生物大分子pH增强指数增长多层膜作为基因和寡肽薄膜涂层材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着蛋白质基因技术、组织再生医学及药物科学的发展和交叉,应用于组合装置的先进药物控释涂层研究已成为生物医用植入体和组织再生材料研究的重要内容。本论文将弱聚电解质电荷密度的pH值依赖性和生物大分子多层膜层间扩散机制有机结合,探索通过深入研究pH值调控生物大分子多层膜指数增长行为的基本规律,建立采用pH增强的指数增长多层膜快速构建负载基因和寡肽的薄膜涂层材料的新方法。
     本论文首先研究了具有显著多层膜层间扩散特性的聚赖氨酸(PLL)与透明质酸(HA)和DNA在不同pH条件下的组装行为。研究结果显示,pH调控可有效增强PLL/HA和PLL/DNA多层膜的指数增长行为,能够实现生物大分子多层膜的快速构建。但PLL与弱聚阴离子HA和强聚阴离子DNA组装时表现出不同的规律:对于PLL/HA组装,单独降低HA溶液pH,或单独升高PLL溶液pH,或降低HA溶液pH的同时升高PLL溶液pH,均能加快PLL/HA多层膜的指数增长;对于PLL/DNA组装,PLL溶液pH在PLL/DNA多层膜的增长中起主导作用,而DNA溶液pH对多层膜增长行为的影响较小。PLL和DNA在较高pH(pH 9.5或10.0)下交替组装可以实现DNA多层膜的快速增长。这一规律显示弱聚电解质的电荷密度变化是影响多层膜pH增强指数增长特性的主要因素。
     依据pH值对PLL/DNA多层膜指数增长行为的影响规律,建立了基因薄膜涂层材料的快速制备技术。PLL/DNA 10.0/4.6多层膜在7.5双层(PLL最外层)时,多层膜内PLL和DNA质量总和可达121.2μg/cm~2。调节组装溶液pH可以调节多层膜内聚电解质比例。增加两种组装溶液间pH差值,可以提高多层膜的N/P比(聚阳离子中的自由氨基与DNA中磷酸根的摩尔比)。多层膜的N/P比也随着最外层PLL组装溶液pH的升高而增大。PLL/DNA 9.5/5.0和10.0/4.6多层膜在7.5双层时,N/P比分别可达6.3和9.8。相应地,PLL/DNA多层膜释放的DNA复合物的尺寸随N/P比增加而减小。(PLL/DNA 10.0/4.6)_7 PLL 10.0多层膜的N/P比达到9.8,释放的DNA复合物的直径低至151 nm。具有较高DNA含量和N/P比的多层膜释放的质粒DNA具有相对较高的基因转染水平。(PLL/DNA 9.5/5.0)_7 PLL9.5和(PLL/DNA 10.0/4.6)_7 PLL 10.0多层膜释放的质粒DNA转染细胞后,转染效率分别为10.43%和9.67%,而(PLL/DNA7.2/7.2)_7 PLL 7.2多层膜的细胞转染效率仅为0.18%。这种含有较多DNA和较高N/P比的多层膜为提高原位基因传递体系的转染效率提供了一种新方法。
     依据pH值对多肽类物质在PLL/HA多层膜中扩散行为的增强作用,建立了负载HIV-1转录反式激活因子(TAT)的薄膜涂层体系。研究表明TAT能够扩散进入整个PLL/HA指数增长多层膜。多层膜负载的肽含量不仅可通过调节多层膜厚度,也可通过调节多层膜组装pH和TAT载入pH实现调控。当TAT载入pH在9.5时,(PLL/HA9.5/2.9)_5多层膜负载的TAT密度高达25.0μg/cm~2。与TAT和HA交替组装方法相比,TAT扩散进入(PLL/HA 9.5/2.9)_5多层膜不仅能够负载高密度的肽,而且可实现寡肽的有效释放。细胞培养实验表明多层膜负载的TAT仍具有穿越Hep G2细胞膜的能力。在细胞内吞实验中,功能化(PLL/HA 9.5/2.9)_5 TAT 9.5多层膜比10倍量自由TAT肽更能有效转导细胞。这些结果显示寡肽扩散进入快速增长多层膜的负载方式为原位持续传递肽提供了一种有效方法。
With the development and interdisciplines of protein technology, gene technology, tissue regeneration medicine and pharmacy, advanced drug controlled release coatings applied in drug/medical devices becomes an important issue of biomedical implants and tissue regenerative materials. This thesis explores to establish a facile method to rapidly construct multilayers embedded with gene or oligo-peptide via the synergetic action of pH tunable charge density and diffusivity of the weak natural polyelectrolytes.
     The exponential growth behaviors of multilayers of the diffusible poly-L-lysine (PLL) with hyaluronic acid (HA) or DNA at different pH are investigated. The data indicate that pH controlled assembly can enhance the exponential growth behavior of PLL/HA and PLL/DNA multilayers, and realize the rapid fabrication of biomacromolecule multilayers. As HA is a weak polyelectrolyte and DNA is a strong polyelectrolyte, the characteristic growth behavior is different between PLL/HA and PLL/DNA multilayers constructed via pH controlled assembly. PLL/HA exponential growth is amplified by decreasing pH of HA solution or increasing pH of PLL alone or simultaneously. In PLL/DNA systems, the pH of PLL solution exerts a dominant role in the multilayer growth while that of DNA has little effect. The rapid growth of multilayer embedded with DNA can be achieved at high pH (pH 9.5 and 10.0). The growth behavior characteristic indicates that the change of charge density of weak polyelectrolyte is the main effect to influence the pH amplified exponential growth of the multilayers.
     Based on the pH effect on the exponential growth behavior of PLL/DNA multilayer, rapid fabrication of gene coating is established. PLL/DNA 10.0/4.6 film (PLL and DNA are deposited at pH 10.0 and pH 4.6, respectively) could reach 121.2μg/cm~2 within 7.5 bilayers. The N/P ratios (molar ratio of free amino groups in polycation to phosphate groups in DNA) within the multilayers are proved to be elevated by increasing either the pH difference between the two deposition solutions or the pH value of the outmost deposition solution. The N/P ratios of PLL/DNA 9.5/5.0 and 10.0/4.6 are respectively 6.3 and 9.8 within 7.5 bilayers. The PLL/DNA multilayers are degraded as exposed to trypsin solution and the mean diameters of the degraded DNA complexes decrease when the N/P ratio increases. The diameter of DNA complexes degraded from PLL/DNA 10.0/4.6 film reaches 151 nm. Relatively higher transfection level is achieved for plasmid degraded from the PLL/plasmid 9.5/5.0 and 10.0/4.6 films, and the transfection efficiency are 10.43% and 9.67%, respectively, while the transfection efficiency in PLL/plasmid 7.2/7.2 multilayer is 0.18%. The film with more DNA and higher N/P ratio might provide a new method to enhance transfection in localized gene delivery system.
     Based on the enhancement effect of pH on the diffusion behavior of polypeptide, coating systems incorporated with a trans-activating transcriptional factor (TAT) peptide are established. The result indicates that TAT could diffuse throughout the exponentially growing PLL/HA film. The amount of peptide embedded within multilayer could be adjusted not only by the multilayer thickness but also by the multilayer assembly pH and TAT loading pH. The density of TAT loaded into the (PLL/HA 9.5/2.9)_5 film can reach 25.0μg/cm~2 when TAT loading pH is 9.5. Compared with direct layer-by-layer assembly of TAT and HA, the postdiffusion of TAT into (PLL/HA 9.5/2.9)5 film can be loaded much more peptide and realize the sustained release of oligo-peptide. The cell culture results indicate that the TAT embedded within the film maintains the ability to traverse across the Hep G2 cell membrane. The functionalized (PLL/HA 9.5/2.9)_5 TAT 9.5 film is more efficient than the 10-fold more amount of free TAT peptide in the TAT uptake test. The postdiffusion of oligo-peptide within an exponential growth multilayer can serve as an effective approach for localized and sustained peptide delivery.
引文
[1]WORLD HEALTH ORGANIZATION,Medical device regulation:global overview and guiding principle.(available at http://www.who.int).
    [2]Darouiche,R.O.,Current concepts-Treatment of infections associated with surgical implants.N.Engl.J.Med.2004,350,1422-1429.
    [3]Scott,N.A.,Restenosis following implantation of bare metal coronary stents:Pathophysiology and pathways involved in the vascular response to injury.Adv.Drug Deliv.Rev.2006,58,358-376.
    [4]United States Food and Drug Administration,21 CFR § 32(e).(available at http://www.fda.gov/CombinationProducts/default.htm).
    [5]Hetrick,E.M.;Schoenfisch,M.H.,Reducing implant-related infections:active release strategies.Chem.Soc.Rev.2006,35,780-789.
    [6]Serruys,P.W.;Kutryk,M.J.B.;Ong,A.T.L.,Drug therapy-Coronary-artery stents.N.Engl.J.Med.2006,354,483-495.
    [7]Dubin,C.H.,A One-Two Punch:Drug/Medical Device Combination Products are Taking Healthcare in a New Direction.Is the Pharmaceutical Industry Prepared? Drug Deliv.Technol.2004,4.
    [8]Wu,P.;Grainger,D.W.,Drug/device combinations for local drug therapies and infection prophylaxis.Biomaterials 2006,27,2450-2467.
    [9]周建平,药剂学.2004:化学工业出版社.
    [10]Pannier,A.K.;Shea,L.D.,Controlled release systems for DNA delivery.Mol.Ther.2004,10,19-26.
    [11]Liu,S.J.;Ueng,S.W.N.;Lin,S.S.;Chan,E.C.,In vivo release of vancomycin from biodegradable beads.J.Biomed.Mater.Res.2002,63,807-813.
    [12]Luo,D.;Woodrow-Mumford,K.;Belcheva,N.;Saltzman,W.M.,Controlled DNA delivery systems.Pharm.Res.1999,16,1300-1308.
    [13]Whang,K.;Goldstick,T.K.;Healy,K.E.,A biodegradable polymer scaffold for delivery of osteotropic factors.Biomaterials 2000,21,2545-2551.
    [14]Elwing,H.,Protein absorption and ellipsometry in biomaterial research.Biomaterials 1998,19,397-406.
    [15]Garcia,A.J.;Vega,M.D.;Boettiger,D.,Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation.Mol.Biol.Cell 1999,10, 785-798.
    [16]Zhu,Y.B.;Gao,C.Y.;He,T.;Shen,J.C.,Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin.Biomaterials 2004,25,423-430.
    [17]Mann,B.K.;Schmedlen,R.H.;West,J.L.,Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells.Biomaterials 2001,22,439-444.
    [18]Klugherz,B.D.;Jones,P.L.;Cui,X.M.;Chen,W.L.;Meneveau,N.F.;DeFelice,S.;Connolly,J.;Wilensky,R.L.;Levy,R.J.,Gene delivery from a DNA controlled-release stent in porcine coronary arteries.Nat.Biotechnol.2000,18,1181-1184.
    [19]Sousa,J.E.;Serruys,P.W.;Costa,M.A.,New frontiers in cardiology-Drug-eluting stents:Part Ⅰ.Circulation 2003,107,2274-2279.
    [20]Foo,R.S.Y.;Gershlick,A.H.;Hogrefe,K.;Baron,J.H.;Johnston,T.W.;Hussey,A.J.;Garner,I.;de Bono,D.P.,Inhibition of platelet thrombosis using an activated protein C-loaded stent:In vitro and in vivo results.Thromb.Haemost.2000,83,496-502.
    [21]Ma,Z.W.;Gao,C.Y.;Gong,Y.H.;Ji,J.;Shen,J.C.,Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility.J.Biomed.Mater.Res.2002,63,838-847.
    [22]Zhu,H.G.;Ji,J.;Lin,R.Y.;Gao,C.Y.;Feng,L.X.;Shen,J.C.,Surface engineering of poly(DL-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis.Biomaterials 2002,23,3141-3148.
    [23]Quirk,R.A.;Davies,M.C.;Tendler,S.J.B.;Chan,W.C.;Shakesheff,K.M.,Controlling biological interactions with poly(lactic acid) by surface entrapment modification.Langmuir 2001,17,2817-2820.
    [24]冯庆玲,生物矿化与仿生材料的研究现状及进展.清华大学学报(自然科学版)2005,45,378-383.
    [25]Liu,Y.L.;Layrolle,P.;de Bruijn,J.;van Blitterswijk,C.;de Groot,K.,Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy.J.Biomed.Mater.Res.2001,57,327-335.
    [26]Stigter,M.;Bezemer,J.;de Groot,K.;Layrolle,P.,Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants,release and antibiotic efficacy.J.Control.Release 2004,99,127-137.
    [27]Lehn,J.M.;Sanders,J.,Supramolecular chemistry:concepts and perspectives.1995,Germany:Weiheim-VCH.1-9.
    [28]沈家骢;孙俊奇,超分子科学研究进展.中国科学院院刊 2004,19,420-424.
    [29]Blodgett,K.B.;Langmuir,I.,Built-up films of barium stearate and their optical properties.Phys. Rev.1937,51,0964-0982.
    [30]Sagiv,J.,Organized Monolayers by Adsorption.1.Formation and Structure of Oleophohic Mixed Monolayers on Solid-Surfaces.J.Am.Chem.Soc.1980,102,92-98.
    [31]Iler,R.K.,Multilayers of Colloidal Particles.J.Colloid Interface Sci.1966,21,569-&.
    [32]Decher,G.;Hong,J.D.,Buildup of Ultrathin Multilayer Films by a Self-Assembly Process.1.Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces.Makromolekulare Chemie-Macromolecular Symposia 1991,46,321-327.
    [33]沈家骢等,超分子层状结构:组装与功能.2004,北京:科学出版社.
    [34]Decher,G.,Fuzzy nanoassemblies:Toward layered polymeric multicomposites.Science 1997,277,1232-1237.
    [35]Schlenoff,J.B.;Dubas,S.T.,Mechanism of polyelectrolyte multilayer growth:Charge overcompensation and distribution.Macromolecules 2001,34,592-598.
    [36]Stockton,W.B.;Rubner,M.F.,Molecular-level processing of conjugated polymers.4.Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions.Macromolecules 1997,30,2717-2725.
    [37]Wang,L.Y.;Wang,Z.Q.;Zhang,X.;Shen,J.C.;Chi,L.F.;Fuchs,H.,A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding.Macromol.Rapid Commun.1997,18,509-514.
    [38]Sukhishvili,S.A.;Granick,S.,Layered,erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly.Macromolecules 2002,35,301-310.
    [39]Crespo-Biel,O.;Dordi,B.;Reinhoudt,D.N.;Huskens,J.,Supramolecular layer-by-layer assembly:Alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions.J.Am.Chem.Soc.2005,127,7594-7600.
    [40]Shimazaki,Y.;Mitsuishi,M.;Ito,S.;Yamamoto,M.,Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction.Langmuir 1997,13,1385-1387.
    [41]Shimazaki,Y.;Mitsuishi,M.;Ito,S.;Yamamoto,M.,Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents.Langmuir 1998,14,2768-2773.
    [42]Shimazaki,Y.;Mitsuishi,M.;Ito,S.;Yamamoto,M.,Alternate adsorption of polymers on a gold surface through the charge-transfer interaction.Macromolecules 1999,32,8220-8223.
    [43]Muller,W.;Ringsdorf,H.;Rump,E.;Wildburg,G.;Zhang,X.;Angermaier,L.;Knoll,W.;Liley,M.;Spinke,J.,Attempts to Mimic Docking Processes of the Immune-System-Recognition -Induced Formation of Protein Multilayers.Science 1993,262,1706-1708.
    [44]Anzai,J.;Kobayashi,Y.,Construction of multilayer thin films of enzymes by means of sugar-lectin interactions. Langmuir 2000,16,2851-2856.
    
    [45] Rauf, S.; Zhou, D.J.; Abell, C.; Klenerman, D.; Kang, D.J., Building three-dimensional nanostructures with active enzymes by surface templated layer-by-layer assembly. Chem.Commun. 2006, 1721-1723.
    
    [46] Cassier, T.; Lowack, K.; Decher, G., Layer-by-layer assembled protein/polymer hybrid films:nanoconstruction via specific recognition. Supramol. Sci. 1998, 5, 309-315.
    
    [47] Lee, H.; Kepley, L.J.; Hong, H.G.; Mallouk, T.E., Inorganic Analogs of Langmuir-Blodgett Films- Adsorption of Ordered Zirconium 1,10-Decanebisphosphonate Multilayers on Silicon Surfaces.J. Am. Chem. Soc. 1988,110, 618-620.
    
    [48] Yang, H.C.; Aoki, K.; Hong, H.G.; Sackett, D.D.; Arendt, M.F.; Yau, S.L.; Bell, C.M.; Mallouk,T.E., Growth and Characterization of Metal(Ii) Alkanebisphosphonate Multilayer Thin-Films on Gold Surfaces. J. Am. Chem. Soc. 1993,115, 11855-11862.
    
    [49] Kohli, P.; Blanchard, G.J., Design and growth of robust layered polymer assemblies with molecular thickness control. Langmuir 1999,15, 1418-1422.
    
    [50] Tang, T.J.; Qu, J.Q.; Mullen, K.; Webber, S.E., Molecular layer-by-layer self-assembly of water-soluble perylene diimides through pi-pi and electrostatic interactions. Langmuir 2006, 22,26-28.
    
    [51] Chen, J.Y.; Huang, L.; Ying, L.M.; Luo, G.B.; Zhao, X.S.; Cao, W.X., Self-assembly ultrathin films based on diazoresins. Langmuir 1999, 75, 7208-7212.
    
    [52] Such, G.K.; Quinn, J.F.; Quinn, A.; Tjipto, E.; Caruso, F., Assembly of ultrathin polymer multilayer films by click chemistry. J. Am. Chem. Soc. 2006,128, 9318-9319.
    
    [53] Ariga, K.; Lvov, Y.; Kunitake, T., Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 1997, 119,2224-2231.
    
    [54] Nicol, E.; Habib-Jiwan, J.L.; Jonas, A.M., Polyelecrrolyte multilayers as nanocontainers for functional hydrophilic molecules. Langmuir 2003,19, 6178-6186.
    
    [55] Kotov, N.A.; Dekany, I.; Fendler, J.H., Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. J. Phys. Chem. 1995, 99,13065-13069.
    
    [56] Caruso, F.; Lichtenfeld, H.; Giersig, M.; Mohwald, H., Electrostatic self-assembly of silica nanoparticle - Polyelecrrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc. 1998,120, 8523-8524.
    
    [57] Gunawidjaja, R.; Jiang, C.Y.; Peleshanko, S.; Ornatska, M.; Singamaneni, S.; Tsukruk, V.V.,Flexible and robust 2D arrays of silver nanowires encapsulated within freestanding layer-by-layer films. Adv. Funct. Mater. 2006, 16, 2024-2034.
    
    [58] Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T., Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. J. Am. Chem. Soc. 1995,117, 6117-6123.
    
    [59] Lvov, Y.; Ariga, K.; Kunitake, T., Layer-by-Layer Assembly of Alternate Protein Polyion Ultrathin Films. Chem. Lett. 1994,2323-2326.
    
    [60] Qi, Z.M.; Honma, I.; Ichihara, M.; Zhou, H.S., Layer-by-layer fabrication and characterization of gold-nanoparticle/myoglobin nanocomposite films. Adv. Fund. Mater. 2006, 16, 377-386.
    
    [61] Lvov, Y.; Decher, G.; Sukhorukov, G., Assembly of Thin-Films by Means of Successive Deposition of Alternate Layers of DNA and Poly(Allylamine). Macromolecules 1993, 26,5396-5399.
    
    [62] Johnston, A.P.R.; Mitomo, H.; Read, E.S.; Caruso, F., Compositional and structural engineering of DNA multilayer films. Langmuir 2006, 22, 3251-3258.
    
    [63] Jewell, C.A.; Lynn, D.M., Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 979-999.
    
    [64] Lvov, Y.; Onda, M.; Ariga, K.; Kunitake, T., Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J. Biomater. Sci.-Polym. Ed. 1998, 9, 345-355.
    
    [65] Kujawa, P.; Schmauch, G.; Viitala, T.; Badia, A.; Winnik, F.M., Construction of viscoelastic biocompatible films via the layer-by-layer assembly of hyaluronan and phosphorylcholine-modified chitosan. Biomacromolecules 2007, 8, 3169-3176.
    
    [66] Lvov, Y.; Haas, H.; Decher, G.; Mohwald, H.; Mikhailov, A.; Mtchedlishvily, B.; Morgunova, E.; Vainshtein, B., Successive Deposition of Alternate Layers of Polyelectrolytes and a Charged Virus. Langmuir 1994, 10,4232-4236.
    
    [67] Dimitrova, M.; Arntz, Y.; Lavalle, P.; Meyer, F.; Wolf, M.; Schuster, C.; Haikel, Y.; Voegel, J.C.;Ogier, J., Adenoviral gene delivery from multilayered polyelectrolyte architectures. Adv. Funct.Mater. 2007, 17,233-245.
    
    [68] Yamauchi, F.; Kato, K.; Iwata, H., Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer. Langmuir 2005, 21, 8360-8367.
    
    [69] Pei, R.J.; Cui, X.Q.; Yang, X.R.; Wang, E.K., Assembly of alternating polycation and DNA multilayer films by electrostatic layer-by-layer adsorption. Biomacromolecules 2001, 2, 463-468.
    
    [70] Shi, X.Y.; Sanedrin, R.J.; Zhou, F.M., Structural characterization of multilayered DNA and polylysine composite films: Influence of ionic strength of DNA solutions on the extent of DNA incorporation. J. Phys. Chem. B 2002, 106, 1173-1180.
    
    [71] Cai, K.Y.; Hu, Y.; Wang, Y.L.; Yang, L., Build up of multilayered thin films with chitosan/DNA pairs on poly(D,L-lactic acid) films: Physical chemistry and sustained release behavior. J. Biomed.Mater. Res. Part A 2008, 84A, 516-522.
    
    [72] Yamauchi, F.; Koyamatsu, Y.; Kato, K.; Iwata, H., Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer. Biomaterials 2006, 27,3497-3504.
    
    [73] Recksiedler, C.L.; Deore, B.A.; Freund, M.S., A novel layer-by-layer approach for the fabrication of conducting polymer/RNA multilayer films for controlled release. Langmuir 2006, 22,2811-2815.
    
    [74] Fujimoto, H.; Yoshizako, S.; Kato, K.; Iwata, H., Fabrication of cell-based arrays using micropatterned alkanethiol monolayers for the parallel silencing of specific genes by small interfering RNA. Bioconjugate Chem. 2006, 17, 1404-1410.
    
    [75] van den Beucken, J.J.J.P.; Walboomers, X.F.; Boerman, O.C.; Vos, M.R.J.; Sommerdijk,N.A.J.M.; Hayakawa, T.; Fukushima, T.; Okahata, Y.; Nolte, R.J.M.; Jansen, J.A.,Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. J. Control.Release 2006,113,63-72.
    
    [76] Van den Beucken, J.J.J.P.; Walboomers, X.F.; Nillesen, S.T.M.; Vos, M.R.J.; Sommerdijk,N.A.J.M.; Van Kuppevelt, T.H.; Nolte, R.J.M.; Jansen, J.A., In vitro and in vivo effects of deoxyribonucleic acid-based coatings funtionalized with vascular endothelial growth factor.Tissue Eng. 2007, 13, 711-720.
    
    [77] Etienne, O.; Picart, C.; Taddei, C.; Haikel, Y.; Dimarcq, J.L.; Schaaf, P.; Voegel, J.C.; Ogier, J.A.;Egles, C, Multilayer polyelectrolyte films functionalized by insertion of defensin: A new approach to protection of implants from bacterial colonization. Antimicrob. Agents Chemother.2004, 48, 3662-3669.
    
    [78] Etienne, O.; Gasnier, C.; Taddei, C.; Voegel, J.C.; Aunis, D.; Schaaf, P.; Metz-Boutigue, M.H.;Bolcato-Bellemin, A.L.; Egles, C, Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials 2005, 26, 6704-6712.
    
    [79] Wood, K.C.; Boedicker, J.Q.; Lynn, D.M.; Hammon, P.T., Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir 2005,21,1603-1609.
    
    [80] Wood, K.C.; Chuang, H.F.; Batten, R.D.; Lynn, D.M.; Hammond, P.T., Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proc. Natl.Acad. Sci. U. S. A. 2006, 103, 10207-10212.
    
    [81] Chuang, H.F.; Smith, R.C.; Hammond, P.T., Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 2008,9, 1660-1668.
    
    [82] Wood, K.C.; Zacharia, N.S.; Schmidt, D.J.; Wrightman, S.N.; Andaya, B.J.; Hammond, P.T., Electroactive controlled release thin films. Proc. Natl. Acad. Sci. U. S. A. 2008,105,2280-2285.
    
    [83] Chung, A.J.; Rubner, M.F., Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films. Langmuir 2002,18, 1176-1183.
    
    [84] Vodouhe, C; Le Guen, E.; Garza, J.M.; Francius, G.; Dejugnat, C.; Ogier, J.; Schaaf, P.; Voegel,J.C.; Lavalle, P., Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 2006, 27, 4149-4156.
    
    [85] Quinn, J.F.; Caruso, F., Facile tailoring of film morphology and release properties using layer-by-layer assembly of thermoresponsive materials. Langmuir 2004, 20, 20-22.
    
    [86] Berg, M.C.; Zhai, L.; Cohen, R.E.; Rubner, M.F., Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules 2006, 7, 357-364.
    
    [87] Srivastava, S.; Ball, V.; Podsiadlo, P.; Lee, J.; Ho, P.; Kotovlt, N.A., Reversible loading and unloading of nanoparticles in "Exponentially" growing polyelectrolyte LBL films. J. Am. Chem.Soc. 2008, 130, 3748-3749.
    
    [88] Thierry, B.; Kujawa, P.; Tkaczyk, C; Winnik, F.M.; Bilodeau, L.; Tabrizian, M., Delivery platform for hydrophobic drugs: Prodrug approach combined with self-assembled multilayers. J.Am. Chem. Soc. 2005, 127, 1626-1627.
    
    [89] Chen, H.; Zeng, G.H.; Wang, Z.Q.; Zhang, X.; Peng, M.L.; Wu, L.Z.; Tung, C.H., To combine precursor assembly and layer-by-layer deposition for incorporation of single-charged species:Nanocontainers with charge-selectivity and nanoreactors. Chem. Mat. 2005, 17,6679-6685.
    
    [90] Benkirane-Jessel, N.; Schwinte, P.; Falvey, P.; Darcy, R.; Haikel, Y.; Schaaf, P.; Voegel, J.C.;Ogier, J., Build-up of polypeptide multilayer coatings with anti-inflammatory properties based on the embedding of piroxicam-cyclodextrin complexes. Adv. Funct. Mater. 2004, 14, 174-182.
    
    [91] Dierich, A.; Le Guen, E.; Messaddeq, N.; Stoltz, J.F.; Netter, P.; Schaaf, P.; Voegel, J.C.;Benkirane-Jessel, N., Bone formation mediated by synergy-acting growth factors embedded in a polyelectrolyte multilayer film. Adv. Mater. 2007,19, 693-697.
    
    [92] Guyomard, A.; De, E.; Jouenne, T.; Malandain, J.J.; Muller, G.; Glinel, K., Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: A bioinspired approach to prepare biocidal thin coatings. Adv. Funct. Mater. 2008,18, 758-765.
    
    [93] Nolan, C.M.; Serpe, M.J.; Lyon, L.A., Thermally modulated insulin release from microgel thin films. Biomacromolecules 2004, 5, 1940-1946.
    
    [94] Serpe, M.J.; Yarmey, K.A.; Nolan, C.M.; Lyon, L.A., Doxorubicin uptake and release from microgel thin films. Biomacromolecules 2005, 6, 408-413.
    
    [95] Serizawa, T.; Matsukuma, D.; Akashi, M., Loading and release of charged dyes using ultrathin hydrogels. Langmuir 2005, 21, 7739-7742.
    
    [96] Wang, L.; Wang, X.; Xu, M.F.; Chen, D.D.; Sun, J.Q., Layer-by-layer assembled microgel films with high loading capacity: Reversible loading and release of dyes and nanoparticles. Langmuir 2008, 24, 1902-1909.
    
    [97] Ma, N.; Zhang, H.Y.; Song, B.; Wang, Z.Q.; Zhang, X., Polymer micelles as building blocks for layer-by-layer assembly: An approach for incorporation and controlled release of water-insoluble dyes. Chem. Mat. 2005, 77, 5065-5069.
    [98] Qi, B.; Tong, X.; Zhao, Y., Layer-by-layer assembly of two different polymer micelles with polycation and polyanion coronas. Macromolecules 2006, 39, 5714-5719.
    
    [99] De Laporte, L.; Shea, L.D., Matrices and scaffolds for DNA delivery in tissue engineering. Adv.Drug Deliv. Rev. 2007, 59, 292-307.
    
    [100] Prabha, S.; Zhou, W.Z.; Panyam, J.; Labhasetwar, V., Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm.2002, 244, 105-115.
    
    [101] Montrel, M.M.; Sukhorukov, G.B.; Petrov, A.I.; Shabarchina, L.I.; Sukhorukov, B.I.,Spectroscopic study of thin multilayer films of the complexes of nucleic acids with cationic amphiphiles and polycations: their possible use as sensor elements. Sens. Actuator B-Chem. 1997,42,225-231.
    
    [102] Sukhorukov, G.B.; Montrel, M.M.; Petrov, A.I.; Shabarchina, L.I.; Sukhorukov, B.I., Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications. Biosens. Bioelectron. 1996, 11, 913-922.
    
    [103] Vazquez, E.; Dewitt, D.M.; Hammond, P.T.; Lynn, D.M., Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes.J. Am. Chem. Soc. 2002,124, 13992-13993.
    
    [104] Lu, Z.Z.; Wu, J.; Sun, T.M.; Ji, J.; Yan, L.F.; Wang, J., Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. Biomaterials 2008, 29,733-741.
    
    [105] Chapman, H.A., Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr. Opin. Cell Biol. 1997, 9, 714-724.
    
    [106] Rabbani, S.A., Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 1998,12, 135-142.
    
    [107] Galis, Z.S.; Khatri, J.J., Matrix metalloproteinases in vascular remodeling and atherogenesis - The good, the bad, and the ugly. Cir. Res. 2002, 90,251-262.
    
    [108] Ren, K.F.; Ji, J.; Shen, J.C., Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films. Biomaterials 2006, 27, 1152-1159.
    
    [109] Ren, K.F.; Ji, J.; Shen, J.C., Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films. Bioconjugate Chem. 2006,17, 77-83.
    
    [110] Ren, K.F.; Wang, Y.X.; Ji, J.; Lin, Q.K.; Shen, J.C., Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: Effect of ionic strength. Colloid Surf.B-Biointerfaces 2005, 46, 63-69.
    
    [111] Chen, J.; Huang, S.W.; Lin, W.H.; Zhuo, R.X., Tunable film degradation and sustained release of plasmid DNA from cleavable polycation/plasmid DNA multilayers under reductive conditions.Small 2007, 5,636-643.
    [112] Blacklock, J.; Handa, H.; Manickam, D.S.; Mao, G.Z.; Mukhopadhyay, A.; Oupicky, D.,Disassembly of layer-by-layer films of plasmid DNA and reducible TAT polypeptide.Biomaterials 2007, 28, 117-124.
    
    [113] Blacklock, J.; You, Y.Z.; Zhou, Q.H.; Mao, G.Z.; Oupicky, D., Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA. Biomaterials 2009, 30,939-950.
    
    [114] Jewell, C.M.; Zhang, J.T.; Fredin, N.J.; Wolff, M.R.; Hacker, T.A.; Lynn, D.M., Release of plasmid DNA from intravascular stents coated with ultrathin multilayered polyelectrolyte films.Biomacromolecules 2006, 7, 2483-2491.
    
    [115] Ren, K.F.; Ji, J.; Shen, J.C., Construction of polycation-based non-viral DNA nanoparticles and polyanion multilayers via layer-by-layer self-assembly. Macromol. Rapid Commun. 2005, 26,1633-1638.
    
    [116] Jessel, N.; Oulad-Abdeighani, M.; Meyer, F.; Lavalle, P.; Haikel, Y.; Schaaf, P.; Voegel, J.C.,Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proc. Natl. Acad. Sci. U. S. A 2006, 103, 8618-8621.
    
    [117] Meyer, F.; Dimitrova, M.; Jedrzejenska, J.; Arntz, Y.; Schaaf, P.; Frisch, B.; Voegel, J.C.; Ogier,J., Relevance of bi-functionalized polyelectrolyte multilayers for cell transfection. Biomaterials 2008,29,618-624.
    
    [118] Cai, K.Y.; Hu, Y.; Luo, Z.; Kong, T.; Lai, M.; Sui, X.J.; Wang, Y.L.; Yang, L.; Deng, L.H,Cell-specific gene transfection from a gene-functionalized po!y(D,L-lactic acid) substrate fabricated by the layer-by-layer assembly technique. Angew. Chem.-Int. Edit. 2008, 47,7479-7481.
    
    [119] Decher, G.; Lehr, B.; Lowack, K.; Lvov, Y.; Schmitt, J., New Nanocomposite Films for Biosensors - Layer-by-Layer Adsorbed Films of Polyelectrolytes, Proteins or DNA. Biosens.Bioelectron. 1994,9, 677-684.
    
    [120] Nadiri, A.; Kuchler-Bopp, S.; Mjahed, H.; Hu, B.; Haikel, Y.; Schaaf, P.; Voegel, J.C.;Benkirane-Jessel, N., Cell apoptosis control using BMP4 and noggin embedded in a potyetectrotyte multilayer film. Small 2007, 3, 1577-1583.
    
    [121] Muller, S.; Koenig, G.; Charpiot, A.; Debry, C.; Voegel, J.C.; Lavalle, P.; Vautier, D.,VEGF-functionalized polyelectrolyte multilayers as proangiogenic prosthetic coatings. Adv. Funct.Mater. 2008, 18, 1767-1775.
    
    [122] Mao, Z.W.; Ma, L.; Zhou, J.; Gao, C.Y.; Shen, J.C., Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjugate Chem. 2005, 16, 1316-1322.
    
    [123] Ma, L.; Zhou, J.; Gao, C.Y.; Shen, J.C., Incorporation of basic fibroblast growth factor by a layer-by-layer assembly technique to produce bioactive substrates. J. Biomed. Mater. Res. Part B 2007, 83B, 285-292.
    [124] Prouty, M.; Lu, Z.H.; Leuschner, C; Lvov, Y., Layer-by-layer engineered nanoparticles for sustained release of Phor21-beta CG(ala) anticancer peptide. J. Biomed. Nanotechnol. 2007, 3,184-189.
    
    [125] Jesse], N.; Atalar, F.; Lavalle, P.; Mutterer, J.; Decher, G.; Schaaf, P.; Voegel, J.C.; Ogier, J.,Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv. Mater. 2003, 15, 692-695.
    
    [126] Chluba, J.; Voegel, J.C.; Decher, G.; Erbacher, P.; Schaaf, P.; Ogier, J., Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2001, 2, 800-805.
    
    [127] Boussif, O.; Lezoualc'h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P.,A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7297-7310.
    
    [128] Gosselin, M.A.; Guo, W.J.; Lee, R.J., Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate Chem. 2001,12, 989-994.
    
    [129] Clark, S.L.; Hammond, P.T., Engineering the microfabrication of layer-by-layer thin films. Adv.Mater. 1998,10,1515-1519.
    
    [130] Podsiadlo, P.; Michel, M.; Lee, J.; Verploegen, E.; Kam, N.W.S.; Ball, V.; Lee, J.; Qi, Y.; Hart,A.J.; Hammond, P.T.; Kotov, N.A., Exponential growth of LBL films with incorporated inorganic sheets. Nano Lett. 2008, 8, 1762-1770.
    
    [131] Durstock, M.F.; Rubner, M.F., Dielectric properties of polyelectrolyte multilayers. Langmuir2001,17,7865-7872.
    
    [132] Cho, J.; Char, K.; Hong, J.D.; Lee, K.B., Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 2001,13, 1076-1078.
    
    [133] Lee, S.S.; Hong, J.D.; Kim, C.H.; Kim, K.; Koo, J.P.; Lee, K.B., Layer-by-layer deposited multilayer assemblies of ionene-type polyelectrolytes based on the spin-coating method.Macromolecules 2001, 34, 5358-5360.
    
    [134] Chiarelli, P.A.; Johal, M.S.; Casson, J.L.; Roberts, J.B.; Robinson, J.M.; Wang, H.L., Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 2001, 13,1167-+.
    
    [135] Schlenoff, J.B.; Dubas, S.T.; Farhat, T., Sprayed polyelectrolyte multilayers. Langmuir 2000, 16,9968-9969.
    
    [136] Izquierdo, A.; Ono, S.S.; Voegel, J.C.; Schaaf, P.; Decher, G., Dipping versus spraying: Exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 2005, 21,7558-7567.
    
    [137] Ariga, K.; Hill, J.P.; Ji, Q.M., Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 2007, 9,2319-2340.
    
    [138] Porcel, C.H.; Izquierdo, A.; Ball, V.; Decher, G.; Voegel, J.C.; Schaaf, P., Ultrathin coatings and (poly(glutamic acid)/polyallylamine) films deposited by continuous and simultaneous spraying.Langmuir 2005, 21, 800-802.
    
    [139] Michel, A.; Izquierdo, A.; Decher, G.; Voegel, J.C.; Schaaf, P.; Ball, V., Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles obtained by spraying: Integrity of the vesicles. Langmuir 2005, 21, 7854-7859.
    
    [140] Lavalle, P.; Gergely, C; Cuisinier, F.J.G.; Decher, G.; Schaaf, P.; Voegel, J.C.; Picart, C.,Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: An in situ atomic force microscopy study. Macromolecules 2002, 35,4458-4465.
    
    [141] Boulmedais, F.; Ball, V.; Schwinte, P.; Frisch, B.; Schaaf, P.; Voegel, J.C., Buildup of exponentially growing multilayer polypeptide films with internal secondary structure. Langmuir 2003,79,440-445.
    
    [142] Chen, W.; McCarthy, T.J., Layer-by-layer deposition: A tool for polymer surface modification.Macromolecules 1997, 30, 78-86.
    
    [143] Lvov, Y.; Haas, H.; Decher, G.; Mohwald, H.; Kalachev, A., Assembly of Polyelectrolyte Molecular Films onto Plasma-Treated Glass. J. Phys. Chem. 1993, 97, 12835-12841.
    
    [144] McAloney, R.A.; Sinyor, M.; Dudnik, V.; Goh, M.C., Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir 2001,17, 6655-6663.
    
    [145] Schoeler, B.; Poptoschev, E.; Caruso, F., Growth of multilayer films of fixed and variable charge density polyelectrolytes: Effect of mutual charge and secondary interactions. Macromolecules 2003, 36, 5258-5264.
    
    [146] Salomaki, M.; Vinokurov, I.A.; Kankare, J., Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir 2005, 21, 11232-11240.
    
    [147] Picart, C.; Lavalle, P.; Hubert, P.; Cuisinier, F.J.G.; Decher, G.; Schaaf, P.; Voegel, J.C., Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir 2001, 17,7414-7424.
    
    [148] Picart, C; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G.D.; Schaaf, P.; Voegel, J.C.; Lavalle, P.,Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc.Natl. Acad. Sci. U. S. A. 2002, 99, 12531-12535.
    
    [149] Richert, L.; Lavalle, P.; Payan, E.; Shu, X.Z.; Prestwich, G.D.; Stoltz, J.F.; Schaaf, P.; Voegel,J.C.; Picart, C., Layer by layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects. Langmuir 2004, 20, 448-458.
    [150] Kujawa, P.; Moraille, P.; Sanchez, J.; Badia, A.; Winnik, F.M., Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: A surface plasmon resonance spectroscopy and atomic force microscopy investigation. J. Am. Chem. Soc. 2005,127,9224-9234.
    
    [151] Elbert, D.L.; Herbert, C.B.; Hubbell, J.A., Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 1999,15, 5355-5362.
    
    [152] Jourdainne, L.; Lecuyer, S.; Arntz, Y.; Picart, C.; Schaaf, P.; Senger, B.; Voegel, J.C.; Lavalle, P.; Charitat, T., Dynamics of poly(L-lysine) in hyaluronic acid/poly(L-lysine)multilayer films studied by fluorescence recovery after pattern photobleaching. Langmuir 2008,24, 7842-7847.
    
    [153] Mertz, D.; Hemmerle, J.; Boulmedais, F.; Voegel, J.C.; Lavalle, P.; Schaaf, P., Polyelectrolyte multilayer films under mechanical stretch. Soft Matter 2007, 3, 1413-1420.
    
    [154] Tezcaner, A.; Hicks, D.; Boulmedais, F.; Sahel, J.; Schaaf, P.; Voegel, J.C.; Lavalle, P.,Polyelectrolyte multilayer films as substrates for photoreceptor cells. Biomacromolecules 2006, 7,86-94.
    
    [155] Burke, S.E.; Barrett, C.J., pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules 2003, 4, 1773-1783.
    
    [156] Schneider, A.; Francius, G.; Obeid, R.; Schwinte, P.; Hemmerle, J.; Frisch, B.; Schaaf, P.; Voegel,J.C.; Senger, B.; Picart, C, Polyelectrolyte multilayers with a tunable Young's modulus: Influence of film stiffness on cell adhesion. Langmuir 2006,22, 1193-1200.
    
    [157] Lavalle, P.; Picart, C; Mutterer, J.; Gergely, C; Reiss, H.; Voegel, J.C.; Senger, B.; Schaaf, P.,Modeling the buildup of polyelectrolyte multilayer films having exponential growth. J. Phys.Chem. 5 2004,108, 635-648.
    
    [158] Hoda, N.; Larson, R.G., Modeling the Buildup of Exponentially Growing Polyelectrolyte Multilayer Films. J. Phys. Chem. B 2009,113,4232-4241.
    
    [159] Yoo, D.; Shiratori, S.S.; Rubner, M.F., Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 1998, 31,4309-4318.
    
    [160] Shiratori, S.S.; Rubner, M.F., pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 2000, 33,4213-4219.
    
    [161] Clark, S.L.; Montague, M.F.; Hammond, P.T., Ionic effects of sodium chloride on the templated deposition of polyelectrolytes using layer-by-layer ionic assembly. Macromolecules 1997, 30,7237-7244.
    
    [162] Kovacevic, D.; van der Burgh, S.; de Keizer, A.; Stuart, M.A.C., Specific ionic effects on weak polyelectrolyte multilayer formation. J. Phys. Chem. B 2003, 107, 7998-8002.
    
    [163] Dubas, S.T.; Schlenoff, J.B., Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 1999,32,8153-8160.
    [164]Tan,H.L.;McMurdo,M.J.;Pan,G.Q.;Van Patten,P.G.,Temperature dependence of polyelectrolyte multilayer assembly.Langmuir 2003,19,9311-9314.
    [165]Sui,Z.J.;Salloum,D.;Schlenoff,J.B.,Effect of molecular weight on the construction of polyelectrolyte multilayers:Stripping versus sticking.Langmuir 2003,19,2491-2495.
    [166]Ferreira,M.;Rubner,M.F.,Molecular-Level Processing of Conjugated Polymers.1.Layer-by-Layer Manipulation of Conjugated Polyions.Macromolecules 1995,28,7107-7114.
    [167]Mendelsohn,J.D.;Barrett,C.J.;Chan,V.V.;Pal,A.J.;Mayes,A.M.;Rubner,M.F.,Fabrication of microporous thin films from polyelectrolyte multilayers.Langmuir 2000,16,5017-5023.
    [168]Hiller,J.;Rubner,M.F.,Reversible molecular memory and pH-switchable swelling transitions in polyelectrolyte multilayers.Macromolecules 2003,36,4078-4083.
    [169]Mendelsohn,J.D.;Yang,S.Y.;Hiller,J.;Hochbaum,A.I.;Rubner,M.F.,Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films.Biomacromolecules 2003,4,96-106.
    [170]Yoo,P.J.;Nam,K.T.;Qi,J.F.;Lee,S.K.;Park,J.;Belcher,A.M.;Hammond,P.T.,Spontaneous assembly of viruses on multilayered polymer surfaces.Nat.Mater.2006,5,234-240.
    [171]Ji,J.;Fu,J.H.;Shen,J.C.,Fabrication of a superhydrophobic surface from the amplified exponential growth of a multilayer.Adv.Mater.2006,18,1441-1444.
    [172]Fu,J.H.;Ji,J.;Shen,L.Y.;Kueller,A.;Rosenhahn,A.;Shen,J.C.;Grunze,M.,pH-Amplified Exponential Growth Multilayers:A Facile Method to Develop Hierarchical Micro- and Nanostructured Surfaces.Langmuir 2009,25,672-675.
    [173]付金红.弱聚电解质层层自组装特性及其抗菌性能的研究.浙江大学博士学位论文,杭州,2007.
    [174]Richert,L.;Boulmedais,F.;Lavalle,P.;Mutterer,J.;Ferreux,E.;Decher,G.;Schaaf,P.;Voegel,J.C.;Picart,C.,Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking.Biomacromolecules 2004,5,284-294.
    [175]Lavalle,P.;Vivet,V.;Jessel,N.;Decher,G.;Voegel,J.C.;Mesini,P.J.;Schaaf,P.,Direct evidence for vertical diffusion and exchange processes of polyanions and polycations in polyelectrolyte multilayer films.Macromolecules 2004,37,1159-1162.
    [176]Song,Z.J.;Yin,J.B.;Luo,K.;Zheng,Y.Z.;Yang,Y.;Li,Q.;Yan,S.F.;Chen,X.S.,Layer-by-Layer Buildup of Poly(L-glutamic acid)/Chitosan Film for Biologically Active Coating.Macromol.Biosci.2009,9,268-278.
    [177]Sauerbrey,G.,The use of quartz oscillators for weighing thin layers and for microweighing.Z.Physik 1959,155,206-222.
    [178]Cui,C.J.;Schwendeman,S.P.,Surface entrapment of polylysine in biodegradable poly(DL-lactide-co-glycolide) microparticles.Macromolecules 2001,34,8426-8433.
    [179]Yavin,E.;Yavin,Z.,Attachment and Culture of Dissociated Cells from Rat Embryo Cerebral Hemispheres on Polylysine-Coated Surface.J.Cell Biol.1974,62,540-546.
    [180]Ito,Y.;Zheng,J.;Imanishi,Y.,Enhancement of cell growth on a porous membrane co-immobilized with cell-growth and cell adhesion factors.Biomaterials 1997,18,197-202.
    [181]Crompton,K.E.;Goud,J.D.;Bellamkonda,R.V.;Gengenbach,T.R.;Finkelstein,D.I.;Horne,M.K.;Forsythe,J.S.,Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering.Biomaterials 2007,28,441-449.
    [182]Huang,C.J.;Chang,F.C.,Polypeptide dibiock copolymers:Syntheses and properties of poly(N-isopropylacrylamide)-b-polylysine.Macromolecules 2008,41,7041-7052.
    [183]Bellomo,E.G.;Wyrsta,M.D.;Pakstis,L.;Pochan,D.J.;Deming,T.J.,Stimuli-responsive polypeptide vesicles by conformation-specific assembly.Nat.Mater.2004,3,244-248.
    [184]Tam,S.K.;Dusseault,J.;Polizu,S.;Menard,M.;Halle,J.P.;Yahia,L.,Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR,XPS,and ToF-SIMS.Biomaterials 2005,26,6950-6961.
    [185]Holowka,E.P.;Pochan,D.J.;Deming,T.J.,Charged polypeptide vesicles with controllable diameter.J.Am.Chem.Soc.2005,127,12423-12428.
    [186]Merdan,T.;Kopecek,J.;Kissel,T.,Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.Adv.Drug Deliv.Rev.2002,54,715-758.
    [187]He,Q.;Tian,Y.;Cui,Y.;Mohwald,H.;Li,J.B.,Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier.J.Mater.Chem.2008,18,748-754.
    [188]Drotleff,S.;Lungwitz,U.;Breunig,M.;Dennis,A.;Blunk,T.;Tessmar,J.;Gopferich,A.,Biomimetic polymers in pharmaceutical and biomedical sciences.Eur.J.Pharm.Biopharm.2004,58,385-407.
    [189]Lapcik,L.;Lapcik,L.;De Smedt,S.;Demeester,J.;Chabrecek,P.,Hyaluronan:Preparation,structure,properties,and applications.Chem.Rev.1998,98,2663-2684.
    [190]Wang,J.;Zhu,S.;Xu,C.,eds.Biochemistry.3rd ed.The Physical Chemistry Properties of Nucleic Acid.2002,Higher Education Press:Beijing.67.
    [191]Morra,M.,Engineering of biomaterials surfaces by hyaluronan.Biomacromolecules 2005,6,1205-1223.
    [192]Vorobjev,Y.N.;Scheraga,H.A.;Honig,B.,Theoretical Modeling of Electrostatic Effects of Titratable Side-Chain Groups on Protein Conformation in a Polar Ionic Solution.2.Ph-Induced Helix-Coil Transition of Poly(L-Lysine) in Water and Methanol Ionic-Solutions.J.Phys.Chem.1995,99,7180-7187.
    [193] Yasui, S.C.; Keiderling, T.A., Vibrational Circular-Dichroism of Polypeptides .8. Poly(Lysine) Conformations as a Function of Ph in Aqueous-Solution. J. Am. Chem. Soc. 1986, 108,5576-5581.
    
    [194] Haynie, D.T.; Balkundi, S.; Palath, N.; Chakravarthula, K.; Dave, K., Polypeptide multilayer films: Role of molecular structure and charge. Langmuir 2004, 20,4540-4547.
    
    [195] Wang, J.; Zhu, S.; Xu, C., eds. Biochemistry. 3rd ed. The Physical Chemistry Properties of Nucleic Acid. 2002, Higher Education Press: Beijing. 506-507.
    
    [196] Choi, J.; Rubner, M.F., Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 2005, 38, 116-124.
    
    [197] Burke, S.E.; Barrett, C.J., Acid-base equilibria of weak polyelectrolytes in multilayer thin films.Langmuir 2003, 19, 3297-3303.
    
    [198] Xie, A.F.; Granick, S., Local electrostatics within a polyelectrolyte multilayer with embedded weak polyelectrolyte. Macromolecules 2002, 35, 1805-1813.
    
    [199] Rmaile, H.H.; Schlenoff, J.B., Local Ph's in polyelectrolyte multilayers: Coupling protons and salt.Abstracts of Papers of the American Chemical Society 2003, 225, U646-U646.
    
    [200] Boulmedais, F.; Schwinte, P.; Gergely, C.; Voegel, J.C.; Schaaf, P., Secondary structure of polypeptide multilayer films: An example of locally ordered polyelectrolyte multilayers.Langmuir 2002, 18, 4523-4525.
    
    [201] Bysell, H.; Malmsten, M., Visualizing the interaction between poly-L-lysine and poly( acrylic acid) microgels using microscopy techniques: Effect of electrostatics and peptide size. Langmuir 2006, 22, 5476-5484.
    
    [202] Bonadio, J., Tissue engineering via local gene delivery. J. Mol. Med. 2000, 78, 303-311.
    
    [203] Brewster, L.P.; Brey, E.M.; Greisler, H.P., Cardiovascular gene delivery: The good road is awaiting. Adv. Drug Deliver. Rev. 2006,58, 604-629.
    
    [204] Segura, T.; Volk, M.J.; Shea, L.D., Substrate-mediated DNA delivery: role of the cationic polymer structure and extent of modification. J. Control. Release 2003, 93, 69-84.
    
    [205] Bengali, Z.; Pannier, A.K.; Segura, T.; Anderson, B.C.; Jang, J.H.; Mustoe, T.A.; Shea, L.D.,Gene delivery through cell culture substrate adsorbed DNA complexes. Biotechnol. Bioeng. 2005,90, 290-302.
    
    [206] Shen, H.; Tan, J.; Saltzman, W.M., Surface-mediated gene transfer from nanocomposites of controlled texture. Nat. Mater. 2004, 3, 569-574.
    
    [207] Fu, J.; Ji, J.; Shen, L.; Kuller, A.; Rosenhahn, A.; Shen, J.; Grunze, M., pH-Amplified Exponential Growth Multilayers: A Facile Method to Develop Hierarchical Micro- and Nanostructured Surfaces. Langmuir 2009, 25, 672-675.
    [208] Petrov, A.I.; Antipov, A.A.; Sukhorukov, G.B., Base-acid equilibria in polyelectrolyte systems: From weak polvelectrolytes to interpolyelectrolyte complexes and multilayered polyelectrolyte shells. Macromolecules 2003, 36, 10079-10086.
    
    [209] Izumrudov, V.A.; Kharlampieva, E.; Sukhishvili, S.A., Multilayers of a globular protein and a weak polyacid: Role of polyacid ionization in growth and decomposition in salt solutions.Biomacromolecules 2005, 6, 1782-1788.
    
    [210] Zhang, J.T.; Chua, L.S.; Lynn, D.M., Multilayered thin films that sustain the release of functional DNA under physiological conditions. Langmuir 2004, 20, 8015-8021.
    
    [211] Erbacher, P.; Bettinger, T.; Belguise-Valladier, P.; Zou, S.M.; Coll, J.L.; Behr, J.P.; Remy, J.S., Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J. Gene. Med. 1999, 1,210-222.
    
    [212] Zauner, W.; Ogris, M.; Wagner, E., Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliver. Rev. 1998, 30, 97-113.
    
    [213] Gebhart, C.L.; Kabanov, A.V., Evaluation of polyplexes as gene transfer agents. J. Control.Release 2001, 75,401-416.
    
    [214] Park, K.D.; Kwon, I.C.; Yui, N.; Jeong, S.Y.; Park, K., eds. Biomaterials and Drug Deliver towards New Millennium. Polymeric gene delivery for cancer treatment, ed. R.I. Mahato; D.Y.Furgeson; A. Maheshwari; S.O. Han; S.W. Kim. 2000, Han Rim Wonn Publishing: Seoul.
    
    [215] Anderson, D.G.; Akinc, A.; Hossain, N.; Langer, R., Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol. Ther. 2005, 77, 426-434.
    
    [216] Takahashi, H.; Letourneur, D.; Grainger, D.W., Delivery of large biopharmaceuticals from cardiovascular stents: A review. Biomacromolecules 2007, 8, 3281-3293.
    
    [217] Degim, I.T.; Celebi, N., Controlled delivery of peptides and proteins. Curr. Pharm. Design 2007,13,99-117.
    
    [218] Kumar, T.R.S.; Soppimath, K.; Nachaegari, S.K., Novel delivery technologies for protein and peptide therapeutics. Curr. Pharm. Biotechnol. 2006, 7, 261-276.
    
    [219] Gupta, B.; Levchenko, T.S.; Torchilin, V.P., Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 2005, 57, 637-651.
    
    [220] Schwarze, S.R.; Hruska, K.A.; Dowdy, S.F., Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 2000,10, 290-295.
    
    [221] Snyder, E.L.; Dowdy, S.F., Cell penetrating peptides in drug delivery. Pharm. Res. 2004, 21,389-393.
    
    [222] Brooks, H.; Lebleu, B.; Vives, E., Tat peptide-mediated cellular delivery: back to basics. Adv.Drug Deliv. Rev. 2005, 57, 559-577.
    102
    [223] Schneider, A.; Vodouhe, C; Richert, L.; Francius, G.; Le Guen, E.; Schaaf, P.; Voegel, J.C.;Frisch, B.; Picart, C., Multifunctional polyelectrolyte multilayer films: Combining mechanical resistance, biodegradability, and bioactivity. Biomacromolecules 2007, 8, 139-145.
    
    [224] Abalde-Cela, S.; Ho, S.; Rodriguez-Gonzalez, B.; Correa-Duarte, M.A.; Alvarez-Puebla, R.A.;Liz-Marzan, L.M.; Kotov, N.A., Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection. Angew. Chem.-Int. Edit.2009, 48, 5326-5329.
    
    [225] Dierich, A.; Le Guen, E.; Messaddeq, N.; Stoltz, J.F.; Netter, P.; Schaaf, P.; Voegel, J.C.;Benkirane-Jessel, N., Bone formation mediated by synergy-acting growth factors embedded in a polyelectrolyte multilayer film. Adv. Mater. 2007,19, 693-697.
    
    [226] Nadiri, A.; Kuchler-Bopp, S.; Mjahed, H.; Hu, B.; Haikel, Y.; Schaaf, P.; Voegel, J.C.;Benkirane-Jessel, N., Cell apoptosis control using BMP4 and noggin embedded in a potyetectrotyte muttilayer film. Small 2007, 3, 1577-1583.
    
    [227] Jewell, C.M.; Fuchs, S.M.; Flessner, R.M.; Raines, R.T.; Lynn, D.M., Multilayered films fabricated from an oligoarginine-conjugated protein promote efficient surface-mediated protein transduction. Biomacromolecules 2007, 8, 857-863.
    
    [228] Jewell, C.M.; Zhang, J.T.; Fredin, N.J.; Lynn, D.M., Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. J. Control. Release 2005,106, 214-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700