DMFC用改性磺化聚芳醚酮质子交换膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)的发展面临两大难题:一是阳极催化剂对甲醇反应的催化活性较低;二是通常使用的全氟磺酸质子交换膜的阻醇性能较差。因此开发出高性能的质子交换膜是DMFC研究的重要课题。本论文着眼于DMFC的现实需要和未来发展,在开发价格低廉的阻醇质子交换膜和耐高温质子交换膜方面进行了新的探索和尝试。
     聚醚醚酮(PEEK)和杂萘联苯聚醚酮(PPEK)是两种价格较低、性能优良的聚芳醚酮类聚合物。二者磺化后可用来制备DMFC质子交换膜。然而,纯磺化聚醚醚酮(SPEEK)、磺化杂萘联苯聚醚酮(SPPEK)膜的电导率与阻醇性能、尺寸稳定性之间存在难以协调的矛盾。高电导率要求聚合物的磺化度要高,但高磺化度会使膜的阻醇性能、尺寸稳定性变差。
     为解决这个矛盾,我们首次将具有较高电导率的质子导体1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC))掺杂到较高磺化度的SPEEK及SPPEK中制备复合膜。实验表明,Zr(PBTC)与聚合物之间发生氢键作用,因此在不减小电导率的同时,复合膜的溶胀被有效地限制,膜的阻醇能力、尺寸稳定性得到提高。Zr(PBTC)/SPEEK复合膜的可使用温度也得到显著提高。使用温度的提高使得聚合物高电导率的特性得以发挥,因此Zr(PBTC)/SPEEK复合膜在高温时具有很高的电导率。
     我们还首次考察了掺杂Zr(PBTC)复合膜在高温不同湿度下的电导率及其高温气态进料DMFC性能。结果表明,Zr(PBTC)的掺杂能显著提高复合膜在低湿度时的电导率,因而复合膜的气态进料DMFC性能也得到提高。
     聚醚砜(PES)是一种成膜性能优良的工程热塑料。将PES混入高磺化度的SPEEK中能有效降低膜的溶胀、增强膜的阻醇能力、提高膜的使用温度。我们首次通过SEM实验得出SPEEK磺化度对共混膜微观形貌的影响。通过控制好SPEEK的磺化度及PES的混入量,可以制得电导率高、阻醇性能优良的PES/SPEEK共混膜。而且与具有相同离子交换容量的纯SPEEK膜相比,共混膜的阻醇性能及尺寸稳定性能更好。
     首次考察了上述复合膜及共混膜的直接甲酸、异丙醇、乙二醇及二甲醚燃料电池的单电池性能。
The development and application of DMFC are restricted by two major technological barriers: one is low methanol oxidation activity for anode catalyst, and the other is methanol crossover from anode to cathode through membrane. Therefore, developing new proton exchange membrane has been very important. In this study, new proton exchange membrane materials with low cost are explored.
     Sulfonated poly (ether ether ketone) (SPEEK) and sulfonated poly (phthazinone ethet ketone) (SPPEK) membranes are promising alternative to Nafion membrane in DMFC for their high conductivity and better methanol resistance. However, in SPEEK and SPPEK membrane, there exits conflicts among ionic conductivity, methanol resistance and dimensional stability. Generally, high sulfonation degree (DS) offers the membrane with high conductivity, as well as the reduced methanol resistance and dimensional stability, thereby lowered applicable temperature.
     In order to overcome the conflicts, insolvable 1,2,4-tricarboxybutyl-2- phosphonate zirconium (Zr(PBTC)) with high conductivity and thermal stability was synthesized and incorporated into the SPEEK and SPPEK to fabricate novel composite membranes. Results show that the hydrogen bond happened between Zr(PBTC) and the polymers, which helps to reduce the swelling and methanol permeability of the composite membranes, and improve their dimensional stability without sacrificing conductivity. For the Zr(PBTC)/SPEEK composite membranes, high conductivity can be achieved as the applicable temperature is improved.
     High temperature DMFC is the new developing direction. For the hygroscopic property of Zr(PBTC), the conductivity of composite membranes under low relative humidity at high temperature(>100℃) was improved efficiently, and so did their vapor-feed DMFC performance at 120℃.
     In order to improve the properties of SPEEK membrane with high DS, poly(ether sulfone) (PES) was chosen and blended into SPEEK to fabricate PES/SPEEK blend membrane. Results show that the DS of SPEEK affects the microcosmic conformation of blend membrane. By controlling the DS of SPEEK and PES content, the blend membrane with high conductivity and excellent methanol resistance can be fabricated. Furthermore, compared with pristine SPEEK membrane with the same ion-exchange capacity, the blend membrane has better methanol resistance and dimensional stability. Single cell performance experiment indicates that the 30wt.%PES/SPEEK (DS=68.3%) membrane has the better performance than that of Nafion? 115 in DMFC.
     The performance of direct fuel cells with our novel membranes were tested, using formic acid, isopropanol, ethylene glycol and dimethy ether as fuels respectively.
引文
[1] Appleby A J, Foulkes F R, Fuel cell handbook, Van Nostrand Reinhold, New York, 1989
    [2] 衣宝廉,燃料电池现状和未来,电源技术:1998,22(5):216-221
    [3] 江船,燃料电池,北京:国防工业出版社,1983
    [4] 查全性,燃料电池技术的发展和我国应有的对策,应用化学,1993,10(10):38-42
    [5] 周运鸿,燃料电池,电源技术,1996,20(4):161-164
    [6] 黄倬,屠海令,张冀强等,质子交换膜燃料电池的研究开发和应用,北京:冶金工业出版社,2000
    [7] 衣宝廉,燃料电池-高效环境友好的发点方式,北京:化学工业出版社,2000
    [8] 顾登平,董茹亭,化学电源,北京:高等教育出版社,1993
    [9] 林维明,燃料电池系统,北京:化学工业出版社,1996
    [10] 顾登平,童汝亭,化学电源,北京,高等教育出版社,1993
    [11] 陈延喜,聚合物电解质燃料电池的研究进展,电源技术,1996,20(1):21-27
    [12] 衣宝廉,燃料电池技术-原理、技术、应用,化学工业出版社,2003
    [13] Appleby A J, Fuel cell technology and innovation, Journal of power sources, 1992,37(1-2),223-239
    [14] Appleby A J, Foulkes F R, Fuel cell handbook, Van Nostrand Reinhold, NewYork, 1989,341-344
    [15] Parter K B, Solid polymer fuel cell developments at Ballard. Journal of power sources, 1992,37(1-2):181-182
    [16] The DOE advanced fuel cell working group. A assessment of research needs for advanced fuel cell: 4. Solid polymer electrolyte fuel cells (SPEFCS), Energy 1986, 11(1-2):137-152
    [17] Cacciola G, Antonucci V, Freni S, technology up date and new strategies on fuel cells, Journal of power sources, 2001,100(1-2):67-69
    [18] 陈延禧, 聚合物电解质燃料电池的研究进展, 电源技术, 1996, 20(1): 21
    [19] 蔡年生, 质子交换膜在燃料电池中的应用, 膜科学与技术, 1996, 16(4): 1-6
    [20] 李国欣, 新型化学电源导论, 上海: 复旦大学出版社, 1992
    [21] Ticianelli E A, Berry J G, Srinivasav S, Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologicalcharacteristics of the electrodes, J. Appl. Electrochem., 1991, 21: 597-598
    [22] 侯明,吴金锋,衣宝廉等, PEM 燃料电池流场板,电源技术, 2001, 25(4): 294-298
    [23] Besmann T M, Klett J W, Henry J J, et al., Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells, J. Electrochem. Soc, 2000, 147: 4083-4086
    [24] Davies D P, Adcock P L, Turpin M, et al., Bipolar plate materials for solid polymer fuel cells, J. Appl. Electrochem, 2000, 30: 101-105
    [25] Tsuchiya H, Kobayashi T, Mass production cost of PEM fuel cell by learning curve, International journal of hydrogen energy, 2005, 30(12):1297-1302
    [26] Tsuchiya H., Kobayashi O., Mass production cost of PEM fuel cell by learning curve, International Journal of Hydrogen Energy, 2004, 29(10): 985-990
    [27] Xiaochen Yu, Biao Zhou, A. Sobiesiak, Water and thermal management for Ballard PEM fuel cell stack, Journal of Power Sources, 2005,147(1-2): 184-195
    [28] Buchi F N, Geiger A B,Neto R P, Dependence of current distribution on water management in PEFC of technical size, Journal of Power Sources, 2005, 145(1): 62-67
    [29] Eckl R, Zehtne W, Leu C, Wagner U., Experimental analysis ofwatermanagement in a self-humidifying polymer electrolyte fuel cell stack, Journal of Power Sources, 2004, 138(1-2): 137-144
    [30] Chen J, Matsuura T, Hori M, Novel gas diffusion layer with water management function for PEMFC, Journal of Power Sources, 2004, 131(1-2): 155-161
    [31] Nauyen T V, Knobbe M W, A liquid water management strategy for PEM fuel cell, Journal of Power Sources, 2003, 114(1): 70-79
    [32] 宋树芹,陈利康,刘建国。直接乙醇燃料电池初探,电化学,2002,8:105-110
    [33] 朱科, 陈延禧,张继炎,直接乙醇燃料电池现状及前景,电源技术,2004,28:187-190
    [34] Taneda K, Yamazaki Y,Study of direct type ethanol fuel cells:Analysis of anode products and effect of acetaldehyde,Electrochimica Acta, 2006, in press
    [35] 曾 蓉,沈培康,燃料电池研究进展:第 56 届国际电化学学会年会回顾,电池,2006,36:24-26
    [36] Kerangueven G., Coutanceau C, Sibert, E., Léger, J.-M., Lamy, C. J. Power Sources,2006,157: 318-324
    [37] Mizutani I, Liu Y, Mitsushima S, Ota K, Kamiya N,J. Power Sources, 2006, 156(2), 183-189
    [38] Yu J H, Choi H G., Cho S M,Electrochemistry Communications, 2005, 7(12)1385-1388
    [39] Mench M, Chance H M, Wang C Y, Journal of the Electrochemical Society, 2004,151 (1), A144-A150
    [40] Muller J T, Urban P M, Holderich W F, Colbow K M, Zhang J, Wilkinson D P J, The Electrochemical Society, 2000,147 (11), 4058-4060
    [41] McNicol B D, Electrocatalytic problems associated with the development of direct methanol-air fuel cell, J. Electroanal. Chem., 1981, 118: 71-87
    [42] Baxter S F, Battaglia V S, White R E, Methanol fuel cell model: anode, J. Electrochem. Soc., 1999, 146(2): 437-447
    [43] Wasmus S, Kuver A, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem., 1999, 461: 14-31
    [44] Waidhas M, Drenckhahn W, Preidel W, et al., Direct-fuelled fuel cells, J. Power Sources, 1996, 61: 91-97
    [45] Lee S J, Mukerjee S, Trcianelli E A, et al., Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochimica Acta, 1999, 44: 3283-3293
    [46] Dinh H N, Ren X, Garzon F H, et al., Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces, J.electroanal Chem, 2000, 491: 222-233
    [47] 黄镇江,刘风君,燃料电池及其运用,北京:电子工业出版社,2005
    [48] Wasmus S, Wang J-T, Savinell R F, Real-time mass spectrometric investigation of the methanol oxidation in a direct methanol fuel cell, J. Electrochem. Soc., 1995, 142: 3825-3833
    [49] Shukla A K, Christensen P A, Hamnett A, A vapour-feed direct-methanol fuel cell with proton-exchange membrane electrolyte, J.Power Sources, 1995, 55: 87-91
    [50] Heinzel A, Barragán V M, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources, 1999, 84: 70-74
    [51] Hogarth M P, Hards G A, Direct methanol fuel cells. Technological advances and further requirements, Platinum Metals Rev, 1996, 40: 150-159
    [52] www.fuelcells.org
    [53] Strasser K, Mobile fuel cell development at Siemens, J. Power Sources, 1992, 37: 209-219
    [54] Murphy O J, Hitchens G D, Manko D J, High power density proton-exchange membrane fuel cells, J. Power Sources, 1994, 47: 353-368
    [55] Eisman G A, The application of DOW Chemical’s perfluorinated membranes in proton-exchange membrane fuel cells, J. Power Sources, 1990, 29: 389-398
    [56] Wakizoe M, Velev O A, Srinivasan S, Analysis of proton exchange membrane fuel cell performance with alternate membranes, Electrochimica Acta, 1995,43(3): 335-344
    [57] Carla H W, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, J. Membr. Sci., 1996, 120: 1-33
    [58] Gierke T D, Munn G E, Wilson F C, et al., The morphlolgy in Nafion perfluorinated membrane products, as determined by wide-and small-angle X-ray studies, J. Polym. Sci.: Polymer Physics Edition, 1981, 19: 1687-1704
    [59] Ze’ev P, John R F, Max H, Electron microscopy investigation of the microstructure of Nafion films, J. Phys. Chem., 1995, 99: 4667-4671
    [60] Halim J, Buchi F N, Haas O, Characterization of perfluorosulfonic acic membranes by conductivity measurements and small-angle X-ray scattering, Electrochimica Acta, 1994, 39: 1303-1307
    [61] Fontanella J J, Wintersgill M C, Chen R S, Charge transport and water molecular motion in variable molecular weight Nafion membranes: high pressure electrical conductivity and NMR, Electrochimica Acta, 1995, 40(13&14): 2321-2326
    [62] Yeager H L, Steck A, Cation and water diffusion in Nafion ion exchange membranes: influence of polymer structure, J. Electrochem. Soc, 1981, 128(9): 1880-1884
    [63] Savadogo O, Emerging membranes for electrochemical systems (1) Solid polymer electrolyte membranes for fuel cell systems, J. New Mat. Electrochem. Systems, 1998, 1: 47-65
    [64] Yoshitsugu S, Per E, Daniel S, Proton conductivity of Nafion117 as measured by a four-electrode AC impedance method, J. Electrochem. Soc, 1996, 143(4): 1254-1259
    [65] Cappadonia M, Erning J W, Niaki S M S, et al., Conductance of Nafion 117 membranes as a function of temperature and water content, Solid State Ionics, 1995, 77: 65-69
    [66] Cappadonia M, Erning J W, Stimming U, Proton conduction of Nafion117 membrane between 140K and room temperature, J. Electroanal. Chem, 1994, 376: 189-195
    [67] Zawodzinski T A, Derouin Jr C, Radzinski S, et al., Water uptake by and transport through Nafion117 membranes, J. Electrochem. Soc, 1993, 140(4): 1041-1047
    [68] Yoshitsugu S, Per E, Daniel S, Proton conductivity of Nafion117 as measured by a four-electrode AC impedance method, J. Electrochem. Soc, 1996, 143(4): 1254-1259
    [69] Samms S R, Wasmus S, Savinell R F, Thermal stability of Nafion in simulated fuel cell environments, J. Electrochem. Soc, 1996, 143(5): 1498-1504
    [70] Wang J T, Wasmus S, Savinell R F, Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell, J. Electrochem. Soc, 1996, 143(4): 1233-1239
    [71] Li Q F, He R H, Jensen J O, Bjerrum N J., Approaches and recent developments of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater, 2003, 15:4896-4915
    [72] Li Q F, He R H, Jensen J O, Bjerrum N J, J. Electrochem Soc, 2003, 150:A1599
    [73] Tazi B, Savadogo O, Preparation and characterization of a new membane based on Nafion, silicotungstic acid and thiophene, 3rd Int. Symp. On New Materials for Electrochemical Systems, Montreal, Canada, July 1999, p.259
    [74] Tazi B, Savadogo O, Parameters of PEM fuel-cells based on new membranes fabricated from Nafion?, silicotungstic acid and thiophene, Electrochimica Acta, 2000, 45: 4329-4339
    [75] Costamagna P, Yang C, Bocarsly A B, et al., Nafion? 115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃, Electrochimica Acta, 2002, 47: 1023-1033
    [76] Yang C, Costamagna P, Srinivasan S, et al., Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, J. Power Sources, 2001, 103: 1-9
    [77] Bonnet B, Jones D J, Rozière J, et al., Hybrid organic-inorganic membranes for a medium temperature fuel cell, J. New Mat. Electrochem. Systems, 2000, 3: 87-92
    [78] Yang C, Srinivasan S, Bocarsly A B, Tulyani S, Benziger J B, A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes, J. membrane science, 2004, 237:145-161
    [79] Arico A S, Baglio V, Blasi D, Antonucci V, FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes, Electrochemistry communications, 2003, 5:862-866
    [80] Sang H K,Yang T H, Kim C S, et al., Polymer composite membrane incorporated with a hygroscopic material for high temperature PEMFC, Electrochemical Acta, 2004,50:653-657
    [81] Doyle M, Choi S K, Proulx G, High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites, J. Electrochem. Soc, 2000, 147(1): 34-37
    [82] Mitsushima S, Kudo K, Sakamoto R, Polymer electrolyte using ionic liquid for high temperature operation PEFCs, 14th World Hydrogen Energy Conference,Canada, 2002
    [83] Antonucci P L, Aricò A S, Cretì P, Investigation of a direct methanol fuel cell based on a composite Nafion?-silica electrolyte for high temperature operation, Solid State Ionics, 1999, 125: 431-437
    [84] Miyake N, Wainright J S, Savinell R F, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications. Ⅰ. Proton conductivity and water content, J. Electrochem. Soc, 2001, 148: A898-A904
    [85] Miyake N, Wainright J S, Savinell R F, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications. Ⅱ. Methanol uptake and methanol permeability, J. Electrochem. Soc, 2001, 148: A905-A909
    [86] Staiti P, Aricò A S, Baglio V, et al., Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Ionics, 2001, 145: 101-107
    [87] Jung D H , Cho S Y, Peck D H, et al., Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sources, 2002, 106: 173-177
    [88] Kevork T A, Raymond D, Lakshmi K, et al., function and characterization of metal oxide-Nafion composite membranes for elevated-temperature H2/O2 PEM fuel cell, Chem. Mater, 2006,18:2238-2248
    [89] Florjańczyk Z, Wielgus-Barry E, Poltarzewski Z, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics, 2001, 145: 119-126
    [90] Kevork T A, Raymond D, Lakshmi K, et al., function and characterization of metal oxide-Nafion composite membranes for elevated-temperature H2/O2 PEM fuel cell, Chem. Mater, 2006,18:2238-2248
    [91] Shao Z G, Xu H F, Li M Q, Hsing I M., Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell, Solid State Ionics, 2006,177:779-785
    [92] Hinokuma K, Ata M, Proton conduction in polyhydroxy hydrogensulfonated fullerenes, J. Electrochem. Soc, 2003,150:A112-118
    [93] Hinokuma K, Ata M, Fullerenes proton conductors, Chem. Phys. Lett, 2001,341:442-449
    [94] Tasaki K, Desousa R, Wang H B, et al., Fullerenes composite proton conducting membranes for polyner electrolyte fuel cells operating under low humidity conductions, J. Memb. Sci, 2006, in press
    [95] Florjanczyk Z, Wielgus B E., Pol/Tarzewski Z,Radiation-modified nafion membranes for methanol fuel cells,Solid State Ionics 2001,145:119-126
    [96] Savinell R, Yeager E, Tryk D,et al, A polymer electrolyte for operation at temperatures up to 200-degrees-C, J. Electrochem. Soc. 1994,141 (4): L46-L48
    [97] Wasmus S, Valeriu A, Mateescu G D, et al., Characterization of H3PO4-equilibrated Nafion 117 membranes using 1H And 31P NMR spectroscopy, Solid State Ionics, 1995, 80: 87-92
    [98] Li Q, Hjuler H A.,. Bjerrum N J, Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes, Electrochimica Acta, 2000, 45: 4219–4226
    [99] Malhotra S, Datta R, Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, J. Electrochem. Soc, 1997,144 (2): L23-L26
    [100] Kreuer K. D.,. Fuchs A,. Ise M, et al., Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, 1998, 43:1281-1288
    [101] Alex S A, Robert F. Savinell B, Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole electrolyte for fuel cells, Solid State Ionics, 2002, 147:181–187
    [102] Sun J, Jordan L.R, Forsyth M, et al., Acid–organic base swollen polymer membranes, Electrochimica Acta, 2001, 46:1703–1708
    [103] Lin H L, Yu T L,Han F H, A Method for Improving Ionic Conductivity of Nafion Membranesand its Application to PEMFC, Journal of Polymer Research,2006.13:379-385
    [104] Jeffrey V G, Weiss R A, Shaw M T, ELECTRIC-FIELD-STRUCTURED PROTON EXCHANGE MEMBRANES, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2004, 49(2), 592
    [105] Oren Y, Freger V, Linder C, Highly conductive ordered heterogeneous ion-exchange membranes, J. Membrane Science, 2004, 239: 17-26
    [106] John C, Keith S, The degree and effect of methanol crossover in the direct methanol fuel cell, J. Power Sources, 1998, 70: 40-47
    [107] Hogarth M, Christensen P, Hamnett A, et al., The design and construction of high-performance direct methanol fuel cells 2, J. Power Sources, 1997, 69: 125-136
    [108] Kuver A, Vielstich W, Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system, J. Power Sources, 1998, 74: 211-218
    [109] Ren X, Wilson M S, Gottesfeld S, High performance direct methanol polmer electrolyte fuel cells, J. Electrochem Soc, 1996,143:12-15
    [110] Liu F Q, Lu G Q, Wang C Y, Low crossover of methanol and water through thin membranes in direct methanol fuel cells, J. Electrochem. Soc, 2006,153:A543-A553
    [111] Sundmacher K, Nowitzki O, Hiffmann U, Oxygen reduction on gas-diffusion electrodes with non-noble metal catalysts, Chem. Ing. Tech, 1997, 69: 1143-1146
    [112] Tricoli V, Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cation, J. Electrochem. Soc, 1998, 145(11): 3798-3801
    [113] Wasmus S, Valeriu A, Mateescu G D, et al., Characterization of H3PO4-equilibrated Nafion 117 membranes using 1H and 31P NMR spectroscopy, Solid State Ionics, 1995, 80: 87-92
    [114] Pu C, Huang W H, Kevin L L, et al., A methanol impermeable proton conducting composite electrolyte system, J. Electrochem. Soc, 1995, 142(7): L119-L120
    [115] U.S. Patent 5,672,438
    [116] U.S. Patent 5,795,668
    [117] Tricoli V, Nannetti F, Zeolite-Nafion composites as ion conducting membrane materials, Electrochimical Acta, 2003,48:2625-2633
    [118] Park Y S, Yamazaki Y, Low methanol permeable and high proton-conducting Nafion/calcium phosphate composite membrane for DMFC, Solid State Ionics, 2005,176:1079-1089
    [119] Park Y S, Yamazaki Y, Low water/methanol permeable Nafion/CHP organic–inorganic composite membrane with high crystallinity, European Polymer Journal, 2006,42: 375–387
    [120] Miyake N, Wainrigh J S, Savinell R F, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications, J. Electrochem Soc, 2001,148:A905-909
    [121] Li C N, Sun G Q, Ren S Z, Liu J, Wang Q, Wu Z M, Sun H, Jin W, Casting Nafion–sulfonated organosilica nano-compositemembranes used in direct methanol fuel cells, Journal of Membrane Science, 2006,272:50–57
    [122] Liu Z L, Guo B, Huang J C, Hong L, Han M, Gan L M, Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells, Journal of Power Sources ,2006,157:207–211
    [123] Uchida H, Mizuno Y, Watanabe M, Suppression of methanol crossover and distribution of ohmic resistance in Pt-dispersed PEMS under DMFC operation, J. Electrochem. Soc, 2002,149:A1682-A687
    [124] Bae B C, Kim D J, Kim H J, el al., Surface characterization of argon-plasma-modified perfluorosulfonic acid membranes, J. Phys Chem. B, 2006,110:4240-4246
    [125] Choi W C, Kim J D, Woo S I, Modification of proton conducting membrane for reducing methanol crossover in a direct methanol fuel cell, J. Power Sources, 2001, 96: 411-414
    [126] Hobson L J, Nakano Y, Ozu H, et al., Targeting improved DMFC performance, J. Power Sources, 2002, 104: 79-84
    [127] Staller C ,Schumacher K,Schlarb B ,Centner A ,Hartz O. [P] .US 2002/ 0161079 A1 ,20022102311
    [128] Finsterwalder F, Hambitzer C, Proton conductive thin films prepared by plasma polymerization, J. Memb. Sci, 2001,185:105-124
    [129] Langsdorf B L, Easton E B, Sultan J, et al., Nafion/Polypyrrole composite polymer electrolytes for use in direct methanol fuel cells, 201st Meeting of The Electrochemical Society, Philadelphia, 2002
    [130] Jun Zhu, Rita R. S, Arnd Garsuch, Omar Y, Peter G. Pickup, Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells, Electrochimica Acta ,2006,51:4052–406
    [131] Wu Hong, Wang Yuxin, Wang Shichang, A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J New Mater Electrochem Systems, 2002, 5 (4): 251-254
    [132] 吴洪, 王宇新, 王世昌, 聚偏氟乙烯-Nafion 共混膜的制备及阻醇质子导电性能研究, 高分子学报, 2002, 4: 540-543
    [133] 吴洪, 王宇新, 王世昌, 新型阻醇质子导电聚合物膜-PVA-Nafion 共混膜的制备及性能研究, 高校化学工程学报, 2002, 16: 326-330
    [134] 吴洪, 王宇新, 王世昌, 直接甲醇燃料电池用阻醇质子导电膜聚乙烯醇-聚苯乙烯磺酸共混膜, 功能高分子学报, 2002, 15: 6-10
    [135] Hodgdon R B, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules, J. Polym. Sci, 1968, 6: 171
    [136] U.S. Patent 5,422,411
    [137] Beattie P D, Orfino F P, Basura V I, et al., Ionic conductivity of proton exchange membranes, J. Electroanal. Chem, 2001, 503: 45-56
    [138] Basura V I, Chuy C, Beattie P D, et al., Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,α,β-trifluorostyrene (BAM?) and sulfonated styrene-(ethylene-butylene)-styene triblock (DAIS-analytical) copolymers, J. Electroanal. Chem, 2001, 501: 77-88
    [139] Savadogo O, Emerging membranes for electrochemical systems: (I)solid polymer electrolyte membranes for fuel cell systems. J. New Mat. Electrochem. Systems, 1998,1:47-66
    [140] Wei J, Stone C, Steck A E, Trifluorostyrene and substituted trifluorostyrenecoplymeric compositions and ion-exchange membranes formed thereform, U.S. Patent, 5422411, 1995
    [141] Basura V I, Beattie P D, Holdcroft S, Solid-state electrochemical oxygen reduction at Pt/Nafion117 and Pt/BAM3GTM 407 interfaces, J. Electroanal. Chem, 1998, 458: 1-5
    [142] Gupta B., Scherer G., Proton exchange membranes by radiation grafting of styrene onto FEP films. I. thermal characteristics of copolymer membranes, J. Appl. Polym. Sci, 1993, 50(12): 2121-2134
    [143] Gupta B, Scherer G, Proton-exchange membranes by radiation-induced graft-copolymerization of monomers into teflon-FEP films , Chimia, 1994, 48 (5): 127-137
    [144] Bhuvanesh G, Felix N. B, Günther G. S, et al., Development of radiation-grafted FEP-g-polystyrene membranes: some property-structure correlations, Polym. Adv. Technol, 1994, 5(9): 493-498
    [145] Brack H P, Wyler M, Peter G, et al., A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes, J. Membr. Sci, 2003, 214: 1–19
    [146] Tetsuya Y, Kazuhiro K, Masaharu A, Preparation of proton exchange membranes based on crosslinked polytetrafluoroethylene for fuel cell applications, Polymer, 2004, 45: 6569–6573
    [147] AricòA.S, Baglio V., Cret P., Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells, J. Power Sources, 2003, 123:107–115
    [148] Hietala S, Holmberg S, Karjalainen M, Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride) PVDF membranes , J. Mater. Chem,1997, 7 (5): 721-726
    [149] Hietala S, Koel M, Skou E, Thermal stability of styrene grafted and s ulfonated proton conducting membranes based on poly(vinylidene fluoride) J. Mater. Chem, 1998, 8 (5): 1127-1132
    [150] Holmberg S, Nasman Jh, Sundholm F, Synthesis and properties of sulfonated and crosslinked Poly[(vinylidene fluoride)-graft-styrene] membranes , Polym. Adv. Technol, 1998, 9 (2): 121-127
    [151] Ostrovskii D I, Torel L M, Paronen M, Water sorption properties of and the state of water in PVDF-based proton conducting membranes, Solid State Ionics, 1997, 97: 315-321
    [152] Hietala S, Maunu Sl, Sundholm F , Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion 117 polymer electrolyte membranes , J. Polym. Sci.Part B-Polym. Phys, 2000, 38 (24): 3277-3284
    [153] Mika Ti, Ritva S, Veli E, ASAXS Study of styrene-grafted sulfonated poly(vinylidene fluoride) membranes, J Polym Sci B: Polym Phys,2000, 38: 1734–1748
    [154] Wang H, Capuano G A, Behavior of raipore radiation-grafted polymer membranes in H2/O2 fuel cells, J. Electrochem. Soc, 1998, 145(3): 780-784
    [155] Kerres J, Cui W, Eigenberger G, et al., in Proceedings of the 11th Hydrogen Conference, (Veziroglu T N, Winter C J, Baselt J P, et al., eds.), Stuttgart, Germany, June 23-28, 1996, p.1951
    [156] Mattsson B, Ericson H, Torell L M, et al., Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy, Electrochimica Acta, 2000, 45: 1405-1408
    [157] 杨洪迁,钱晓良,索进平,燃料电池用质子交换膜,化学通报,2003,6:w034
    [158] Blanco J F, Nguyen Q T, Schaetzel P, Sulfonation of polysulfones: suitability of the sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci, 2002, 84: 2461-2473
    [159] Glipa X, Haddad M E, Jones D J, Synthesis and characterization of sulfonated polybenzimidazole: a highly conducting proton exchange polymer, Solid State Ionics, 1997, 97:323-331
    [160] Bhuvanesh G, Felix N. B, Günther G. S, Development of radiation-grafted FEP-g-polystyrene membranes: some property-structure correlations, Polym. Adv. Technol, 1994, 5(9): 493-498
    [161] Brack H P, Wyler M, Peter G, A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes, J. Membr. Sci, 2003, 214: 1–19
    [162] Xiao G, Sun G, Yan D, Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromol. Rapid Commun, 2002, 23: 488-492
    [163] Gao Y, Robertson G P, Guiver M D, Direct copolymerization of sulfonated Poly(phthalazinone arylene ether)s for proton-exchange-membrane materials, J Polym Sci Part A: Polym Chem, 2003, 41: 2731-2742
    [164] Blanco J F, Nguyen Q T, Schaetzel P, Sulfonation of polysulfones: suitability of the sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci, 2002, 84: 2461-2473
    [165] Chen M H, Chiao T C, Tseng T W, Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes, J. Appl. Polym. Sci, 1996: 61, 1205-1209
    [166] Deimede V., Voyiatzis G. A., Kallitsis J. K, et al., Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications, Macromolecules, 2000, 33: 7609-7617
    [167] Hasiotis A C, V. Deimede A, Kontoyannis A C, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole, Electrochimica Acta, 2001, 46: 2401–2406
    [168] Nolte R, Ledjeff K, Bauer M, Partially sulfonated poly(arylene ether sulfone)- a versatile proton conducting membrane material for modern energy conversion technologies, J. Membr. Sci, 1993, 83: 211-220
    [169] Kerres J, Cui W, Richie S, New sulfonated engineering polymers via the metalation route. 1. Sulfonated poly(ether sulfone) PSU Udel? via metalation-sulfination-oxidation, J. Polym. Sci, 1996, 34: 2421
    [170] Lufrano F, Gatto I, Staiti P, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics, 2001, 145: 47-51
    [171] Kopitzke R W, Linkous C A, Anderson H R, Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes, J. Electrochem. Soc, 2000, 147: 1677-1681
    [172] Blanco J F, Nguyen Q T, Schaetzel P, Sulfonation of polysulfones: suitability of the sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci, 2002, 84: 2461-2473
    [173] Wang F, Hickner M, Kim Y S, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J. Membr. Sci, 2002, 197: 231-242
    [174] Hickner M, Wang F, Kim Y S, High temperature proton exchange membrane nanocomposites for fuel cells, 2002 Annual Hydrogen Program Review Meeting, May 9, 2002
    [175] Jones D J, Rozière J, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci, 2001, 185: 41-58
    [176] Wainright J S, Wang J T, Weng D, Acid-doped polybenzimidazoles: a new polymer electrolyte, J. Electrochem. Soc, 1995, 142(7): L121-L123
    [177] Pohl H A, Chartoff R P, J. Polym Sci., Part A, 1964, 2: 2787
    [178] Powers E D, Serad G A, in High Performance Polymers: Their Origin and Development, (Seymour R B, Kirshenbaum G S, eds.), Elsevier, New York, 1986, p. 355
    [179] Glipa X, Haddad M El, Jones D J, Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer, Solid State Ionics, 1997, 97: 323-331
    [180] Bae J-M, Honma I, Murata M, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, 2002, 147: 189-194
    [181] Rikukawa M, Sanui K, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci, 2000, 25: 1463-1502
    [182] Kawahara M, Rikukawa M, Sanui K, Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films, Solid State Ionics, 2000, 136&137: 1193-1196
    [183] Staller C ,Schumacher K,Schlarb B ,Centner A ,Hartz O. [P] .US 2002/ 0161079 A1 ,20022102311
    [184] 刘启志,蒲鸿丁,燃料电池用改性 PBI 膜研究进展,高分子材料科学与工程, 2005, 212:29-33
    [185] Li Q, He R, Berg R W, Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells, Solid State Ionics, 2004, 168: 177–185
    [186] He R, Li Q, Xiao G, J. Membr. Sci., Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, 2003,226:169-184
    [187] David M, Hans G, Oscar M, Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolytes, Chem. Mater, 2004, 16, 604-607
    [188] Bouchet R, Siebert E, Proton conduction in acid doped polybenzimidazole, Solid State Ionics, 1999, 118: 287-299
    [189] Fontanella J J , WintersgillM C, Wainrigh t J S, Electroch im ica A cta, 1998, 43: 1289.
    [190] Wainright J S, Wang J, Weng D. J. Electrochemical Society, 1995, 142: L 121
    [191] Bouchet R, Siebert E. Solid State Ionics, 1999, 118: 287
    [192] Li Q, Hjuler H A, Hasiotis C, Kallitsis J K, Kontonyannis C, Bejrrum N, solid State Lett, 2002, 5:A125-134
    [193] Wycisk R, Pintauro P N, Sulfonated polyphosphazene ion-exchange membranes, J. Membr. Sci, 1996, 119: 155-160
    [194] Allcock H R, Hofmann M A, Ambler C M, et al., Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes) as proton-conducting membranes for direct methanol fuel cells, J. Membr. Sci, 2002, 201: 47-54
    [195] Allock R H, Hoffman M A, Ambler CM, Lvov S N, Phenyl phosphonic acid f unctionalized poly(aryloxyphosphazenes) as proton-conducting membranes for direct methanol fuel cells, J. Membr. Sci, 2002, 201:47-54
    [196] Michale A H, Hossein G, Yu S K, Brian R E, James E M, Alternative polymersystems for proton exchange membranes (PEMS), Chem Rev, 2004,104:4587-4612
    [197] Bauer B, Jones D J, Rozière J, Electrochemical characterisation of sulfonated polyetherketone membranes, J. New Mat. Electrochem. Systems, 2000, 3: 93-98
    [198] WO 99/29763
    [199] Gilles P. Robertson, Serguei D. Mikhailenko , Keping W, Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, Journal of Membrane Science, 2003,219:113–121
    [200] Silva V S, Ruffmann B, Vetter S, Mendes A, Madeira M, Nunes S P, Characterization and application of composite membranes in DMFC, Catalysis Today ,2005,104: 205–212
    [201] Silva V S, Ruffmann B, Vetter S, Boaventura M, Mendesb A.M, Mass transport of direct methanol fuel cell species insulfonated poly(ether ether ketone) membranes, Electrochimica Acta, 2006, 51:3699–3706
    [202] Silva V S, Weisshaar S, Reissner R, Ruffmann B, Vetter S, Mendesb A, Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures, Journal of Power Sources, 2005, 145:485–494
    [203] Wu H L , ChenC M. Ma a, Liu F Y, Chen C-Y, Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes, European Polymer Journal, 2006, 42:1688–1695
    [204] Kaliaguine S, Mikhailenko S D,Wang K P, Xing P, Robertson G, Guiver M, Properties of SPEEK based PEMs for fuel cell application, Catalysis Today,2003,82:213–222
    [205] Zaidi S M J, Mikhailenko S D, Robertson G, Guiver M D, Kaliaguine S,_ Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science ,2000,173:17–34
    [206] Wu H L , Chen C M, Ma, Li C H, Lee T M, Chen C Y, Chiang C L, Chen W, Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane, Journal of Membrane Science,2006,280: 501–508
    [207] Nagarale R K, Gohil G S, Vinod K, Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane, Journal of Membrane Science, 2006, 280: 389–396
    [208] Krishnan P, Park J S, Yang T H, Lee W Y, Kim C S, Sulfonated poly(ether ether ketone)-based composite membrane for polymer electrolyte membranefuel cells, Journal of Power Sources, 2006, in press
    [209] Muthu R T S L, Jochen M H, Schlenstedt K, Vogel C, Sulphonated poly(ether ether ketone) copolymers: Synthesis,characterisation and membrane properties, Journal of Membrane Science, 2005, 261: 27–35
    [210] 李磊,直接甲醇燃料电池聚合物电解质的研究:[博士学位论文],天津;天津大学,2003
    [211] Paturza L, Basile A, Iulianelli A, Jasen J C, High temperature proton exchange membrane fuel cells using a sulfonated membrane obtained via H2SO4 treatment of PEEK-WC, Catalyst Today, 2005,104:213-218
    [212] Basile A, Paturzo L, Iulianelli A, Gatto I, Passalacqua E, Sulfonated PEEK-WC membranes for proton conducting membrane fuel cell: effect of the increasing level of sulfonation on electrochemical performances, Journal of membrane science, 2006, in press
    [213] Chen Y L, Meng Y Z, Wang S J, Tian S H, Chen Y, Hay A S, Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application. Journal of membrane science, 2006,280:433-441
    [214] Liu B J, Kim D S, Murphy J, Robertson G P, Guiver M D, Sun Y M, Liu Y L, Lai J Y, Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s for fuel cell applications, Journal of membrane science, 2006,280:54-64
    [215] Xiao G Y, Sun G M, Yan D Y, Polyelectrolytes for fuel cells made of sulfonated(pathalazinone ether ketone)s, Macromol. Rapid Commun, 2002,23:488-492
    [216] Su Y H, Liu Y L, Sun Y M, Lai J Y, Using silica nanoparticles for modifying sulfonated poly(pathalazinone ether ketone) membrane for direct methanol fuel cell: a significant improvement on cell performance, Journal of power sources, 2006, 155:111-117
    [217] 邓会宁,含有杂萘联苯的聚芳醚电解质膜研究:[博士学位论文],天津:天津大学,2004
    [218] Zaidi S M J, Mikhailenko S D, Robertson G P, et al., Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci, 2000, 173: 17-34
    [219] Krishnan P, Park J S, Kim C S,Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron hosphate composite membranes by an in situ sol–gel process,Journal of Membrane Science, 2006, 279: 220–229
    [220] Krishnan P, Park J S, Yang T H, Lee W Y, Kim C S, Sulfonated poly(ether ether ketone)-based composite membranefor polymer electrolyte membrane fuel cells, Journal of Power Sources, 2006,in press
    [221] Zhang G W, Zhou Z T, Organic/inorganic composite membranes forapplication in DMFC, Journal of Membrane Science, 2005, 261:107–113
    [222] Zaidi S M J, Ahmad M I, Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications, Journal of Membrane Science 2006, 279:548–557
    [223] Ren S Z , Li C N, Zhao X S, Wu Z M, Wang S L, Sun G Q, Xin Q, Yang X F, Surface modification of sulfonated poly(ether ether ketone) membranesusing Nafion solution for direct methanol fuel cells. Journal of Membrane Science,2005,247 :59–63
    [224] 丁孟贤,何天白,聚酰亚胺新型材料,北京,科学出版社,1998
    [225] Robert C T S, John R V, Investigations of conductivity in FEP-basedRadiation - grafted alkaline anion-exchange membranes, Solid State Ionics,2005, 176: 585–597
    [226] Faure S, Cornet N, Gebel G, In Proceeding of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems, Montreal, Canada, July 6-10, 1997, p. 818
    [227] Woo Y T, Oh S H, Kang Y S, Jung B, Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, Journal of membrane science, 2003, 220: 31-45
    [228] Gebel G, Aldebert P, Pineri M, Swelling study of perfluorosulphonated ionomer membranes, Polymer, 1993, 34: 333-339
    [229] Yin Y, Fang J H, Cui Y F, Tanaka K, Kita H, Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2’,4’-diamiphenoxy) propane sulfonic acid, polymer, 2003, 44:4509-4518
    [230] Asnao N, Aoki M, Suziki S, Miyatake K, Uchida H, Watanba M, Aliphatic/aromatic polyimide ionomers as a proton conductive membranes for fuel cell application, J. AM .CHEM. SOC, 2006,128:1762-1769
    [231] Baldauf M, Preidel W. Status of the development of a direct methanol fuel cell .J Power Sources, 1999, 84: 161-166
    [232] Yu E H, Scott K. Development of direct methanol alkaline fuel cells using anion exchange membrances. J Power Sources, 2004, 137: 248-256
    [233] Robert C T S, John R V, Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes, Solid State Ionics , 2005, 176: 585–597
    [234] Timothy N. D, Robert C. T. S, John R V, Alkaline anion-exchange radiation -grafted membranes for possible electrochemical application in fuel cells, J. Mater. Chem., 2003, 13:712–721
    [235] Demarconnay L, Coutanceau C, Leger J.-M, Electrochim. Acta ,2004,49:4513
    [236] Abdel Rahim M A, Abdel Hameed R M, Khali M W l, J. PowerSources,2004,134:160
    [237] Hqbner G, Roduner E. J. Mater. Chem,1999,9:409
    [238] 方度杨, 维驿, 全氟离子交换膜—制法、性能和应用, 北京: 化学工业出版社, 1993
    [239] 李基森, 许景文, 徐元耀等, 离子交换膜及其应用, 北京: 科学出版社, 1977
    [240] Li L, Wang Y X, Quaternized polyethersulfone cardo anion exchange membranes for direct methanol alkaline fuel cells, Journal of membrane science, 2005,262:1-4
    [241] Timothy N D, Robert C T S, John R V, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, J.Mater.Chem, 2002,12:3371-3373
    [242] Eileen Hao Yu, Keith Scott,Development of direct methanol alkaline fuel cells usinganion exchange membranes, Journal of Power Sources,2004, 137:248–256
    [243] John R V, Robert C T S, An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation free solid state alkaline fuel cells, electrochemistry communications,2006,8:839-843
    [244] Yamada K, Yasuda K, Fujiwara N, Siroma Z, et al, Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte, 2003,5:892-896
    [245] 刘勇,刘世斌,张忠林,郝晓刚,阴离子膜直接甲醇燃料电池,电源技术,2006, 130:125-129
    [246] 王常珍,固体电解质和化学传感器,北京:冶金工业出版社,2000
    [247] 史美伦,固体电解质,重庆:科学技术文献出版社重庆分社,1982
    [248] Gardner C. L., Anantaraman A. V., Studies on ion-exchange membranes. Ⅱ. measurement of the ansisotropic conductance of Nafion, J. Electroanal. Chem, 1998, 449:209-214
    [249] 中华人民共和国国家技术监督局, GB1040-79, 中华人民共和国国家标准, 北京: 中国标准出版社, 1979-05-01
    [250] DEGUSSA 公司产品手册
    [251] Jin X, Bishop M T, Ellis T S, et al., A sulphonated poly(aryl ether ketone), British Polym. J, 1985, 17: 4-10
    [252] Bishop M T, Karasz F E, Russo P S, et al., Solubility and properties of a poly(aryl ether ketone) in strong acids, Macromolecules, 1985, 18: 86-93
    [253] Zawodzinski T A, Springer T E, Davey J, et al., J. Electrochem. Soc, 1993, 140: 1981-1986
    [254] Kreuer K D, On the development of proton conducting polymer membrane forhydrogen and methanol fuel cells, J. Membr. Sci, 2001,185: 29.
    [255] Silva V S, Ruffmann B, Vetter S, Nunes P, Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes. Electrochemical Acta ,2006,51:3699-3706.
    [256] Kauranen P S, Skou E, Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures, J. Appl. Electrochem., 1996, 26:909-915
    [257] Tricoli V, Carretta N, Bartolozzi M, A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes, J. Electrochem. Soc, 2000, 147: 1286-1290
    [258] Stein E W, A. Clearfield, M.A. Subramanian, Conductivity of group Ⅳ metal sulfophosphonate and a new class of interstratified metal amine sulfophosphonates, Solid State Ionics, 1996,83:113.
    [259] Alberti G.,Casciola M, Composite membranes for medium-temperature PEM fuel cells, Annu. Rev. Mater. Res, 2003,33:129-154
    [260] Yamazaki Y., M.Y. Jang, T. Taniyama, Proton conductivity of zirconium tricarboxybutyl phosphonate/PBI nanocomposite membrane, Sci and Tech of Advanced Material, 2004,5:455.
    [261] Stein E W, Clearfield A, Subramanian M A, Conductivity of group Ⅳ metal sulfophosphonate and a new class of interstratified metal amine-sulfophosphonates, Solid State Ionics, 1996,83:113.
    [262] Kim Y T, Song M.K, Kim K.H, Park S.B, Min S.K., Rhee H.W., Nafion/ZrSPP composite membrane for high temperature operation of PEMFCs, Electrochemical Acta, 2004,50:645
    [263] 柯以侃,董惠茹,分析化学手册-光谱分析,第三版,北京:化学工业出版社,1998
    [264] Shao P L, Mauritz K A, Moore R B, Perfluorosulfonate ionomer/[SiO2-TiO2] nanocomposite via polymer in situ sol-gel chemistry sequential alcoxide procedure, J. Polym. Sci. Phys, 1996, 34: 873
    [265] Merkel T C, Freeman B D, Spontak R J, Sorption, Transport, and Structural Evidence for Enhanced Free Volume in Poly(4-methyl-2-pentyne)/Fumed Silica Nanocomposite Membranes, Chem. Mater, 2003,15:105-123
    [266] Hill A J, Freeman B D, Jaffe M, Merkel T C, Tailoring nanospace, Journal of molecular structure,2005,739:173-178
    [267] Rice C, Ha S, Mase R I, Wieckowski A, Catalysts for direct formic acid fuel cells, Journal of Power Sources,2003,115:229–235
    [268] Lingling Zhang a, Yawen Tang a, Jianchun Baoa, Tianhong Lua,b,Cun Li. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acidfuel cell, Journal of Power Sources,2006,62:177–179
    [269] Livshits V, Peled E, Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC), Journal of Power Sources,2006,in press
    [270] Yoo J H, Choi H G, Chung C H, Cho S M, fuel cells using dimethyl ether, Journal of power sources, 2006 ,in press
    [271] Robertson G P, Wang K P, Xing P X, Michael D. G, Serge K, Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, Journal of Membrane Science, 2003, 219:113–121
    [272] 李俊刚,李源勋,高分子材料,北京:化学工业出版社,2002
    [273] 杨玉良,胡汉杰,高分子物理,北京:化学工业出版社,2001
    [274] Cui W, Kerres J, Eigenberger G, development and characterization of ion-exchange polymer blend membranes, Sep Puri,1988,14:145–154.
    [275] 黄锐,王勇,林旭,特种工程塑料聚醚砜,塑料科技,1994,99:52-55
    [276] 赵孝彬,杜磊,张小平,郑剑,聚合物共混物的相容性及相分离,高分子通报,2001,4:75-81
    [277] Jeffrey V G, Weiss R A, Montgomery T S, Influence of blend miscibility on the proton conductivity and methanol permeability of polymer electrolyte blends, Journal of polymer science: part B, 2006,44:2253-2266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700