复合聚苯乙烯颗粒保温砂浆的热湿传递性能及其对建筑能耗的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑围护结构的保温隔热性能是建筑节能的重要方面。材料热湿传递特性影响建筑围护结构的导温和保温性能,其影响规律是目前建筑节能研究领域中重要方向。本文针对复合聚苯乙烯颗粒保温砂浆的吸湿性、不同含湿状态下的导热性能和热湿传递性质及它们的影响因素进行试验分析;结合一维热迁移、湿迁移微分方程和Luikov的墙体热湿耦合传递数学模型推导含湿状态的导热系数函数,并根据夏热冬冷地区的常用外保温结构及其热物理工作特点确定函数的具体系数,并与试验结果验证;将导热系数函数应用于DEST的热环境模拟简化模型,分析材料热湿传递给建筑能耗带来的变化。含湿导热系数函数的确立,为建筑的能耗模拟提供更实际的基本参数,可为建筑节能的设计、施工、材料的选择提供更有效的技术指导。
     本文的主要研究如下:
     (1)调整水泥用量、水胶比、膨胀珍珠岩掺量、聚苯乙烯颗粒级配和细砂掺量设计不同配合比复合聚苯乙烯颗粒保温砂浆;并通过试验得到各个配比的孔隙率、吸水率和吸湿率。实验结果表明:亲水性材料的分量增加,和配比参数不合理设置导致复合保温砂浆连续、贯通、开口的大孔隙的量增加,均能增大砂浆的吸湿能力。确定砂浆初始含湿和夏热冬冷气候条件对砂浆含湿状况的影响。
     (2)在夏热冬冷地区条件下,测试各个配比复合聚苯乙烯颗粒保温砂浆不同含湿率的导热系数,并分析各个因素对该性能的影响规律和影响程度。在本文研究原材料范围内,绝干状态的导热系数和干密度大的砂浆,含湿导热系数的变化比较明显;同样,掺膨胀珍珠岩时,环境条件下含湿率变化大,含湿导热系数的变化也比较明显。
     (3)以Luikov墙体热湿耦合传递数学模型为主控方程,推导瞬时热物性参数关于温、湿度的基础函数。命瞬时导热系数随湿度的变化系数为导热系数含湿变化因子δ_ω,结合一维状态热迁移、湿迁移微分方程和复合聚苯乙烯颗粒保温砂浆的含湿导热系数试验数据,确定含湿导热系数λ(U)及其含湿变化因子δ_ω的表达式。并推论其普适性,得到一个与绝干导热系数、比热、干密度有关的含湿导热系数的函数。
     (4)根据围护结构材料的导热系数对建筑能耗的影响特性,简化建筑能耗模拟软件DEST的数学模型,在相同边界条件下,计算比较热工规范提供的材料的计算导热系数和本文推导的含湿度导热系数函数的建筑模拟能耗差异。结果表明:模拟建筑能耗差异可达到建筑采暖年耗电量限值的13.25%。
Insulation performance of building envelope is an important aspect of energy-saving construction.Heat and moisture transfer of material impact on the thermal and insulation performance of the building envelope,the law of the influence is an important direction of energy-saving research.Moisture absorption,the thermal conductivity and heat and moisture transfer and and their effects of compound EPS insulation mortar in different wet conditions.And then function of thermal conductivity of material in different wet state be launched from Luikov's mathematical model of coupled heat and moisture transfer and one-dimensional partial differential equations of heat and moisture transfer,Specific factors of function be determined according to the thermal insulation structure and it's working physical characteristics which commonly used in the region of hot summer and cold winter, and be checked through the experiment results.The function of thermal conductivity be used in simplified model of the thermal environment simulation DEST,and the influence of heat and moisture transfer bring to building energy consumption be analysised.The establishing of thermal conductivity function,can providing more realistic basic parameters for simulation of building energy consumption,and providing more effective technical guidance for building energy-efficient designing, construction,materials choosing.
     The article is researched main about:
     (1)Different formula of compound EPS insulation mortar be designed through adjust cement cosumption,water-cement ratio,perlite consumption,size distribution of EPS grains and thin sand consumption.Porosity,hygroscopic coefficient and specific absorption of different formula be researched based on experiment. Experiment results show that increasing of the proportion of hydrophilic material,and increasing of continuous,through,opening macropores because of unreasonable formula will increase the hygroscopicity of mortar.Determined the wet rate changing of mortar because of the influence of the initial rate of wet and weather conditions in region of hot summer and cold winter by experiment.
     (2)The thermal conductivity of compound EPS insulation mortar of different formula be researched in wet state like the materials in conditions of region of hot summer and cold winter,the law and degree of thermal conductivity of compound EPS insulation mortar be affected be analysised.Within the scope of the raw materials studing in this paper,the thermal conductivity in wet state of compound EPS insulation mortar with bigger thermal conductivity and density of dry state changed obviously,The same,the wet rate and hermal conductivity in wet state changing obviously when perlite added.
     (3)The foundation function of instantaneous physical parameters of thermal properties on the temperature and humidity be launched through the reverse derivation to the equations main controlled by Luikov's.Order of the coefficient about the rate of instantaneous thermal conductivity be affected by the instantaneous changes in humidity asδ_ω.Expressions ofλ(U)andδ_ωbe determined based on One-dimensional partial differential equations of heat transfer,moisture transfer and experimental datas of thermal conductivity of compound EPS insulation mortar in wet state.The coefficientδ_ωof the functionλ(U).And deduct applicable forms of universal material,which is a function related to the thermal conductivity and density of dry material.
     (4)According to the characteristics that building energy consumption be affected by the thermal conductivity of envelope structure.The mathematical model of building energy simulation software DEST be simplified.Differences of building energy consumption of the calculation of thermal conductivity provided by the norms and the thermal conductivity function derived in this paper respectively be calculated and compared in the same boundary conditions.The results show that 13.25%of the building energy consumption be maded the thermal conductivity of materials in different wet state it can not be ignored.
引文
[1]刘加平.建筑物理(第三版)[M].中国建筑工业出版社.2000
    [2]朱盈豹.保温材料在建筑墙体节能中的应用[M].中国建材工业出版社.2003
    [3]丁常虹,樊琦.外墙外保温技术的应用[J].建筑产品与应用.2002,5.21-25
    [4]涂逢祥.建筑节能及发展趋势[J].住宅科技.2004,9.8-11
    [5]JGJ26-86,民用建筑节能设计标准(采暖居住建筑部分)[S].北京:中华人民共和国建设部.1986
    [6]JGJ26-93,民用建筑节能设计标准(采暖居住建筑部分)[S].北京:中华人民共和国建设部.1993
    [7]JGJ134-2001,夏热冬冷地区居住建筑节能设计标准[S].北京:中华人民共和国建设部.2001
    [8]中华人民共和国建设部.建设部建筑节能“十五”计划纲要[R].北京:中华人民共和国建设部.2002
    [9]苏群,陈丹林.ZL 聚苯颗粒外保温材料在丽源小区工程的应用[J].河北建设.2001.1.17-32
    [10]范亚明,李兴友,付祥钊.建筑节能途径和实施措施综述[J].重庆建筑大学学报.2004,25(5).82-85.
    [11]曹叔维.房间热过程和空调负荷[M].上海科学技术文献出版社.1991.13-112
    [12]倪文,张得信等.我国绝热吸声材料发展现状[J].新型建筑材料.2000,1.16-20
    [13]柳孝图.建筑物理(第一版)[M].中国建筑工业出版社.1991
    [14]John Grunewald.Documentation of the Numerical simulation Program DIM3.1[G].Dresden.2000.130-135
    [15]Techsel H R,Achenbach P R,Ebbets J R.Effect of Exterior Air Infiltration Barrier on Moisture Condensation and Accumulation within Insulated Frame Cavities[J].In:ASHRAE Trans.1985,91(2).545-590
    [16]Verschoor J D.Measurement of Water Vapour Migration and Storage in Composite Building Construction[J].In:ASHRAE Trans.1985,91(2).390-403
    [17]Moisture Content and Heat-insulation Properties of Building Materials[J].Thermal Envelope & Building Science.1997,21(1):8-14
    [18]Hosni M.H.,Sipes J.M.,Wallis M.H.Experimental results for diffusion and infiltration of moisture in concrete masonry walls exposed to hot and humid climates[C].ASHRAE Transactions.1999,105(2):191-203
    [19]hilip J R.De Vries D A.Moisture movement in porous material under temperature gradients[J].Trans Ami Geophys Union.1957.Vol.38(2):222-232
    [20]De Vries D A.Simultaneous transfer of heat and moisture in porous media[J].Trans Ami Geophys Union.1958.Vol.39(S):909-916
    [21]De Vries D A.The theory of heat and moisture transfer in porous media revisited[J].Heat Mass Transfer,1987,Vol.30(7):1343-1350
    [22]A.V Luikov.Heat and Mass Transfer in Capillary-porous Bodies[J].Advanced in Heat Transfer,1964,3(1):123-184
    [23]A.V Luikov.System of dieffrential equations of heat and mass transfer in capillary-porous bodies[J].Int.J.Heat and mass transfer.1975.18.256-262
    [24]Henry P.S.H.Diffusion in absorbing media[J].Proceedings of the Royal Society of London.1939,171.Series A:215-241
    [25]Bear J,Bachmat Y.Introduction to Modeling of Transport Phenomena in Porous Media[M].London:Kluwer Academic Publishers,1990
    [26]Kerestecioglu A,Vieira R,Fairey P.Incorporation of The Effective Penetration Depth Theory into TRNSYS[J].In:Florida Solar Energy Center Draft Report.1989
    [27]R Li,J F Bond,Heat of Desorption of Water from Cellulosic Materials at High Temperature[J].Drying Technol.1995,10.999-1012
    [28]Win-Jin chang,Cheng-I Weng.An Analytical Solution to Coupled Heat and Moisture Diffusion Transfer in Porous Materials[J].Heat and Mass Transfer 2000(43).3621-3632
    [29]Budaiwei I,EI-Disty R,Abdou A.Modeling of Moisture and Thermal Transient Behavior of Multi-layer Non-cavity Walls[J].Building and Environment.1999,34(3):537-551
    [30]谢文丁.新型复合高效节能保温隔热材料[J].砖瓦.2000(增刊).39-42
    [31]王补宣,王仁.含湿建筑材料的导热系数[J].工程热物理报,1983,2.146-152
    [32]王补宣,江亿.利用热探针在现场同时测定松散介质α和λ的加热-冷却法[J].工程热物理学报.1985,8(3).264-272
    [33]王补宣,虞维平.热线法同时测定含湿多孔介质导热系数和导温系数[J].工程热物理学报.1986,7(4).381-386
    [34]韩吉田,施明恒,虞维平等.同时测定含湿多孔介质热湿迁移特性的参数估计法[J].计量学报.1995,16(2).153-160
    [35]韩吉田,归柯庭,施明恒等.参数估计法测定多孔介质热湿迁移特性的实验研 究[J].计量学报.1997,18(3).173-177
    [36]Yu W P.Wang B X.Shi M H.Modeling of Heat and Mass Transfer in Unsaturated Wet Porous Media with Consideration of Capillary Hysteresis.Int J Heat Mass Transfer,1993,36(15):3671-3676
    [37]虞维平,王补宣,施明恒.非饱和多孔介质毛细滞后的成因分析[M].工程热物理论文集.西安:西安交通大学出版社.1990,329-332
    [38]虞维平,王补宣,施明恒等.多孔介质非饱和渗流的阈梯度理论[J].工程热物理学报.1992,13(1).74-76
    [39]肖宝诚.非饱和含湿多孔介质内部热质同时传递规律的研究[D].上海:上海文通.1991
    [40]Shirring Yang,Baocheng Ziao,Qiang sheng Yang.Simultaneous Heat and Mass Transfer with Phase Change in Vnstarted Porous Media[J].Proc.1st Intern.Conf.of Energy Conversion and Energy Resources Engineering.Huazhong Universty of Sciene and Technology Press.1990.417-422
    [41]卢军,陈启高.含盐多孔材料传热传质研究[J].重庆建筑大学学报.1999,21(6).77-81
    [42]卢军,付祥钊,冯雅等.含盐多孔介质热湿迁移特性参数的研究[J].重庆建筑大学学报.2000,22(4).83-86
    [43]高岩,赵立华,张泓森.复合混凝土砌块热工特性研究[J].哈尔滨工业大学学报.2003,35(7).866-868
    [44]刘才丰.吸湿被动蒸发通风屋顶热质迁移机理及热环境研究[D].重庆:重庆大学,2001
    [45]苏向辉.多层多孔结构内热湿耦合迁移特性研究[D].南京:南京航空航天大学,2002
    [46]门增峰.生土建筑室内热湿环境研究[D].西安:西安建筑科技大学,2003
    [47]沈韫元,白玉珍,陈玉梅.建筑材料热物理性能[M].中国建筑工业出版社.54-57
    [48]DG/TJ08-206-2002,住宅建筑围护结构节能应用技术规程.2002
    [49]GB50176-93,民用建筑热工设计规范[S].1993
    [50]孙光萍.HL节能建筑外保温水泥砂浆的研制[J].混凝土与水泥制品.2002(6):54-55
    [51]陈明凤,姚栋才,彭家惠等.EPS 保温砂浆性能的影响因素分析[J].保温材料与建筑节能.2001(7):23-26
    [52]彭家惠,陈明凤,彭志辉等.EPS保温砂浆及其应用[J].链接建筑节能.2002(3).41-43
    [53]马一平,谈慕华,吴科如.聚丙烯纤维几何形态对水泥砂浆塑性干缩开裂性能的影响[J].混凝土与水泥制品.2001(2).38-40
    [54]严捍东,孙伟.粉煤狄掺量与水泥砂浆与水化参量的关系[J].华侨大学学报.2001(3).278-283
    [55]朱蓓蓉.粉煤灰火山灰反应性研究[J].混凝土与水泥制品.2002(1).3-6
    [56]陈明凤,瞿金东,彭家惠等.EPS 保温砂浆的耐侯性、抗裂性及其机理[J].建筑技术开发.2002(3).41-42
    [57]彭家惠,陈明凤,彭志辉等.EPS 保温砂浆研制及施工工艺[J].施工技术.200 1(8).22-23
    [58]柳孝图.夏热冬冷地区住宅热环境设计研究[M].建筑节能(33).中国建筑工业出版社.2001
    [59]GB50178-93,建筑气候区划标准[S].1993
    [60]付祥钊主编.夏热冬冷地区建筑节能技术[M].第1版.北京:中国建筑工业出版社.2002.159-208
    [61]费慧慧.外墙外保温体系在我国不同气候区的应用探讨[M].外墙保温应用技术.中国建筑工业出版社.2004.26-31
    [62]涂逢祥.《夏热冬冷地区居住建筑节能设计标准》编制背景[M].建筑节能(36).中国建筑工业出版社,2001
    [63]张燎原.建筑物外墙热湿传递的数值模拟[D].北京:北京交通大学.2006
    [64]建设部标准定额研究所编.居住建筑节能设计标准(夏热冬冷地区)宣贯教材(第一版)[M].北京:中国建筑工业出版社.2001.7-10
    [65]陈启高.建筑热物理基础[M].西安交通大学出版社.1991
    [66]王补宣.多孔介质的传热传质[J].清华大学学报(自然科学版).1992,32(增):5-12
    [67]蔡睿贤,张娜.含湿毛细多孔介质传热与传质基本方程的一组代数显式解析解[J].机械工程学报.2003,6.1-3
    [68]Cai R X,Zhang N.Unsteady one-dimensional analytical solutions for bioheat transfer equations[J].Progressin Natural Seienees.1998,8(6).733-739
    [69]中国建筑热环境分析专用气象数据集[M/CD].北京:中国建筑工业出版社,2005
    [70]GB50019-2003,采暖通风与空气调节设计规范[S].北京:中华人民共和国建设部,2003
    [71]TianzhenHong,Jiang Yi A new multi-zone model for the simulation of building thermal Performance[J].Building and Environment 32(1997)123-128/清华同方 股份有限公司研究发展中心DeST开发组.DeST使用手册.2000.5
    [72]谢晓娜,宋芳婷,燕达等.建筑环境设计模拟分析软件 第2讲 建筑动态热过程模型[J].暖通空调.2004(34),8.35-47
    [73]宋芳婷,诸群飞,江亿.建筑环境设计模拟分析软件 第5讲 影响建筑热过程的各种外界因素的取值方法[J].暖通空调.2004(34),11.52-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700