion on helical conformation of poly(N-propargylamides) with phenyl groups[J]. Macromolecules, 2004,37:7156-7162
    [16]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. variation of helical pitches driven by the composition of N-propargylamide copolymers[J]. Macromolecules,2004,37: 9715-9721
    [17]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Conformational transition between random coil and helix of copolymers of N-propargylamides[J]. Macromol. Chem. Phys., 2004,205:1103-1107
    [18]Deng J P, Tabei J, Shiotsuki M, Sanda F, Masuda T. Synthesis and characterization of poly(N-propargylsulfamides)[J]. Macromolecules,2004,37:5538-5543
    Nomura R, Tabei J, Masuda T. Biomimetic stabilization of helical structure in a synthetic polymer by means of intramolecular hydrogen bonds[J]. J. Am. Chem. Soc., 2001,123:8430-8431
    [20]Tabei J, Shiotsuki M, Sato T, Sanda F, Masuda T. Control of helix sense by composition of chiral-achiral copolymers of N-propargylbenzamides[J]. Chem. Eur. J.,2005,11: 3591-3598
    [21]Zhang Z G, Deng J P, Zhao W G, Wang J M, Yang W T. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci.:Part A: Polym. Chem.,2007,45:500-508
    [22]Schrock R R, Osborn J A..pi.-Bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I)[J]. Inorg. Chem.,1970,9:2339-2343
    [23]Tabata M, Sone T, Sadahiro Y. Precise synthesis of monosubstituted polyacetylenes using Rh complex catalysts. Control of solid structure and π-conjugation length[J]. Macromol. Chem. Phys.,1999,200:265-282
    [24]Chen B, Deng J P, Tong L Y, Yang W T. Optically active helical polyacetylene@silica hybrid organic-inorganic core/shell nanoparticles:preparation and application[J]. Macromolecules,2010,43:9613-9619
    [25]Chen B, Deng J P, Yang W T. Hollow two-layered chiral nanoparticles consisting of optically active helical polymer/silica:Preparation and application for enantioselective crystallization[J]. Adv. Funct. Mater.,2011, DOI201100113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700