纳米聚苯胺及其金纳米复合材料的可控制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺及其复合材料的微观结构、形貌及尺寸对其物理化学性能有着巨大的影响,使得其微/纳米结构的形貌调控研究引起了人们的广泛关注。因此设计和合成形貌可控的微/纳米结构聚苯胺及其复合材料已成为当前材料科学家研究的热点。本论文借助乙二醇反应介质的辅助,通过简单的化学聚合方法,制备了聚苯胺纳米纤维和纳米棒;并利用化学一步合成方法,合成了聚苯胺/纳米金复合纳米纤维和纳米球,以及聚苯胺/花状纳米金形貌复合材料,分析了反应条件与形貌结构间的关系,提出了其形成机理。主要结果如下:
     首先,分别以APS和H2O2为引发剂,在无模板条件下,利用化学聚合法制备出了尺寸和形貌可控的的聚苯胺纳米纤维和纳米棒。该材料可轻易地分散于水、乙醇等极性溶剂形成稳定的聚苯胺纳米胶体分散液。对其形成机理的研究发现:乙二醇与苯胺单体和聚苯胺间存在的强烈氢键,是导致聚苯胺一维取向生长的主要因素。其反应条件对产品的形貌、尺寸和性能具有明显的影响。随着温度的升高,一维纳米结构聚苯胺的纵横比和电导率减小,而产率增大。当H2O2与苯胺单体的摩尔比为2,APS与苯胺单体的摩尔比为1时,产品具有最佳的导电性能。此外,聚苯胺纳米纤维(APS为氧化剂)的电导率和形貌与掺杂酸的浓度和种类有明显的关系,掺杂酸浓度的增加,有利于电导率和产率的提高,而当用有机功能酸CSA为掺杂剂时却不能获得聚苯胺纳米纤维形貌。通过比较发现搅拌的存在,有利于产品氧化度、掺杂水平、电导率和产率的提高。
     其次,在乙二醇溶液中,通过化学一步合成法合成了一维形貌的聚苯胺/纳米金复合材料。结果表明,反应温度和氧化剂浓度对复合材料的形貌、纳米金粒径及分布均有很大的影响。随着温度的升高,聚苯胺纤维的长度增加,纤维直径和纳米金的粒径减小。电化学实验表明,反应温度为10℃时,复合材料具有更好的导电性和电活性,而纳米金也具有较好的分布。复合材料的长度及纳米金的粒径随氧化剂浓度的提高而增大,但纤维的直径却减小。当氧化剂与苯胺单体的摩尔比为1:5时,产物中同时存在聚苯胺/纳米金复合纤维和微米级的复合球。此外,当H2O2存在时,有利于纳米金粒径和分布均匀性的提高,从而获得了高均匀的聚苯胺/纳米金复合纤维。
     最后,以硫酸代替盐酸作为掺杂剂,在H2O2存在下,采用化学一步合成法制备了聚苯胺/花状纳米金复合材料。通过实验证实了盐酸中的氯离子对氯金酸的氧化还原反应有抑制作用,而硫酸根离子由于没有抑制作用,使反应速度更快,从而导致复合材料从一维形貌转变为聚苯胺/花状纳米金形貌。随后发现,不仅硫酸可以改变反应速度,而且双氧水也对反应速率产生影响。因此,当反应中无H2O2存在,且降低反应温度,获得了形貌和尺寸可控的聚苯胺/纳米金复合纳米球。对其形成机理的研究表明初形成纳米金或聚苯胺/纳米金复合颗粒间的不断聚集生长,以及Au3+在裸露金表面的不断还原是形成复合球形貌的主要原因。复合球的直径随氧化剂浓度的增大而减小,形成表面突枝更均匀的“刺球”形貌复合球。然而,当氧化剂过量时,却只能形成纳米金粒径只有5nm的聚苯胺/纳米金复合纤维。研究发现,搅拌的存在,对复合球的直径没有太大的影响,却有利于聚苯胺/纳米金复合球表面光滑度的提高。
The research on morphological control of micro/nanostructured polyaniline(PANI) and its composite have caused extensive attentions due to the huge impact ofmicrostructure, morphology and size on their physical and chemical porperties.Therefore, controllable design andsynthesis of micro/nanostructured PANI materialsand its composites have become a new hotspot of material scientificresearches.In thiswork, the PANI nanofibers and nanorods have been prepared via a simple chemicalpolymerization reaction of aniline with oxidant carried out in ethylene glycol (EG)medium. The polyaniline/gold nanoparticles (PANI/AuNPs) composite with differentmorphology such as nanofibers, nanospheres and nanoflowers also have been perparedthrough an one-step chemical synthesized method withthe assistance of EGmedium.The relationship between reaction conditions and structures or morphology ofmaterials is analyzed, and the formation mechanisms of nanostructuresarepresented.The main contents are as follow:
     Firstly, the PANI nanofibers and nanorods with controlled size and morphologyare preapredby the chemical methodin the absences of any templates using ammoniumpersulfate (APS) and hydrogen peroxide (H2O2) as the initiator, respectively. Thismaterialcan be facilely dispersed in a polar solvent such as water or ethanol to formsteadyPANI colloids.Mechanism investigations demonstrate that the existence ofstrong hydrogen bonds between EG and aniline or PANI is the main factor leading tothe one-dimensional orientational growth of PANI. The reaction conditionssignificantly impactthe morphology, size, and performance of PANI.The aspect ratioand conductivity of one-dimensional PANIis decreasedwith the rise of temperature,while the yield is increased.When the mole ratio ofH2O2to aniline is two and APS toaniline is one, respectively, the conductivity of PANI is the best. In addition, theconductivity and morphology of PANI nanofibers can be impacted by theconcentration and type of doping acid, in which the higher concentration of acid isbeneficial for the enhancement of the conductivity and yield, but the PANI nanofibersare unable to obtain when the CSA organic functional acid is used as the doped agent.Itcan be found by comparison that the presence of stirring can improve the doping level,conductivity, degree of oxidation and yield of PANI.
     Secondly, the one-dimensional morphological PANI/AuNPs composites are prepared by one-step chemical synthesized method in EG solution.The results indicatethat the reaction temperature and oxidant concentration have great influence on themorphologyof composites, and size and distribution of gold nanoparticles. As thetemperature increases, the length of PANI fibers is increased, but the diameter of fiberand size of gold nanoparticle is decreased.The electrochemical experiments show thatthe conductivity and electrical activity of composite as well as the distribution of goldnanoparticles are better when the reaction temperature is10℃.On theother hand, thelength of composite fibers and the diameter of gold nanoparticles is increased with theincreasing concentration of oxidant, but the diameter of fibers is reduced. When themole ratio of oxidant to aniline is1:5, the PANI/AuNPscomposite fibers andmicrospheres both can be observed in the product.In addition, the uniformity of sizeand distribution of gold nanoparticles embedded in the PANI can be improved byintroduction of H2O2, and resulting in the formation of PANI/AuNPs composite fibers.
     Finally, the PANI/AuNPs flower-shaped composites are also prepared by one-stepchemical synthesized method using sulfuric acid (H2SO4) instead of hydrochloric acid(HCl) as a dopant in the presence of H2O2.The experiments confirm that the chlorideions which come from HCl can inhibit the redox reaction of HAuCl4with aniline, butthe H2SO4is used as dopant can improve the redox reaction speed due to the absenceof chloride ion, which leads to the morphological change of PANI/AuNPs compositesfrom one-dimensional to flower-shaped nanostructure.Subsequently, it is found that theabesence of H2O2also can impact the reaction rate. Therefore, the PANI/AuNPscomposite nanospheres are synthesized in the absence of H2O2at alower temperatuer.Mechanism investigations demonstrate that the continuousaggregated growthofpreformed gold or PANI/AuNPs composite particles and the constantly reduction ofAu3+on bare gold surface are major factors for the formation of compositenanospheres.With the concentration of HAuCl4increase, the diameter of compositenanospheres is decreased and the formation of “thorn sphere” shaped compositespheres with more uniform protruding branches is observed. However, when theoxidant is excess, only the PANI/AuNPs composite fibers are formed, in which the sizeof gold nanoparticles is about5nm. The experimental results indicate thatthe presenceof agitation is beneficial for improving the surface smoothness of compositenanosphere, but not significant effect on their diameter.
引文
[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. Synthesis ofelectrically conducting organic polymers: Halogen derivatives of polyacetylene,(ch) x[J]. J.Chem. Soc., Chem. Commun.,1977,(16):578-580.
    [2] P. J. Nigrey, A. G. MacDiarmid, A. J. Heeger. Electrochemistry of polyacetylene,(ch) x:Electrochemical doping of (ch) x films to the metallic state[J]. J. Chem. Soc., Chem.Commun.,1979,(14):594-595.
    [3] S. Bhadra, D. Khastgir, N. K. Singha, J. H. Lee. Progress in preparation, processing andapplications of polyaniline[J]. Prog. Polym. Sci.,2009,34(8):783-810.
    [4] A. J. Heeger. Semiconducting and metallic polymers: The fourth generation of polymericmaterials (nobel lecture)[J]. Angew. Chem. Int. Ed.,2001,40(14):2591-2611.
    [5] X. Lu, W. Zhang, C. Wang, T.-C. Wen, Y. Wei. One-dimensional conducting polymernanocomposites: Synthesis, properties and applications[J]. Prog. Polym. Sci.,2011,36(5):671-712.
    [6] A. G. Macdiarmid, J.-C. Chiang, M. Halpern, W.-S. Huang, S.-L. Mu, L. Nanaxakkara, S.W. Wu, S. I. Yaniger.“Polyaniline”: Interconversion of metallic and insulating forms[J].Mol. Cryst. Liq. Cryst.,1985,121(1-4):173-180.
    [7] M. Rahmanifar, M. Mousavi, M. Shamsipur. Effect of self-doped polyaniline onperformance of secondary zn–polyaniline battery[J]. J. Power Sources,2002,110(1):229-232.
    [8] G. B. Blanchet, C. R. Fincher, F. Gao. Polyaniline nanotube composites: A high-resolutionprintable conductor[J]. Appl. Phys. Lett.,2003,82(8):1290.
    [9] A. Mirmohseni, R. Solhjo. Preparation and characterization of aqueous polyaniline batteryusing a modified polyaniline electrode[J]. Eur. Polym. J.,2003,39(2):219-223.
    [10] P. C. Ramamurthy, A. M. Malshe, W. R. Harrell, R. V. Gregory, K. McGuire, A. M. Rao.Polyaniline/single-walled carbon nanotube composite electronic devices[J]. Solid-StateElectron.,2004,48(10-11):2019-2024.
    [11] C. Zhao, S. Xing, Y. Yu, W. Zhang, C. Wang. A novel all-plastic diode based upon purepolyaniline material[J]. Microelectronics Journal,2007,38(3):316-320.
    [12] G. Ballun, G. Harsanyi. Display disquisition based on conductive polymers: The colourspectrum of the polyaniline film[C]. Polymers and Adhesives in Microelectronics andPhotonics,2001. First International IEEE Conference on: IEEE;2001. p.291-294.
    [13] A. G. Green, A. E. Woodhead. Ccxliii.—aniline-black and allied compounds. Part i[J]. J.Chem. Soc., Trans.,1910,97:2388-2403.
    [14] R. De Surville, M. Jozefowicz, L. Yu, J. Pepichon, R. Buvet. Electrochemical chains usingprotolytic organic semiconductors[J]. Electrochim. Acta,1968,13(6):1451-1458.
    [15]王佛松,唐劲松,景遐斌,倪少儒,王宝忱.可溶性聚苯胺的合成及研究[J].高分子学报,1987,1(5):384-387.
    [16] A. G. Macdiarmid, J.-C. Chiang, W. Huang, B. D. Humphrey, N. Somasiri. Polyaniline:Protonic acid doping to the metallic regime[J]. Mol. Cryst. Liq. Cryst.,1985,125(1):309-318.
    [17]王利祥,王佛松.导电聚合物聚苯胺的研究进展——ⅰ.合成,链结构和凝聚态结构[J].应用化学,1990,5:1-10.
    [18] A. MacDiarmid, J. Chiang, A. Richter, A. Epstein. Polyaniline: A new concept inconducting polymers[J]. Synth. Met.,1987,18(1):285-290.
    [19] H. Gao, T. Jiang, B. Han, Y. Wang, J. Du, Z. Liu, J. Zhang. Aqueous/ionic liquid interfacialpolymerization for preparing polyaniline nanoparticles[J]. Polymer,2004,45(9):3017-3019.
    [20] J.-K. Lee, N. C. D. Nath, E.-H. Cha, S. Sarker, H.-S. Park, W.-S. Jeong, S.-H. Hong, J.-J.Lee. Effects of polyaniline additive in solvent-free ionic liquid electrolyte fordye-sensitized solar cell[J]. Bull. Korean Chem. Soc.,2010,31(11):3411-3414.
    [21] D. Wei, C. Kvarnstr m, T. Lindfors, A. Ivaska. Polyaniline nanotubules obtained inroom-temperature ionic liquids[J]. Electrochem. Commun.,2006,8(10):1563-1566.
    [22] C.-H. Chen, Y.-F. Dai. Effect of chitosan on interfacial polymerization of aniline[J].Carbohydr. Polym.,2011,84(2):840-843.
    [23] J. Huang, R. B. Kaner. A general chemical route to polyaniline nanofibers[J]. J. Am. Chem.Soc.,2004,126(3):851-855.
    [24] S. Xing, C. Zhao, S. Jing, Z. Wang. Morphology and conductivity of polyanilinenanofibers prepared by ‘seeding’ polymerization[J]. Polymer,2006,47(7):2305-2313.
    [25] S. Palaniappan, A. John. Polyaniline materials by emulsion polymerization pathway[J].Prog. Polym. Sci.,2008,33(7):732-758.
    [26] J. Jang, J. Ha, S. Kim. Fabrication of polyaniline nanoparticles using microemulsionpolymerization[J]. Macromol. Res.,2007,15(2):154-159.
    [27] J. P. Rao, K. E. Geckeler. Polymer nanoparticles: Preparation techniques and size-controlparameters[J]. Prog. Polym. Sci.,2011,36(7):887-913.
    [28] X. Jing, Y. Wang, D. Wu, J. Qiang. Sonochemical synthesis of polyaniline nanofibers[J].Ultrason. Sonochem.,2007,14(1):75-80.
    [29] A. Chowdhury. Studies on solution and solution-cast film of polyaniline colloids preparedin the absence and presence of ultrasonic irradiation[J]. Ultrason. Sonochem.,2004,11(2):77-82.
    [30] M. G. Han, S. K. Cho, S. G. Oh, S. S. Im. Preparation and characterization of polyanilinenanoparticles synthesized from dbsa micellar solution[J]. Synth. Met.,2002,126(1):53-60.
    [31] B.-J. Kim, S.-G. Oh, M.-G. Han, S.-S. Im. Preparation of polyaniline nanoparticles inmicellar solutions as polymerization medium[J]. Langmuir,2000,16(14):5841-5845.
    [32] S. Shreepathi, R. Holze. Spectroelectrochemical investigations of soluble polyanilinesynthesized via new inverse emulsion pathway[J]. Chem. Mater.,2005,17(16):4078-4085.
    [33] Z. Wei, Z. Zhang, M. Wan. Formation mechanism of self-assembled polyanilinemicro/nanotubes[J]. Langmuir,2002,18(3):917-921.
    [34] L. Zhang, M. Wan. Synthesis and characterization of self-assembled polyaniline nanotubesdoped with d-10-camphorsulfonic acid[J]. Nanotechnology,2002,13(6):750.
    [35] L. Zhang, M. Wan. Self-assembly of polyaniline—from nanotubes to hollowmicrospheres[J]. Adv. Funct. Mater.,2003,13(10):815-820.
    [36] A. Diaz, J. Logan. Electroactive polyaniline films[J]. J. Electroanal. Chem. InterfacialElectrochem.,1980,111(1):111-114.
    [37] L. Liang, J. Liu, C. F. Windisch Jr, G. J. Exarhos, Y. Lin. Direct assembly of large arrays oforiented conducting polymer nanowires[J]. Angew. Chem. Int. Ed.,2002,41(19):3665-3668.
    [38] W. Li, H. L. Wang. Electrochemical synthesis of optically active polyaniline films[J]. Adv.Funct. Mater.,2005,15(11):1793-1798.
    [39] Y. Guo, Y. Zhou. Polyaniline nanofibers fabricated by electrochemical polymerization: Amechanistic study[J]. Eur. Polym. J.,2007,43(6):2292-2297.
    [40] A. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura, S. Niizuma. Electrochromism ofpolyaniline film prepared by electrochemical polymerization[J]. Macromolecules,1987,20(8):1793-1796.
    [41] D. M. Mohilner, R. N. Adams, W. J. Argersinger. Investigation of the kinetics andmechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at aplatinum electrode[J]. J. Am. Chem. Soc.,1962,84(19):3618-3622.
    [42] J. Stejskal, R. Gilbert. Polyaniline. Preparation of a conducting polymer [J]. Pure Appl.Chem.,2002,74(5):857-867.
    [43] A. G. MacDiarmid, A. J. Epstein. Secondary doping in polyaniline[J]. Synth. Met.,1995,69(1):85-92.
    [44] J. Huang, S. Virji, B. H. Weiller, R. B. Kaner. Polyaniline nanofibers: Facile synthesis andchemical sensors[J]. J. Am. Chem. Soc.,2003,125(2):314-315.
    [45]王佛松,王利祥.聚苯胺的掺杂反应[J].武汉大学学报:自然科学版,1993,(6):65-73.
    [46] G. M. Do Nascimento, P. Corio, R. W. Novickis, M. L. Temperini, M. S. Dresselhaus.Synthesis and characterization of single‐wall‐carbon‐nanotube‐doped emeraldinesalt and base polyaniline nanocomposites[J]. J. Polym. Sci. Part A: Polym. Chem.,2005,43(4):815-822.
    [47] M. A. Soto-Oviedo, O. A. Araújo, R. Faez, M. C. Rezende, M.-A. De Paoli. Antistaticcoating and electromagnetic shielding properties of a hybrid material based onpolyaniline/organoclay nanocomposite and epdm rubber[J]. Synth. Met.,2006,156(18-20):1249-1255.
    [48] S. Yuexian, W. Hongli, Z. Yuansuo. Electric and electromagnetic shielding properties ofhighly conducting polyaniline films[C]. Electromagnetic Compatibility,20023rdInternational Symposium on: IEEE;2002. p.582-585.
    [49] Y. Geng, J. Li, X. Jing, F. Wang. Polyaniline doped with macromolecular acids[J]. Synth.Met.,1997,84(1):81-82.
    [50] D. C. Trivedi, S. K. Dhawan. Antistatic applications of conducting polyaniline[J]. Polym.Adv. Technol.,1993,4(5):335-340.
    [51] Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. Heeger. Enhanced performance ofpolymer light‐emitting diodes using high‐surface area polyaniline network electrodes[J].J. Appl. Phys.,1995,77(2):694-698.
    [52] V. Parkhutik, R. Diaz Calleja, E. Matveeva, J. Martinez-Duart. Luminescent structures ofporous silicon capped by conductive polymers[J]. Synth. Met.,1994,67(1):111-114.
    [53] S.-A. Chen, K.-R. Chuang, C.-I. Chao, H.-T. Lee. White-light emission fromelectroluminescence diode with polyaniline as the emitting layer[J]. Synth. Met.,1996,82(3):207-210.
    [54] G. Gustafsson, Y. Cao, G. Treacy, F. Klavetter, N. Colaneri, A. Heeger. Flexiblelight-emitting diodes made from soluble conducting polymers[J]. Nature,1992,357(6378):477-479.
    [55] Y. Y. Liu, X. Y. Wang, Y. Cao, X. D. Chen, S. F. Xie, X. J. Zheng, H. D. Zeng. A flexibleblue light-emitting diode based on zno nanowire/polyaniline heterojunctions[J]. J.Nanomater.,2013,2013:1-4.
    [56] Q. Tang, L. Lin, X. Zhao, K. Huang, J. Wu. P-n heterojunction on ordered znonanowires/polyaniline microrods double array[J]. Langmuir,2012,28(8):3972-3978.
    [57] N. Oyama, T. Tatsuma, T. Sato, T. Sotomura. Dimercaptan-polyaniline compositeelectrodes for lithium batteries with high-energy density[J]. Nature,1995,373(6515):598-600.
    [58] L. Yu, X. Wang, J. Li, X. Jing, F. Wang. The electrochemical reversibility of thepolyaniline/organodisulfide composite cathode containing an organomonothiol[J]. J.Electrochem. Soc.,1999,146(9):3230-3233.
    [59] L. Duan, J. Lu, W. Liu, P. Huang, W. Wang, Z. Liu. Fabrication of conductivepolymer-coated sulfur composite cathode materials based on layer-by-layer assembly forrechargeable lithium–sulfur batteries[J]. Colloids Surf., A,2012,414:98-103.
    [60] W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo, H. D. Abruna. Yolk-shell structure ofpolyaniline-coated sulfur for lithium-sulfur batteries[J]. J. Am. Chem. Soc.,2013,135(44):16736-16743.
    [61] L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos,J. Liu. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium‐sulfurbatteries with long cycle life[J]. Adv. Mater.,2012,24(9):1176-1181.
    [62]陈丽娴,卢彦婷,翁少煌,周剑章,林仲华.固态聚苯胺电致变色器件的制备和性能[J].高等学校化学学报,2009,30(3):557-562.
    [63] T. Kobayashi, H. Yoneyama, H. Tamura. Polyaniline film-coated electrodes aselectrochromic display devices[J]. J. Electroanal. Chem. Interfacial Electrochem.,1984,161(2):419-423.
    [64] A. Kitani, J. Yano, K. Sasaki. Ecd materials for the three primary colors developed bypolyanilines[J]. J. Electroanal. Chem. Interfacial Electrochem.,1986,209(1):227-232.
    [65] D. M. DeLongchamp, P. T. Hammond. Multiple-color electrochromism fromlayer-by-layer-assembled polyaniline/prussian blue nanocomposite thin films[J]. Chem.Mater.,2004,16(23):4799-4805.
    [66] M. Deepa, S. Ahmad, K. N. Sood, J. Alam, S. Ahmad, A. K. Srivastava. Electrochromicproperties of polyaniline thin film nanostructures derived from solutions of ionicliquid/polyethylene glycol[J]. Electrochim. Acta,2007,52(26):7453-7463.
    [67] M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner. Conjugated polymer films for gasseparations[J]. Science,1991,252(5011):1412-1415.
    [68] G. Illing, K. Hellgardt, R. Wakeman, A. Jungbauer. Preparation and characterisation ofpolyaniline based membranes for gas separation[J]. J. Membr. Sci.,2001,184(1):69-78.
    [69] G. Illing, K. Hellgardt, M. Schonert, R. Wakeman, A. Jungbauer. Towards ultrathinpolyaniline films for gas separation[J]. J. Membr. Sci.,2005,253(1):199-208.
    [70] Y. Gupta, K. Hellgardt, R. Wakeman. Enhanced permeability of polyaniline basednano-membranes for gas separation[J]. J. Membr. Sci.,2006,282(1):60-70.
    [71] S. Zhao, Z. Wang, Z. Qiao, X. Wei, C. Zhang, J. Wang, S. Wang. Gas separation membranewith co2-facilitated transport highway constructed from amino carrier containing nanorodsand macromolecules[J]. J. Mater. Chem. A,2013,1(2):246.
    [72] C. Tan, D. Blackwood. Interactions between polyaniline and methanol vapour[J]. Sensorsand Actuators B: Chemical,2000,71(3):184-191.
    [73] L. Xia, Z. Wei, M. Wan. Conducting polymer nanostructures and their application inbiosensors[J]. J. Colloid Interface Sci.,2010,341(1):1-11.
    [74] F. S. Kim, G. Ren, S. A. Jenekhe. One-dimensional nanostructures of π-conjugatedmolecular systems: Assembly, properties, and applications from photovoltaics, sensors, andnanophotonics to nanoelectronics[J]. Chem. Mater.,2011,23(3):682-732.
    [75] S. Virji, J. Huang, R. B. Kaner, B. H. Weiller. Polyaniline nanofiber gas sensors:Examination of response mechanisms[J]. Nano Lett.,2004,4(3):491-496.
    [76] J. Huang, S. Virji, B. H. Weiller, R. B. Kaner. Nanostructured polyaniline sensors[J].Chemistry,2004,10(6):1314-1319.
    [77] J. Huang. Syntheses and applications of conducting polymer polyaniline nanofibers[J].Pure Appl. Chem.,2006,78(1):15-27.
    [78] G. Mengoli, M. M. Musiani, B. Pelli, E. Vecchi. Anodic synthesis of sulfur‐bridgedpolyaniline coatings onto fe sheets[J]. J. Appl. Polym. Sci.,1983,28(3):1125-1136.
    [79] X.-H. Wang, J. Li, J.-Y. Zhang, Z.-C. Sun, L. Yu, X.-B. Jing, F.-S. Wang, Z.-X. Sun, Z.-J.Ye. Polyaniline as marine antifouling and corrosion-prevention agent[J]. Synth. Met.,1999,102(1):1377-1380.
    [80] K.-C. Chang, G.-W. Jang, C.-W. Peng, C.-Y. Lin, J.-C. Shieh, J.-M. Yeh, J.-C. Yang, W.-T.Li. Comparatively electrochemical studies at different operational temperatures for theeffect of nanoclay platelets on the anticorrosion efficiency of dbsa-dopedpolyaniline/na+–mmt clay nanocomposite coatings[J]. Electrochim. Acta,2007,52(16):5191-5200.
    [81] Y. Chen, X. H. Wang, J. Li, J. L. Lu, F. S. Wang. Long-term anticorrosion behaviour ofpolyaniline on mild steel[J]. Corros. Sci.,2007,49(7):3052-3063.
    [82] M. Wan, J. Li, S. Li. Microtubules of polyaniline as new microwave absorbent materials[J].Polym. Adv. Technol.,2001,12(11‐12):651-657.
    [83] C. C. Yang, Y. J. Gung, C. C. Shih, W. C. Hung, K. H. Wu. Synthesis, infrared andmicrowave absorbing properties of (bafe12o19+batio3)/polyaniline composite[J]. J. Magn.Magn. Mater.,2011,323(7):933-938.
    [84] K. Kaneto, M. Kaneko, Y. Min, A. G. MacDiarmid.“Artificial muscle”: Electromechanicalactuators using polyaniline films[J]. Synth. Met.,1995,71(1):2211-2212.
    [85] M. Hasik, A. Proń, I. Kulszewicz-Bajer, J. Po niczek, A. Bielański, Z. Piwowarska, R.Dziembaj. Polyaniline doped with heteropolyanions: Spectroscopic and catalyticproperties[J]. Synth. Met.,1993,55(2):972-976.
    [86] A. Drelinkiewicz, J. Stejskal, A. Waksmundzka, J. W. Sobczak. Physicochemical andcatalytic properties of palladium deposited on polyaniline-coated silica gel[J]. Synth. Met.,2004,140(2-3):233-246.
    [87] Y. Gao, C.-A. Chen, H.-M. Gau, J. A. Bailey, E. Akhadov, D. Williams, H.-L. Wang. Facilesynthesis of polyaniline-supported pd nanoparticles and their catalytic properties towardselective hydrogenation of alkynes and cinnamaldehyde[J]. Chem. Mater.,2008,20(8):2839-2844.
    [88] M. Barth, M. Lapkowski, W. Urek, J. Muszyński, S. Lefrant. Catalytic properties ofruthenium dioxide in polyaniline matrix[J]. Synth. Met.,1997,84(1):111-112.
    [89] L. H. Mascaro, D. Gon alves, L. O. S. Bulh es. Electrocatalytic properties andelectrochemical stability of polyaniline and polyaniline modified with platinumnanoparticles in formaldehyde medium[J]. Thin Solid Films,2004,461(2):243-249.
    [90] G. Wu, K. L. More, C. M. Johnston, P. Zelenay. High-performance electrocatalysts foroxygen reduction derived from polyaniline, iron, and cobalt[J]. Science,2011,332(6028):443-447.
    [91] S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L. Li. Nanostructuredpolyaniline-decorated pt/c@pani core-shell catalyst with enhanced durability andactivity[J]. J. Am. Chem. Soc.,2012,134(32):13252-13255.
    [92] G. Hodes. When small is different: Some recent advances in concepts and applications ofnanoscale phenomena[J]. Adv. Mater.,2007,19(5):639-655.
    [93] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan.One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Adv.Mater.,2003,15(5):353-389.
    [94] Y. Zhang, X. Jiang, R. Zhang, P. Sun, Y. Zhou. Influence of the nanostructure on chargetransport in polyaniline films[J]. Electrochim. Acta,2011,56(9):3264-3269.
    [95] Z. Niu, Z. Yang, Z. Hu, Y. Lu, C. C. Han. Polyaniline–silica composite conductive capsulesand hollow spheres[J]. Adv. Funct. Mater.,2003,13(12):949-954.
    [96] R. V. Parthasarathy, C. R. Martin. Template-synthesized polyaniline microtubules[J]. Chem.Mater.,1994,6(10):1627-1632.
    [97] C.-G. Wu, T. Bein. Polyaniline wires in oxidant-containing mesoporous channel hosts[J].Chem. Mater.,1994,6(8):1109-1112.
    [98] C.-G. Wu, T. Bein. Conducting polyaniline filaments in a mesoporous channel host[J].Science,1994,:1757-1759.
    [99] B. H. Sung, U. S. Choi, H. G. Jang, Y. S. Park. Novel approach to enhance the dispersionstability of er fluids based on hollow polyaniline sphere particle[J]. Colloids Surf., A,2006,274(1–3):37-42.
    [100] M.-K. Park, K. Onishi, J. Locklin, F. Caruso, R. C. Advincula. Self-assembly andcharacterization of polyaniline and sulfonated polystyrene multilayer-coated colloidalparticles and hollow shells[J]. Langmuir,2003,19(20):8550-8554.
    [101] Q. Wu, Z. Wang, G. Xue. Controlling the structure and morphology of monodispersepolystyrene/polyaniline composite particles[J]. Adv. Funct. Mater.,2007,17(11):1784-1789.
    [102] P. Enzel, T. Bein. Inclusion of polyaniline filaments in zeolite molecular sieves[J]. J. Phys.Chem.,1989,93(17):6270-6272.
    [103] T. Bein, P. Enzel. Inclusion polymerization and doping in zeolite channels: Polyaniline[J].Mol. Cryst. Liq. Cryst.,1990,181(1):315-324.
    [104] Z. Zhang, J. Sui, L. Zhang, M. Wan, Y. Wei, L. Yu. Synthesis of polyaniline with a hollow,octahedral morphology by using a cuprous oxide template[J]. Adv. Mater.,2005,17(23):2854-2857.
    [105] Z. Zhang, J. Deng, J. Sui, L. Yu, M. Wan, Y. Wei. Hollow microstructured polyanilineprepared using cuprous oxide crystals as templates[J]. Macromol. Chem. Phys.,2006,207(8):763-769.
    [106] L. J. Pan, L. Pu, Y. Shi, S. Y. Song, Z. Xu, R. Zhang, Y. D. Zheng. Synthesis of polyanilinenanotubes with a reactive template of manganese oxide[J]. Adv. Mater.,2007,19(3):461-464.
    [107] X. Feng, Y. Zhang, Z. Yan, N. Chen, Y. Ma, X. Liu, X. Yang, W. Hou. Self-degradabletemplate synthesis of polyaniline nanotubes and their high performance in the detection ofdopamine[J]. J. Mater. Chem. A,2013,1(34):9775.
    [108] J. Fei, Y. Cui, X. Yan, Y. Yang, K. Wang, J. Li. Controlled fabrication of polyanilinespherical and cubic shells with hierarchical nanostructures[J]. ACS Nano,2009,3(11):3714-3718.
    [109] W. Zhong, Y. Li, Y. Wang, X. Chen, Y. Wang, W. Yang. Superhydrophobic polyanilinehollow bars: Constructed with nanorod-arrays based on self-removing metal-monomerictemplate[J]. J. Colloid Interface Sci.,2012,365(1):28-32.
    [110] Y.-Z. Long, M.-M. Li, C. Gu, M. Wan, J.-L. Duvail, Z. Liu, Z. Fan. Recent advances insynthesis, physical properties and applications of conducting polymer nanotubes andnanofibers[J]. Prog. Polym. Sci.,2011,36(10):1415-1442.
    [111] J. Stejskal, I. Sapurina, M. Trchová. Polyaniline nanostructures and the role of anilineoligomers in their formation[J]. Prog. Polym. Sci.,2010,35(12):1420-1481.
    [112] S. Xing, Y. Chu, X. Sui, Z. Wu. Synthesis and characterization of polyaniline inctab/hexanol/water reversed micelle[J]. J. Mater. Sci.,2005,40(1):215-218.
    [113] L. Yu, J. I. Lee, K. W. Shin, C. E. Park, R. Holze. Preparation of aqueous polyanilinedispersions by micellar‐aided polymerization[J]. J. Appl. Polym. Sci.,2003,88(6):1550-1555.
    [114] P. A. Hassan, S. N. Sawant, N. C. Bagkar, J. V. Yakhmi. Polyaniline nanoparticles preparedin rodlike micelles[J]. Langmuir,2004,20(12):4874-4880.
    [115] D. Cheng, S.-C. Ng, H. S. O. Chan. Morphology of polyaniline nanoparticles synthesizedin triblock copolymers micelles[J]. Thin Solid Films,2005,477(1-2):19-23.
    [116] Z. Wei, L. Zhang, M. Yu, Y. Yang, M. Wan. Self‐assembling sub‐micrometer‐sizedtube junctions and dendrites of conducting polymers[J]. Adv. Mater.,2003,15(16):1382-1385.
    [117] L. Zhang, Y. Long, Z. Chen, M. Wan. The effect of hydrogen bonding on self‐assembledpolyaniline nanostructures[J]. Adv. Funct. Mater.,2004,14(7):693-698.
    [118] H. Qiu, M. Wan, B. Matthews, L. Dai. Conducting polyaniline nanotubes by template-freepolymerization[J]. Macromolecules,2001,34(4):675-677.
    [119] Z. Wei, M. Wan. Hollow microspheres of polyaniline synthesized with an aniline emulsiontemplate[J]. Adv. Mater.,2002,14(18):1314-1317.
    [120] H. Xia, J. Narayanan, D. Cheng, C. Xiao, X. Liu, H. S. O. Chan. Formation of orderedarrays of oriented polyaniline nanoparticle nanorods[J]. J. Phys. Chem. B,2005,109(26):12677-12684.
    [121] Y. Zhu, D. Hu, M. Wan, L. Jiang, Y. Wei. Conducting and superhydrophobic rambutan‐like hollow spheres of polyaniline[J]. Adv. Mater.,2007,19(16):2092-2096.
    [122] P. Anilkumar, M. Jayakannan. Self-assembled cylindrical and vesicular moleculartemplates for polyaniline nanofibers and nanotapes[J]. J. Phys. Chem. B,2009,113(34):11614-11624.
    [123] P. Anilkumar, M. Jayakannan. Single-molecular-system-based selective micellar templatesfor polyaniline nanomaterials: Control of shape, size, solid state ordering, and expandedchain to coillike conformation[J]. Macromolecules,2007,40(20):7311-7319.
    [124] P. Anilkumar, M. Jayakannan. Large-scale synthesis of polyaniline nanofibers based onrenewable resource molecular template[J]. J. Appl. Polym. Sci.,2009,114(6):3531-3541.
    [125] Y. Yan, Z. Yu, Y. Huang, W. Yuan, Z. Wei. Helical polyaniline nanofibers induced by chiraldopants by a polymerization process[J]. Adv. Mater.,2007,19(20):3353-3357.
    [126] W. Li, H.-L. Wang. Oligomer-assisted synthesis of chiral polyaniline nanofibers[J]. J. Am.Chem. Soc.,2004,126(8):2278-2279.
    [127] H. Guo, J. Chen, Y. Xu. Protein-induced synthesis of chiral conducting polyanilinenanospheres[J]. ACS Macro Letters,2014,:295-297.
    [128] X. Zhang, S. K. Manohar. Polyaniline nanofibers: Chemical synthesis using surfactants[J].Chem. Commun.,2004,(20):2360-2361.
    [129] W. Zhong, J. Deng, Y. Yang, W. Yang. Synthesis of large‐area three‐dimensionalpolyaniline nanowire networks using a “soft template”[J]. Macromol. Rapid Commun.,2005,26(5):395-400.
    [130] P. Anilkumar, M. Jayakannan. A novel supramolecular organogel nanotubular templateapproach for conducting nanomaterials[J]. J. Phys. Chem. B,2010,114(2):728-736.
    [131] G. Li, Z. Zhang. Synthesis of dendritic polyaniline nanofibers in a surfactant gel[J].Macromolecules,2004,37(8):2683-2685.
    [132] G. Li, H. Peng, Y. Wang, Y. Qin, Z. Cui, Z. Zhang. Synthesis of polyaniline nanobelts[J].Macromol. Rapid Commun.,2004,25(18):1611-1614.
    [133] L. Meng, Y. Lu, X. Wang, J. Zhang, Y. Duan, C. Li. Facile synthesis of straight polyanilinenanostick in hydrogel[J]. Macromolecules,2007,40(9):2981-2983.
    [134] H. Ding, M. Wan, Y. Wei. Controlling the diameter of polyaniline nanofibers by adjustingthe oxidant redox potential[J]. Adv. Mater.,2007,19(3):465-469.
    [135] X. Zhang, H. S. Kolla, X. Wang, K. Raja, S. K. Manohar. Fibrillar growth in polyaniline[J].Adv. Funct. Mater.,2006,16(9):1145-1152.
    [136] N.-R. Chiou, L. J. Lee, A. J. Epstein. Self-assembled polyaniline nanofibers/nanotubes[J].Chem. Mater.,2007,19(15):3589-3591.
    [137] S. Liu, K. Zhu, Y. Zhang, J. Xu. Cyclic polyaniline nanostructures from aqueous/organicinterfacial polymerization induced by polyacrylic acid[J]. Polymer,2006,47(22):7680-7683.
    [138] J. Chen, D. Chao, X. Lu, W. Zhang. Novel interfacial polymerization for radially orientedpolyaniline nanofibers[J]. Mater. Lett.,2007,61(6):1419-1423.
    [139] S. Xing, H. Zheng, G. Zhao. Preparation of polyaniline nanofibers via a novel interfacialpolymerization method[J]. Synth. Met.,2008,158(1-2):59-63.
    [140] P. Paulraj, N. Janaki, S. Sandhya, K. Pandian. Single pot synthesis of polyaniline protectedsilver nanoparticles by interfacial polymerization and study its application onelectrochemical oxidation of hydrazine[J]. Colloids Surf., A,2011,377(1-3):28-34.
    [141] Q. Hao, H. Wang, X. Yang, L. Lu, X. Wang. Morphology-controlled fabrication ofsulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacialpolymerization and investigation of their electrochemical properties[J]. Nano Research,2010,4(4):323-333.
    [142] J. Stejskal, I. Sapurina. On the origin of colloidal particles in the dispersion polymerizationof aniline[J]. J. Colloid Interface Sci.,2004,274(2):489-495.
    [143] J. Stejskal, P. Kratochvíl, M. Helmstedt. Polyaniline dispersions.5. Poly(vinyl alcohol) andpoly(n-vinylpyrrolidone) as steric stabilizers[J]. Langmuir,1996,12(14):3389-3392.
    [144] A. Riede, M. Helmstedt, V. Riede, J. Stejskal. Polyaniline dispersions.9. Dynamic lightscattering study of particle formation using different stabilizers[J]. Langmuir,1998,14(23):6767-6771.
    [145] D. Chattopadhyay, S. Banerjee, D. Chakravorty, B. M. Mandal.Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilizednanoparticles therefrom[J]. Langmuir,1998,14(7):1544-1547.
    [146] J. Stejskal, M. Spirkova, A. Riede, M. Helmstedt, P. Mokreva, J. Prokes. Polyanilinedispersions8. The control of particle morphology[J]. Polymer,1999,40(10):2487-2492.
    [147] J. Hwang, I. Chin, H. Choi, K. Lee, A. Guiseppi-Elie. Effect of poly (sodium4-styrenesulfonate) stabilizer on synthesis and characterization of polyanilinenanoparticles[J]. Mol. Cryst. Liq. Cryst.,2003,407(1):7-13.
    [148] S. Park, M. Cho, H. Choi. Synthesis and electrical characteristics of polyanilinenanoparticles and their polymeric composite[J]. Curr. Appl. Phys.,2004,4(6):581-583.
    [149] M. S. Cho, S. Y. Park, J. Y. Hwang, H. J. Choi. Synthesis and electrical properties ofpolymer composites with polyaniline nanoparticles[J]. Mater. Sci. Eng., C,2004,24(1):15-18.
    [150] M. Chakraborty, D. C. Mukherjee, B. M. Mandal. Dispersion polymerization of aniline indifferent media: A uv visible spectroscopic and kinetic study[J]. Langmuir,2000,16(6):2482-2488.
    [151] M. Mumtaz, C. Labrugère, E. Cloutet, H. Cramail. Synthesis of polyaniline nano-objectsusing poly (vinyl alcohol)-, poly (ethylene oxide)-, and poly [(n-vinylpyrrolidone)-co-(vinyl alcohol)]-based reactive stabilizers[J]. Langmuir,2009,25(23):13569-13580.
    [152] J. Bhadra, D. Sarkar. Self-assembled polyaniline nanorods synthesized by facile route ofdispersion polymerization[J]. Mater. Lett.,2009,63(1):69-71.
    [153] P. Banerjee, S. N. Bhattacharyya, B. M. Mandal. Poly (vinyl methyl ether) stabilizedcolloidal polyaniline dispersions[J]. Langmuir,1995,11(7):2414-2418.
    [154] S. H. Lee, D. H. Lee, K. Lee, C. W. Lee. High-performance polyaniline prepared viapolymerization in a self-stabilized dispersion[J]. Adv. Funct. Mater.,2005,15(9):1495-1500.
    [155] H. Namgoong, D. J. Woo, S.-H. Lee. Micro-chemical structure of polyaniline synthesizedby self-stabilized dispersion polymerization[J]. Macromol. Res.,2007,15(7):633-639.
    [156] M. Kim, S. Cho, J. Song, S. Son, J. Jang. Controllable synthesis of highly conductivepolyaniline coated silica nanoparticles using self-stabilized dispersion polymerization[J].ACS Appl. Mater. Interfaces,2012,4(9):4603-4609.
    [157] X. Zhang, W. J. Goux, S. K. Manohar. Synthesis of polyaniline nanofibers by “nanofiberseeding”[J]. J. Am. Chem. Soc.,2004,126(14):4502-4503.
    [158] D. Wang, F. Ma, S. Qi, B. Song. Synthesis and electromagnetic characterization ofpolyaniline nanorods using schiff base through ‘seeding’ polymerization[J]. Synth. Met.,2010,160(19-20):2077-2084.
    [159] J. Huang, R. B. Kaner. Nanofiber formation in the chemical polymerization of aniline: Amechanistic study[J]. Angew. Chem. Int. Ed.,2004,43(43):5817-5821.
    [160] D. Li, R. B. Kaner. Shape and aggregation control of nanoparticles: Not shaken, notstirred[J]. J. Am. Chem. Soc.,2006,128(3):968-975.
    [161] J. Huang, R. B. Kaner. The intrinsic nanofibrillar morphology of polyaniline[J]. Chem.Commun.(Camb.),2006,(4):367-376.
    [162] N. R. Chiou, A. J. Epstein. Polyaniline nanofibers prepared by dilute polymerization[J].Adv. Mater.,2005,17(13):1679-1683.
    [163] L. J. Pan, L. Pu, Y. Shi, T. Sun, R. Zhang, Y. O. Zheng. Hydrothermal synthesis ofpolyaniline mesostructures[J]. Adv. Funct. Mater.,2006,16(10):1279-1288.
    [164] C. Coutanceau, M. Croissant, T. Napporn, C. Lamy. Electrocatalytic reduction of dioxygenat platinum particles dispersed in a polyaniline film[J]. Electrochim. Acta,2000,46(4):579-588.
    [165] J. M. Kinyanjui, R. Harris-Burr, J. G. Wagner, N. R. Wijeratne, D. W. Hatchett.Hexachloroplatinate-initiated synthesis of polyaniline/platinum composite[J].Macromolecules,2004,37(23):8745-8753.
    [166] Z. Chen, L. Xu, W. Li, M. Waje, Y. Yan. Polyaniline nanofibre supported platinumnanoelectrocatalysts for direct methanol fuel cells[J]. Nanotechnology,2006,17(20):5254-5259.
    [167] S. Guo, S. Dong, E. Wang. Polyaniline/pt hybrid nanofibers: High-efficiencynanoelectrocatalysts for electrochemical devices[J]. Small,2009,5(16):1869-1876.
    [168] A. A. Athawale, S. V. Bhagwat, P. P. Katre, A. J. Chandwadkar, P. Karandikar. Aniline as astabilizer for metal nanoparticles[J]. Mater. Lett.,2003,57(24-25):3889-3894.
    [169] J. Wang, K. Neoh, E. Kang. Preparation of nanosized metallic particles in polyaniline[J]. J.Colloid Interface Sci.,2001,239(1):78-86.
    [170] B. J. Gallon, R. W. Kojima, R. B. Kaner, P. L. Diaconescu. Palladium nanoparticlessupported on polyaniline nanofibers as a semi-heterogeneous catalyst in water[J]. AngewChem Int Ed Engl,2007,46(38):7251-7254.
    [171] J. Stejskal, J. Proke, I. Sapurina. The reduction of silver ions with polyaniline: The effectof the type of polyaniline and the mole ratio of the reagents[J]. Mater. Lett.,2009,63(8):709-711.
    [172] J. Stejskal, M. Trchová, J. Ková ová, L. Bro ová, J. Proke. The reduction of silver nitratewith various polyaniline salts to polyaniline–silver composites[J]. Reactive and FunctionalPolymers,2009,69(2):86-90.
    [173] I. Sedenkova, M. Trchova, J. Stejskal, J. Prokes. Solid-state reduction of silver nitrate withpolyaniline base leading to conducting materials[J]. ACS Appl. Mater. Interfaces,2009,1(9):1906-1912.
    [174] M. B. Cortie. The weird world of nanoscale gold[J]. Gold Bull.,2004,37(1-2):12-19.
    [175] D. Wei, J. K. Baral, R. sterbacka, A. Ivaska. Electrochemical fabrication of a nonvolatilememory device based on polyaniline and gold particles[J]. J. Mater. Chem.,2008,18(16):1853.
    [176] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, Y. Yang. Polyaniline nanofiber/goldnanoparticle nonvolatile memory[J]. Nano Lett.,2005,5(6):1077-1080.
    [177] H. Huang, X. Feng, J. J. Zhu. Synthesis, characterization and application in electrocatalysisof polyaniline/au composite nanotubes[J]. Nanotechnology,2008,19(14):145607.
    [178] S. Liu, H. Xu, J. Ou, Z. Li, S. Yang, J. Wang. A feasible approach to the fabrication ofgold/polyaniline nanofiber composites and its application as electrocatalyst for oxygenreduction[J]. Mater. Chem. Phys.,2012,132(2-3):500-504.
    [179] T. K. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay. Synthesis of aunanoparticle–conductive polyaniline composite using h2o2as oxidising as well as reducingagent[J]. Chem. Commun.,2002,(10):1048-1049.
    [180] B. Zhang, B. Zhao, S. Huang, R. Zhang, P. Xu, H.-L. Wang. One-pot interfacial synthesisof au nanoparticles and au–polyaniline nanocomposites for catalytic applications[J].CrystEngComm,2012,14(5):1542.
    [181] T. K. Sarma, A. Chattopadhyay. Reversible encapsulation of nanometer-size polyanilineand polyaniline-au-nanoparticle composite in starch[J]. Langmuir,2004,20(11):4733-4737.
    [182] T. K. Sarma, A. Chattopadhyay. One pot synthesis of nanoparticles of aqueous colloidalpolyaniline and its au nanoparticle composite from monomer vapor[J]. J. Phys. Chem. A,2004,108(39):7837-7842.
    [183] J. M. Kinyanjui, D. W. Hatchett, J. A. Smith, M. Josowicz. Chemical synthesis of apolyaniline/gold composite using tetrachloroaurate[J]. Chem. Mater.,2004,16(17):3390-3398.
    [184] J. M. Kinyanjui, J. Hanks, D. W. Hatchett, A. Smith, M. Josowicz. Chemical andelectrochemical synthesis of polyaniline/gold composites[J]. J. Electrochem. Soc.,2004,151(12): D113.
    [185] S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, M. F. Bertino. One-pot synthesis ofpolyaniline-metal nanocomposites[J]. Chem. Mater.,2005,17(24):5941-5944.
    [186] K. Mallick, M. J. Witcomb, A. Dinsmore, M. S. Scurrell. Polymerization of aniline byauric acid: Formation of gold decorated polyaniline nanoballs[J]. Macromol. RapidCommun.,2005,26(4):232-235.
    [187] K. Mallick, M. J. Witcomb, M. S. Scurrell. Polyaniline stabilized highly dispersed goldnanoparticle: An in-situ chemical synthesis route[J]. J. Mater. Sci.,2006,41(18):6189-6192.
    [188]郑国祥,邵勇,徐斌.聚苯胺包裹的金纳米粒子的合成和表征及初步应用[J].化学学报,2006,64(8):733-737.
    [189] H. Shiigi, Y. Yamamoto, N. Yoshi, H. Nakao, T. Nagaoka. One-step preparation ofpositively-charged gold nanoraspberry[J]. Chem. Commun.(Camb.),2006,(41):4288-4290.
    [190] Z. Peng, L. Guo, Z. Zhang, B. Tesche, T. Wilke, D. Ogermann, S. Hu, K. Kleinermanns.Micelle-assisted one-pot synthesis of water-soluble polyaniline-gold composite particles[J].Langmuir,2006,22(26):10915-10918.
    [191] X. Feng, G. Yang, Q. Xu, W. Hou, J.-J. Zhu. Self-assembly of polyaniline/au composites:From nanotubes to nanofibers[J]. Macromol. Rapid Commun.,2006,27(1):31-36.
    [192] Z. Wang, J. Yuan, D. Han, L. Niu, A. Ivaska. One-step synthesis of gold–polyanilinecore–shell particles[J]. Nanotechnology,2007,18(11):115610.
    [193] L. Zhang, H. Peng, P. A. Kilmartin, C. Soeller, R. Tilley, J. Travas-Sejdic. Self-assembledhollow polyaniline/au nanospheres obtained by a one-step synthesis[J]. Macromol. RapidCommun.,2008,29(7):598-603.
    [194] K. Mallick, M. J. Witcomb, M. S. Scurrell. Gold in polyaniline: Recent trends[J]. GoldBull.,2006,39(4):166-174.
    [195]舒建华,仇伟,郑少琴.聚苯胺/纳米金复合材料[J].化学进展,2009,(05):1015-1022.
    [196] Y. Wang, Z. Liu, B. Han, Z. Sun, Y. Huang, G. Yang. Facile synthesis of polyanilinenanofibers using chloroaurate acid as the oxidant[J]. Langmuir,2005,21(3):833-836.
    [197] X. Zhang, V. Chechik, D. K. Smith, P. H. Walton, A.-K. Duhme-Klair. Controlled synthesisof optically active polyaniline nanorods and nanostructured gold microspheres usingtetrachloroaurate as an efficient oxidant of aniline[J]. Macromolecules,2008,41(10):3417-3421.
    [198] J. Wang, K. G. Neoh, E. T. Kang. Preparation of nanosized metallic particles inpolyaniline[J]. J. Colloid Interface Sci.,2001,239(1):78-86.
    [199] J. A. Smith, M. Josowicz, J. Janata. Polyaniline-gold nanocomposite system[J]. J.Electrochem. Soc.,2003,150(8): E384-E388.
    [200] J. Han, L. Li, R. Guo. Novel approach to controllable synthesis of gold nanoparticlessupported on polyaniline nanofibers[J]. Macromolecules,2010,43(24):10636-10644.
    [201] C.-C. Hung, T.-C. Wen, Y. Wei. Site-selective deposition of ultra-fine au nanoparticles onpolyaniline nanofibers for h2o2sensing[J]. Mater. Chem. Phys.,2010,122(2-3):392-396.
    [202]李新贵,孙晋,黄美荣.聚苯胺/金属纳米粒子复合物的制备及性能[J].化学进展,2007,19(5):787-795.
    [203] S. Xing, L. H. Tan, M. Yang, M. Pan, Y. Lv, Q. Tang, Y. Yang, H. Chen. Highly controlledcore/shell structures: Tunable conductive polymer shells on gold nanoparticles andnanochains[J]. J. Mater. Chem.,2009,19(20):3286.
    [204] P. Sajanlal, T. Sreeprasad, A. S. Nair, T. Pradeep. Wires, plates, flowers, needles, andcore-shells: Diverse nanostructures of gold using polyaniline templates[J]. Langmuir,2008,24(9):4607-4614.
    [205] S. K. Pillalamarri, F. D. Blum, M. F. Bertino. Synthesis of polyaniline-goldnanocomposites using "grafting from" approach[J]. Chem. Commun.,2005,(36):4584-4585.
    [206] E. Granot, E. Katz, B. Basnar, I. Willner. Enhanced bioelectrocatalysis usingau-nanoparticle/polyaniline hybrid systems in thin films and microstructured rodsassembled on electrodes[J]. Chem. Mater.,2005,17(18):4600-4609.
    [207] J.-H. Kim, J.-H. Cho, G. S. Cha, C.-W. Lee, H.-B. Kim, S.-H. Paek. Conductimetricmembrane strip immunosensor with polyaniline-bound gold colloids as signal generator[J].Biosens. Bioelectron.,2000,14(12):907-915.
    [208] X. Feng, C. Mao, G. Yang, W. Hou, J.-J. Zhu. Polyaniline/au composite hollow spheres:Synthesis, characterization, and application to the detection of dopamine[J]. Langmuir,2006,22(9):4384-4389.
    [209] S. Tian, J. Liu, T. Zhu, W. Knoll. Polyaniline doped with modified gold nanoparticles andits electrochemical properties in neutral aqueous solution[J]. Chem. Commun.,2003,(21):2738.
    [210] S. Tian, J. Liu, T. Zhu, W. Knoll. Polyaniline/gold nanoparticle multilayer films: Assembly,properties, and biological applications[J]. Chem. Mater.,2004,16(21):4103-4108.
    [211] X. Zou, H. Bao, H. Guo, L. Zhang, L. Qi, J. Jiang, L. Niu, S. Dong. Mercaptoethanesulfonate protected, water-soluble gold and silver nanoparticles: Syntheses,characterization and their building multilayer films with polyaniline via ion-dipoleinteractions[J]. J. Colloid Interface Sci.,2006,295(2):401-408.
    [212] U. Lange, S. Ivanov, V. Lyutov, V. Tsakova, V. M. Mirsky. Voltammetric andconductometric behavior of nanocomposites of polyaniline and gold nanoparticlesprepared by layer-by-layer technique[J]. J. Solid State Electrochem.,2009,14(7):1261-1268.
    [213] G. Majumdar, M. Goswami, T. K. Sarma, A. Paul, A. Chattopadhyay. Au nanoparticles andpolyaniline coated resin beads for simultaneous catalytic oxidation of glucose andcolorimetric detection of the product[J]. Langmuir,2005,21(5):1663-1667.
    [214] P. Santhosh, A. Gopalan, K. Lee. Gold nanoparticles dispersed polyaniline graftedmultiwall carbon nanotubes as newer electrocatalysts: Preparation and performances formethanol oxidation[J]. J. Catal.,2006,238(1):177-185.
    [215] J. Han, J. Dai, L. Li, P. Fang, R. Guo. Highly uniform self-assembled conductingpolymer/gold fibrous nanocomposites: Additive-free controllable synthesis and applicationas efficient recyclable catalysts[J]. Langmuir,2011,27(6):2181-2187.
    [216] J. Han, Y. Liu, R. Guo. Reactive template method to synthesize gold nanoparticles withcontrollable size and morphology supported on shells of polymer hollow microspheres andtheir application for aerobic alcohol oxidation in water[J]. Adv. Funct. Mater.,2009,19(7):1112-1117.
    [217] Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang, L. Jin. Glucose biosensor based on aunanoparticles-conductive polyaniline nanocomposite[J]. Biosens. Bioelectron.,2006,21(10):1996-2000.
    [218] Y. Zhang, L. Lin, Z. Feng, J. Zhou, Z. Lin. Fabrication of a pani/au nanocompositemodified nanoelectrode for sensitive dopamine nanosensor design[J]. Electrochim. Acta,2009,55(1):265-270.
    [219] A. Stoyanova, S. Ivanov, V. Tsakova, A. Bund. Au nanoparticle–polyanilinenanocomposite layers obtained through layer-by-layer adsorption for the simultaneousdetermination of dopamine and uric acid[J]. Electrochim. Acta,2011,56(10):3693-3699.
    [220] W. Yan, X. Feng, X. Chen, W. Hou, J. J. Zhu. A super highly sensitive glucose biosensorbased on au nanoparticles-agcl@polyaniline hybrid material[J]. Biosens. Bioelectron.,2008,23(7):925-931.
    [221] X. Wang, Y. Shen, A. Xie, S. Li, Y. Cai, Y. Wang, H. Shu. Assembly of dandelion-likeau/pani nanocomposites and their application as sers nanosensors[J]. Biosens. Bioelectron.,2011,26(6):3063-3067.
    [222] R. J. Tseng, C. O. Baker, B. Shedd, J. Huang, R. B. Kaner, J. Ouyang, Y. Yang. Chargetransfer effect in the polyaniline-gold nanoparticle memory system[J]. Appl. Phys. Lett.,2007,90(5):053101.
    [223] C. O. Baker, B. Shedd, R. J. Tseng, A. A. Martinez-Morales, C. S. Ozkan, M. Ozkan, Y.Yang, R. B. Kaner. Size control of gold nanoparticles grown on polyaniline nanofibers forbistable memory devices[J]. ACS Nano,2011,5(5):3469-3474.
    [224] D. Li, J. Huang, R. B. Kaner. Polyaniline nanofibers: A unique polymer nanostructure forversatile applications[J]. Acc. Chem. Res.,2008,42(1):135-145.
    [225] W. Yin, E. Ruckenstein. Soluble polyaniline co-doped with dodecyl benzene sulfonic acidand hydrochloric acid[J]. Synth. Met.,2000,108(1):39-46.
    [226] S. Palaniappan, C. A. Amarnath. A novel polyaniline–maleicacid–dodecylhydrogensulfatesalt: Soluble polyaniline powder[J]. Reactive and Functional Polymers,2006,66(12):1741-1748.
    [227] P. Liu. Synthesis and characterization of organo-soluble conducting polyaniline doped witholeic acid[J]. Synth. Met.,2009,159(1-2):148-152.
    [228] M. G. Mikhael, A. B. Padias, H. Hall. N‐alkylation and n‐acylation of polyaniline andits effect on solubility and electrical conductivity[J]. J. Polym. Sci. Part A: Polym. Chem.,1997,35(9):1673-1679.
    [229] W. J. Bae, K. H. Kim, Y. H. Park, W. H. Jo. A novel water-soluble and self-dopedconducting polyaniline graft copolymer[J]. Chem. Commun.,2003,(22):2768-2769.
    [230] P. Savitha, D. Sathyanarayana. Highly conductive soluble terpolymers of aniline, toluidine,and o‐aminobenzoic acid/m‐aminobenzenesulfonic acid[J]. J. Polym. Sci. Part A:Polym. Chem.,2005,43(14):3040-3048.
    [231] H. Swaruparani, S. Basavaraja, C. Basavaraja, D. S. Huh, A. Venkataraman. A newapproach to soluble polyaniline and its copolymers with toluidines[J]. J. Appl. Polym. Sci.,2010,117(3):1350-1360.
    [232] X. Li, Y. Zhao, T. Zhuang, G. Wang, Q. Gu. Self-dispersible conducting polyanilinenanofibres synthesized in the presence of β-cyclodextrin[J]. Colloids Surf., A,2007,295(1-3):146-151.
    [233] X. Li, T. Zhuang, G. Wang, Y. Zhao. Stabilizer-free conducting polyaniline nanofiberaqueous colloids and their stability[J]. Mater. Lett.,2008,62(8):1431-1434.
    [234] S. Zhou, T. Wu, J. Kan. Effect of methanol on morphology of polyaniline[J]. Eur. Polym. J.,2007,43(2):395-402.
    [235] A. Rahy, T. Rguig, S. J. Cho, C. E. Bunker, D. J. Yang. Polar solvent soluble and hydrogenabsorbing polyaniline nanofibers[J]. Synth. Met.,2011,161(3):280-284.
    [236] D. Li, R. B. Kaner. Processable stabilizer-free polyaniline nanofiber aqueous colloids[J].Chem. Commun.(Camb.),2005,(26):3286-3288.
    [237] D. Li, R. B. Kaner. How nucleation affects the aggregation of nanoparticles[J]. J. Mater.Chem.,2007,17(22):2279.
    [238] A. Al-Ghamdi, Z. Y. Al-Saigh. Surface and thermodynamic characterization of conductingpolymers by inverse gas chromatography-i. Polyaniline[J]. J. Chromatogr. A,2002,969(1):229-243.
    [239] Y. Li, X. Jing. Morphology control of chemically prepared polyaniline nanostructures:Effects of mass transfer[J]. Reactive and Functional Polymers,2009,69(11):797-807.
    [240] X. Wang, S. Ray, M. Gizdavic-Nikolaidis, A. J. Easteal. The effects of dopant acids onstructure and properties of poly(o-methoxyaniline)[J]. J. Polym. Sci. Part A: Polym. Chem.,2012,50(2):353-361.
    [241] W. Qiu, H. Huang, S. Zeng, T. Xue, J. Liu. A kinetic study of in situ polyaniline–goldcomposite film formation[J]. J. Polym. Res.,2011,18(1):19-23.
    [242] F. G. de Souza, B. G. Soares. Methodology for determination of pani.Dbsa content inconductive blends by using uv-vis spectrometry[J]. Polym. Test.,2006,25(4):512-517.
    [243] E. N. Konyushenko, S. Reynaud, V. Pellerin, M. Trchová, J. Stejskal, I. Sapurina.Polyaniline prepared in ethylene glycol or glycerol[J]. Polymer,2011,52(9):1900-1907.
    [244] I. Sapurina, J. Stejskal. The mechanism of the oxidative polymerization of aniline and theformation of supramolecular polyaniline structures[J]. Polym. Int.,2008,57(12):1295-1325.
    [245] H. Chaudhari, D. Kelkar. X‐ray diffraction study of doped polyaniline[J]. J. Appl. Polym.Sci.,1996,62(1):15-18.
    [246] J. Pouget, M. Jozefowicz, A. e. a. Epstein, X. Tang, A. MacDiarmid. X-ray structure ofpolyaniline[J]. Macromolecules,1991,24(3):779-789.
    [247] H.-W. Park, T. Kim, J. Huh, M. Kang, J. E. Lee, H. Yoon. Anisotropic growth control ofpolyaniline nanostructures and their morphology-dependent electrochemicalcharacteristics[J]. ACS Nano,2012,6(9):7624-7633.
    [248] Z.-h. Mo, W. Qiu, X.-c. Yang, J. Yan. Morphological characterization and kinetics study ofpolyaniline film formation by emulsion polymerization[J]. J. Polym. Res.,2009,16(1):39-43.
    [249] Z. Sun, Y. Geng, J. Li, X. Wang, X. Jing, F. Wang. Catalytic oxidization polymerization ofaniline in an h2o2 fe2+system[J]. J. Appl. Polym. Sci.,1999,72(8):1077-1084.
    [250] P. Adams, P. Laughlin, A. Monkman, A. Kenwright. Low temperature synthesis of highmolecular weight polyaniline[J]. Polymer,1996,37(15):3411-3417.
    [251] J. Stejskal, A. Riede, D. Hlavatá, J. Proke, M. Helmstedt, P. Holler. The effect ofpolymerization temperature on molecular weight, crystallinity, and electrical conductivityof polyaniline[J]. Synth. Met.,1998,96(1):55-61.
    [252] M. Gholamian, A. Contractor. Effect of the temperature of synthesis on the conductivityand electrochemical behaviour of polyaniline[J]. J. Electroanal. Chem. InterfacialElectrochem.,1988,252(2):291-301.
    [253] S. Bhadra, N. K. Singha, D. Khastgir. Polyaniline by new miniemulsion polymerizationand the effect of reducing agent on conductivity[J]. Synth. Met.,2006,156(16–17):1148-1154.
    [254] I. Y. Sapurina, J. Stejskal. The effect of ph on the oxidative polymerization of aniline andthe morphology and properties of products[J]. Russ. Chem. Rev.,2010,79(12):1123.
    [255] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko. Oxidation of aniline: Polyanilinegranules, nanotubes, and oligoaniline microspheres[J]. Macromolecules,2008,41(10):3530-3536.
    [256] P. P. Sengupta, B. Adhikari. Influence of polymerization condition on the electricalconductivity and gas sensing properties of polyaniline[J]. Mater. Sci. Eng., A,2007,459(1-2):278-285.
    [257] C.-C. Wang, J.-F. Song, H.-M. Bao, Q.-D. Shen, C.-Z. Yang. Enhancement of electricalproperties of ferroelectric polymers by polyaniline nanofibers with controllableconductivities[J]. Adv. Funct. Mater.,2008,18(8):1299-1306.
    [258] B. K. Kuila, B. Nandan, M. Bohme, A. Janke, M. Stamm. Vertically oriented arrays ofpolyaniline nanorods and their super electrochemical properties[J]. Chem. Commun.(Camb.),2009,(38):5749-5751.
    [259] L. Chao, K. S. Ho, S. Y. Shen, H. Y. Pu, T. H. Hsieh, C. W. Kuo, B. H. Tseng. Shortpolyaniline nanorod prepared in the presence of para‐phenylenediamine[J]. J. Appl.Polym. Sci.,2013,127(3):1853-1862.
    [260] H. Xia, D. Cheng, C. Xiao, H. S. O. Chan. Controlled synthesis of polyanilinenanostructures with junctions using in situ self-assembly of magnetic nanoparticles[J]. J.Mater. Chem.,2005,15(38):4161-4166.
    [261] H. Qiu, S. Qi, J. Wang, D. Wang, X. Wu. Synthesis of polyaniline nanorods using sucrosestearate as soft template[J]. Mater. Lett.,2010,64(18):1964-1967.
    [262] A. Jano evi, G. iri-Marjanovi, B. Marjanovi, M. Trchová, J. Stejskal.3,5-dinitrosalicylic acid-assisted synthesis of self-assembled polyaniline nanorods[J].Mater. Lett.,2010,64(21):2337-2340.
    [263] J. S. Manna, S. Basu, M. K. Mitra, S. Mukherjee, G. C. Das. Evolution ofchlorophyll/polyaniline nanorod network with enhanced electro-optic property[J]. Mater.Lett.,2012,76:147-150.
    [264] X. Bai, X. Li, N. Li, Y. Zuo, L. Wang, J. Li, S. Qiu. Synthesis of cluster polyanilinenanorod via a binary oxidant system[J]. Mater. Sci. Eng., C,2007,27(4):695-699.
    [265] S. Ding, H. Mao, W. Zhang. Fabrication of dbsa-doped polyaniline nanorods by interfacialpolymerization[J]. J. Appl. Polym. Sci.,2008,109(5):2842-2847.
    [266] J. Jang, J. Bae, K. Lee. Synthesis and characterization of polyaniline nanorods as curingagent and nanofiller for epoxy matrix composite[J]. Polymer,2005,46(11):3677-3684.
    [267] J. Tu, J. Hou, W. Wang, S. Jiao, H. Zhu. Preparation of porous nanorod polyaniline filmand its high electrochemical capacitance performance[J]. Synth. Met.,2011,161(13-14):1255-1258.
    [268] L. Jiang, Z. Cui. One-step synthesis of oriented polyaniline nanorods throughelectrochemical deposition[J]. Polym. Bull.(Berlin),2006,56(6):529-537.
    [269] M. Xue, F. Li, J. Zhu, H. Song, M. Zhang, T. Cao. Structure-based enhanced capacitance:In situ growth of highly ordered polyaniline nanorods on reduced graphene oxidepatterns[J]. Adv. Funct. Mater.,2012,22(6):1284-1290.
    [270] J. Kan, S. Zhou, Y. Zhang, M. Patel. Synthesis and characterization of polyanilinenanoparticles in the presence of magnetic field and samarium chloride[J]. Eur. Polym. J.,2006,42(9):2004-2012.
    [271] T. Thanpitcha, A. Sirivat, A. M. Jamieson, R. Rujiravanit. Polyaniline nanoparticles withcontrolled sizes using a cross-linked carboxymethyl chitin template[J]. J. Nanopart. Res.,2009,11(5):1167-1177.
    [272] B.-J. Kim, S.-G. Oh, M.-G. Han, S.-S. Im. Synthesis and characterization of polyanilinenanoparticles in sds micellar solutions[J]. Synth. Met.,2001,122(2):297-304.
    [273] T. Abdiryim, Z. Xiao-Gang, R. Jamal. Comparative studies of solid-state synthesizedpolyaniline doped with inorganic acids[J]. Mater. Chem. Phys.,2005,90(2-3):367-372.
    [274] Y. G. Wang, H. Q. Li, Y. Y. Xia. Ordered whiskerlike polyaniline grown on the surface ofmesoporous carbon and its electrochemical capacitance performance[J]. Adv. Mater.,2006,18(19):2619-2623.
    [275] C.-C. Hu, J.-Y. Lin. Effects of the loading and polymerization temperature on thecapacitive performance of polyaniline in nano3[J]. Electrochim. Acta,2002,47(25):4055-4067.
    [276] G.-R. Li, Z.-P. Feng, J.-H. Zhong, Z.-L. Wang, Y.-X. Tong. Electrochemical synthesis ofpolyaniline nanobelts with predominant electrochemical performances[J]. Macromolecules,2010,43(5):2178-2183.
    [277] Y. Wang, X. Jing, J. Kong. Polyaniline nanofibers prepared with hydrogen peroxide asoxidant[J]. Synth. Met.,2007,157(6-7):269-275.
    [278] P. Xu, X. Han, C. Wang, B. Zhang, X. Wang, H.-L. Wang. Facile synthesis ofpolyaniline-polypyrrole nanofibers for application in chemical deposition of metalnanoparticles[J]. Macromol. Rapid Commun.,2008,29(16):1392-1397.
    [279] Z. Wang, J. Yuan, D. Han, Y. Zhang, Y. Shen, D. Kuehner, L. Niu, A. Ivaska. Simultaneoussynthesis of polyaniline nanotubules and gold nanoplates[J]. Cryst. Growth Des.,2008,8(6):1827-1832.
    [280] Y.-F. Huang, Y. I. Park, C. Kuo, P. Xu, D. J. Williams, J. Wang, C.-W. Lin, H.-L. Wang.Low-temperature synthesis of au/polyaniline nanocomposites: Toward controlled size,morphology, and size dispersity[J]. J. Phys. Chem. C,2012,116(20):11272-11277.
    [281] A. Rai, A. Singh, A. Ahmad, M. Sastry. Role of halide ions and temperature on themorphology of biologically synthesized gold nanotriangles[J]. Langmuir,2006,22(2):736-741.
    [282] E. Kang, Y. Ting, K. Neoh, K. Tan. Spontaneous and sustained gold reduction bypolyaniline in acid solution[J]. Polymer,1993,34(23):4994-4996.
    [283]李云霞,魏子栋,赵巧玲,丁炜,张骞,陈四国.石墨烯负载pt催化剂的制备及催化氧还原性能[J].物理化学学报,2011,27(4):858-862.
    [284] P. Bueno, E. Leite. Nanostructured li ion insertion electrodes.1. Discussion on fasttransport and short path for ion diffusion[J]. J. Phys. Chem. B,2003,107(34):8868-8877.
    [285] Z. Lei, Z. Chen, X. Zhao. Growth of polyaniline on hollow carbon spheres for enhancingelectrocapacitance[J]. J. Phys. Chem. C,2010,114(46):19867-19874.
    [286] Y. Feng, T. Yang, W. Zhang, C. Jiang, K. Jiao. Enhanced sensitivity for deoxyribonucleicacid electrochemical impedance sensor: Gold nanoparticle/polyaniline nanotubemembranes[J]. Anal. Chim. Acta,2008,616(2):144-151.
    [287] L. Li, G. Yan, J. Wu, X. Yu, Q. Guo. Preparation of polyaniline-metal compositenanospheres by in situ microemulsion polymerization[J]. J. Colloid Interface Sci.,2008,326(1):72-75.
    [288] J. Han, P. Fang, J. Dai, R. Guo. One-pot surfactantless route to polyaniline hollownanospheres with incontinuous multicavities and application for the removal of lead ionsfrom water[J]. Langmuir,2012,28(15):6468-6475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700