木质素磺酸盐的溶液行为及其在气/液和固/液界面的吸附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充分利用天然可再生资源,生产“环境友好”的绿色产品以及开发绿色化学工艺已成为当前化学、化工及其交叉学科研究热点。木质素是自然界丰富的天然高分子聚合物,是一种可再生资源;工业木质素磺酸盐主要来自造纸废液,来源丰富、价格低廉、无毒,是一种阴离子表面活性剂,可广泛用作水煤浆添加剂、混凝土减水剂、农药分散剂、陶瓷助磨剂等。木质素磺酸盐的应用性能与其物化性能密切相关,而木质素磺酸盐在溶液中的行为又会影响其在界面的吸附性能,因此,研究木质素磺酸盐的溶液行为及其在界面吸附机理对提高其应用性能具有重要意义。然而由于木质素磺酸盐结构的不确定性和成分的复杂性,导致木质素磺酸盐的溶液行为及其在界面的吸附行为研究难以得出规律性结果,影响了木质素磺酸盐的应用研究进展。本文系统研究了离子强度及pH值等因素对木质素磺酸钠在溶液中的聚集行为及气/液界面、固/液界面吸附行为的影响,揭示了木质素磺酸盐在界面的吸附机理。此研究对木质素磺酸盐的资源化利用具有重要的理论意义和应用价值。
     本文首先以粗木质素磺酸钠为原料,比较了树脂法、超滤法、长链胺法和溶剂萃取法的提纯效果与效率。红外光谱、元素分析、凝胶渗透色谱等测试结果表明,溶剂萃取法不能达到提纯目的;树脂法、超滤法、长链胺法可除去相对分子量小于1000的杂质,粗木质素磺酸钠经提纯后木质素磺酸钠含量从59.0%提高到90.0%左右,且提纯样品的重均分子量和数均分子量均增大。从产品收率、提纯效果及提纯工艺三个方面分析得出超滤提纯法最优。因此,本文采用截留分子量为2500的超滤膜对粗木质素磺酸钠进行了提纯,为后续研究提供原料。
     采用电位滴定仪、Zeta电位仪、表面张力仪、静态荧光仪、动态光散射仪(DLS)等表征技术研究了离子强度和pH值对木质素磺酸钠在溶液中聚集行为的影响。结果表明木质素磺酸钠在水溶液中的临界聚集浓度(CAC)为0.05 g/L。当浓度低于CAC时,溶液中存在大量的单分子和少量聚集体;当浓度高于CAC时,单分子数量减少,聚集体数量急剧增加。单分子和聚集体的粒径分别为8 nm和80 nm左右,其单分子和聚集体的内核均由疏水骨架构成,内核中包含部分弱电离基团如羧基和酚羟基;疏水核的表面不均匀分布着磺酸根及少量的酚羟基。随着浓度增大木质素磺酸钠聚集程度增大;随着pH值增大,疏水核内的弱电离基团发生电离,由于静电斥力作用木质素磺酸钠的疏水内核由紧密变得疏松,其单分子和聚集体粒径增大;离子强度增大,屏蔽了木质素磺酸钠分子间的静电斥力使得聚集程度增大,聚集体粒径增大。
     采用动态表面张力仪及LB膜天平研究了离子强度和pH值对木质素磺酸钠在气/液界面吸附行为的影响。结果表明,木质素磺酸钠在气/液界面吸附是一个缓慢的过程,随着离子强度增大和pH值减小木质素磺酸钠溶液表面张力降低。木质素磺酸钠在气/液界面形成不稳定的可溶性单分子膜,随着浓度增大、pH值减小和离子强度增大,气/液界面膜稳定性变差。大分子量的木质素磺酸钠优先吸附于气/液界面,随着浓度增大小分子量的分子也逐步吸附于气/液界面,浓度继续增大,分子在气/液界面由混乱不规则的排列状态逐步变成有序而紧密的排列状态。
     研究了温度、pH值、离子强度及脲对木质素磺酸钠在TiO_2/水界面吸附的影响,测定了吸附前后木质素磺酸钠分子量的变化。结果表明,温度升高和pH值减小,吸附速率增大;随着离子强度增大,吸附速率先减小后增大。随着温度升高、离子强度增大和pH值减小饱和吸附量增大,而随着脲的加入饱和吸附量减小;且大分子量的木质素磺酸钠优先吸附于TiO_2/水界面。不同温度、pH值和加入脲时吸附等温线符合Langmuir单层吸附模型,而加入NaCl后,则符合Freundlich单层吸附模型。
     研究了温度、pH值、离子强度及脲对木质素磺酸钠在活性炭/水界面吸附的影响,测定了吸附前后木质素磺酸钠分子量的变化。结果表明,温度变化对吸附影响较小。随着pH值降低、离子强度增大,吸附速率和饱和吸附量增大,但随着脲的加入饱和吸附量减小,且小分子量的木质素磺酸钠优先吸附于活性炭/水界面。不同温度、pH值和加入脲时吸附等温线符合Langmuir单层吸附模型;而加入NaCl后,则符合Freundlich单层吸附模型。
     研究表明,木质素磺酸钠在TiO_2和活性炭表面的吸附过程都存在着静电吸附、氢键吸附和疏水作用吸附,属于单层多点式吸附。随着温度升高,木质素磺酸钠在TiO_2颗粒表面的吸附速率和吸附量增大,而对其在活性炭表面的吸附几乎没有影响。相同条件下其在活性炭表面的吸附量约为TiO_2表面的10倍,大分子量的木质素磺酸钠优先吸附于TiO_2表面,而小分子量的木质素磺酸钠优先吸附于活性炭表面,这是由于活性炭比TiO_2孔结构丰富、比表面积大而造成的。溶液pH值减小和离子强度增大木质素磺酸钠在两种吸附剂表面吸附量均增加。脲的加入使木质素磺酸钠在活性炭和TiO_2表面的吸附量减小;与在TiO_2表面相比,脲使木质素磺酸钠在活性炭表面吸附量降低的程度更明显,这说明木质素磺酸钠在活性炭表面吸附过程中,活性炭表面活性基团产生了较大氢键作用。研究结果可为木质素磺酸盐在金属氧化物和多孔非极性固体颗粒上的吸附研究和应用提供理论参考。
Making full use of natural renewable resources and producing environmentally friendly green materials through green catalytic processes have become the prime frontier research in the linked fields of chemistry and chemical engineering. Lignin is the main component of the plant cell wall; it exists widely in nature, and it is the second most abundant biopolymer (after cellulose) on earth. Lignosulfonates come from the byproducts of the pulp and paper industry; they are renewable, low cost, nontoxic and abundant. As a kind of anionic surfactant, lignosulfonates can be widely used as a coal-water slurry additive, a concrete water-reducing agent, a pesticide dispersant, a ceramic grinding agent and so on. The application performance of lignosulfonates is closely related to their physicochemical properties, such as their surface activity and adsorption performance (which is affected by the solution behavior of lignosulfonates) at the interface. Thus, study on the solution behavior of lignosulfonates and its adsorption mechanism at interface has an important meaning for improving its application performance. But it is difficult to obtain regularity results from the studies on the solution behavior and interface adsorption mechanism of lignosulfonates as the uncertaincy structure and composition complexity of lignosulfonates. In this thesis we report on studies of the influence of ionic strength and pH on the solution behavior of lignosulfonates and their adsorption at the air/liquid and solid/liquid interfaces. The structure of lignosulfonates in aqueous solution and their adsorption mechanism at interfaces are analyzed. This research can provide theoretical instruction for industrial applications of lignosulfonates. This research has an important theoretical significance and application value for the utilization of lignosulfonates as resources.
     Firstly, commercial sodium lignosulfonate (SL) was purified with the ionic-resin method, ultrafiltration, long chain aliphatic amine extraction and solvent extraction. The structure, composition and molecular weight distribution of raw SL and purified SL were characterized by infra-red spectroscopy, elementary analysis and gel chromatography. Experimental results indicated that solvent extraction did not purify raw SL efficiently. The ionic-resin method, ultrafiltration and long chain aliphatic amine extraction removed impurities with molecular weight less than 1000; after purification, the content of lignosulfonate was raised from 59.0% to 90.0%; the number average molecular weight and weight average molecular weight of purified SL increased. Ultrafiltration is the most favourable purification method, as measured by the purified SL yields, the purification efficiency and the purification technology. Consequently, in this thesis we chose the purified SL (PSL) obtained from the ultrafiltration method with 2500 ultrafiltraion membrane as our research sample for studing the solution behavior of PSL and the adsorption of PSL at air/liquid and solid/liquid interfaces.
     Secondly, the solution behaviors of PSL at different ionic strengths and pH values have been investigated by means of acid-base titration, surface tension, viscosity, fluorescence spectrometry and dynamic light scattering (DLS) experiments. Results showed that the critical aggregate concentration (CAC) of PSL was 0.05g/L; when the concentration of PSL was below CAC, there were a few of PSL aggregates in solution; when the concentration was above CAC, the number of PSL aggregates increased sharply. The average dimensions of PSL molecules and PSL aggregates in aqueous solution were about 8 nm and 80 nm, respectively. The surface of PSL aggregates was mainly covered by sulfonic groups and a few of phenolic hydroxyl groups, and the core of PSL aggregates was generated by hydrophobic chains. The hydrophobic core was loose and contained many weakly ionized groups such as carboxyls and phenolic hydroxyl groups. Increasing the PSL concentration favoured aggregation of PSL. While along with the increasing of the pH value, the number of ionic groups in the hydrophobic core also increased, and the PSL hydrophobic core became looser; thus the diameter of PSL aggregates increased as the pH value increased. The electrostatic repulsion between PSL molecules can be shielded by addition of salt, so that the diameter of PSL aggregates increased as the ionic strength increased.
     Thirdly, the influence of ionic strength and pH on the adsorption behavior of PSL at the air/liquid interface was studied by a dynamic tension meter and an LB film balance. The results showed that the adsorption of PSL at the air/liquid interface was a slow process. The surface tension of PSL solutions decreased as the ionic strength increased and the pH value decreased. PSL could form unstable and soluble films at the air/liquid interface; furthermore, the stability of the PSL film at the air/liquid interface decreased as the concentration of PSL and ionic strength increased and the pH values decreased. The results indicated that the PSL with higher molecular weight was preferably adsorbed at the air/liquid interface, and then the PSL with lower molecular weight was adsorbed at the air/liquid interface when the concentration of PSL increased. In addition, the arrangement of PSL at the air/liquid interface turned from disorderly to orderly as the concentration of PSL increased.
     Fourthly, the influences of temperature, pH, ionic strength and addition of urea on the adsorption of PSL at TiO_2/water interface were investgated. The molecular weights of PSL before and after adsorption were determined. The experimental results showed that the adsorption rate of PSL at TiO_2/water interface increased as the temperature increased and decreased as the pH value increased, while it decreased first and increased later with the ionic strength increased. The adsorption amount increased as the temperature and ionic strength increased, but decreased with the pH value increased and addition of urea. The PSL with higher molecular weight was first adsorbed at TiO_2/water interface. The adsorption isotherms of PSL at TiO_2/water interface conformed to the Langmuir adsorption model at different temperatures, pH values and with addition of urea, but with addition of NaCl, the adsorption isotherms of PSL at TiO_2/water interface corresponded to the Freundlich adsorption model.
     Fifthly, the influences of temperature, pH, ionic strength and addition of urea on the adsorption of PSL at active carbon/water were researched. The molecular weights of PSL before and after adsorption were determined. The experimental results showed that temperature had little influence on the adsorption of PSL at active carbon/water interface. The adsorption rate and adsorption amount of PSL increased with increasing of ionic strength increased and decreasing of pH value, but the adsorption amount of PSL decreased with addition of urea. The PSL with lower molecular weight was first adsorbed at the active carbon/water interface. The adsorption isotherms of PSL at active carbon/water interface conformed to the Langmuir adsorption model at different temperatures, pH values and with addition of urea; however, it corresponded to the Freundlich adsorption model with addition of NaCl.
     Based on the experimental exploration, it was concluded that PSL absorbed at TiO_2/water and active carbon/water interfaces by means of electrostatic interaction, hydrogen bonding and hydrophobic interaction. There had some differences between the two adsorbent processes. Firstly,the adsorption rate and amount of PSL at TiO_2/water interface increased as temperature increased, while the temperature did not have an effect on the adsorption of PSL at active carbon/water interface. Secondly, the adsorption amount of PSL at the active carbon /water interface was 10 times as the TiO_2/water interface under the same conditions. Thirdly, the PSL with higher molecular weight was preferably absorbed to the TiO_2/water interface, while the opposite happened at active carbon/water interface because of their rich porous structure and higher specific surface area. The decrease of the pH value and the increase of the ionic strength had the same effect on the adsorption behavior when PSL were adsorbed on the two adsorbents. With addition of urea, the adsoption amount of PSL on the two adsorbents decreased, and the reduced degree on active carbon surface is bigger than that on TiO_2 surface. It indicated that the hydrogen interaction was larger when PSL adsorbed on active carbon than that on TiO_2 surface. The results could provide a significant insight in understanding the adsorption and application of PSL on the metallic oxide and porous nonpolar particles.
引文
[1]金勇,董阳,魏德卿.高分子表面活性剂的合成[J].化学进展,2005, 17(1): 151-156
    [2]吉田时行,进腾信一,大垣忠义等.《界面活性剂》,东京:工学图书株式会社,昭和62年: 29-31
    [3] Schwartz A. M., Perry J.W., Berch J.. Surface Active Agents and Detergents. Vol2. NewYork: Interscience, 1958
    [4] Sislyer J. P.. Encyclopedia of Surface- Active Agents. Vol 1. Chemical Publ, 1952
    [5] Moilliet J. L., Collie B., Black W.. Surface Activity. London: E and F N Spon, 1961
    [6] Black W.. Resent Progress in Surface Sci. Danielli J F, Pankhurst K G A, Riddiford A C, eds. Vol 1. New York: Academic Press, 1964: 248-281
    [7] Rosen M. J.. Surfacftants and Interfacial Phenomena, 2nd ed. New York: John Wiley& Sons, 1989. Ch 1
    [8]赵国玺,朱瑶.表面活性剂作用原理[M].中国轻工业出版社,2003.1
    [9] Linfield W. M., ed. Anionic Surfactants. Vol 1 and 2. New York:Marcel Dekker, 1976
    [10] Jungermann E., ed Cationic Surfactants. New York: Marcel Dekker, 1970
    [11] Richmond J. M., ed. Cationic Surfactants, Organic Chemistry. New York: Marcel Dekker, 1990
    [12]王一尘编译.阳离子表面活性剂的合成[M].北京:轻工业出版社,1984
    [13] Lunsted L. G., Schmolka I R. Block and Graft Copcly-merization, Ceresa R J, ed. Vol 2. London: John Wiley & Sons, 1976. Ch 1
    [14]王学川,赵军宁.高分子表面活性剂的合成及其应用进展[J].皮革科学与工程, 2004, 6: 24-30
    [15] Rosen M.J.. Surfactants and Interfacial Phenomena, 2nd, ed. New York: John Wiley& Sons, 1989.Ch 1
    [16] Ouyang X.P., Ke L.X., Guo Y.X., et al. Sulfonation of alkali lignin and its potential use in dispersant for cement [J]. Journal of Dispersion Science and Technology, 2009, 30(1): 1-6
    [17] Pang Yuxia, Qiu Xueqing, Yang Dongjie, et al. Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 312: 154-159
    [18] Singh N.B., Singh V.D., Sarita Rai, et al. Effect of lignosulfonate, calcium chloride and their mixture on the hydration of RHA-blended protland cement[J]. Cement and concrete research, 2002, 32(3): 387-392
    [19] Grierson L.H., Knight J.C., Maharaj R.. The role of calcium ions and lignosulphoate plasticiser in the hydration of cement[J]. Cement and concrete Research, 2005, 35(4): 631-636
    [20] Dilling Peter, Westvaco Corp., Charleston, S. C.. Amine modified sulfonated lignin fordisperse dye[P]. US, 5,972,047, 1999
    [21] Zalevskaya G/L.N.. Some characteristics of pelletizaiton of coal slurries with lignosulfonate[J]. Fuel and Energy Abstracts, 1996, 37(3): 173
    [22] Yang Dongjie, Qiu Xueqing, Zhou Mingsong, et al. Properties of sodium lignosulfonate as dispersant of coal water slurry[J]. Energy Conversion and Management, 2007, 48(9): 2433-2438
    [23] Zhou Mingsong, Qiu Xueqing, Yang Dongjie, et al. High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin[J]. Fuel Processing Technology, 2007, 88(4): 375-382
    [24] Kelebek S., Yoruk S., Smith G/L.W.. Wetting behavior of molybdenite and talc in lignosulfonate/MIBC solutions and their separation by flotation[J]. Sep. Sci. Technol., 2001, 36, 145–157
    [25] Ma Xiaodong, Marek Pawlik. The effect of lignosulfonates on the floatability of talc[J]. Int.J.Miner.Process., 2007, 83: 19-27
    [26] Xu Shongping, Liu Weiqu. Aggregates of amphiphilic fluorinated copolymers and their encapsulating and unloading homopolymer behaviors[J]. Journal of polymer Science: part B: Polymer Physics, 2008, 46: 1000-1006
    [27] Li Yunbo, Chen Xudong, Zhang Mingqiu, et al. Macromolecular aggregation of aqueous polyacrylic acid in the presence of surfactants revealed by resonance rayleigh scattering[J]. Macromolecules 2008, 41, 4873-4880
    [28] Li Yiming, Xu Guiying, Zhu Yanyan, et al. Aggregation behavior of pluronic copolymer in the presence of surfactant:Mesoscopinc simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334: 124-130
    [29]曹晓蓉.水溶性高分子表面活性剂聚集行为[D],山东大学, 2007
    [30] Nikolaos Kotsis,Ekaterini Siakali-kioulafa, Marinos Pitsikalis. Micellization behavior of diblock and triblock copolymers of poly(t-butyl methacrylate) bearing associating short polystryrene end-blocks[J]. European Polymer Journal, 2008, 44: 2687-2694
    [31] Stephan F?rster, Nadja Hermsdorf, Christoph B?ttcher, et al. Structure of polyelectrolyte block copolymer micelles[J]. Macromolecules, 2002,35:4096-4105
    [32] Garg G., Hassan P.A., Kulshreshtha S.K.. Dynamic light scattering studies of rod-like micelles in dilute and semi-dilute regime[J]. Colloids and Surfaces A: Eng. Aspects, 2006, 275: 161-167
    [33] Giyoong Tae, Julia A. Kornfield, Jeffrey A. Hubbell, et al. Ordering transitions offluoroalkyl-ended poly(ethylene glycol): pheology and SANS[J]. Macromolecules, 2002, 35: 4448-4457
    [34] Reidar Lund,Lutz Willner,J?rg Stellbrink, et al. Role of interfacial tension for the structure of PEP-PEO polymeric micelles. A combined SANS and Pendant Drop Tensiometry Investigation[J]. Macromolecules, 2004, 37: 9984-9993
    [35] Chantal Rufier, AndréCollet, Michel Viguier, et al. SDS Interactions with Hydrophbically End-Capped Poly(ethylene Oxide) studied by 13C NMR and SANS[J]. Macromolecules, 2009, 42: 5226-5235
    [36] J?rg Stellbrink, Lutz Willner, Dieter Richter, et al. Self-assembling behavior of butadienyllithium headgroups in benzene via SANS Measurements[J]. Macromolecules, 1999, 32: 5321-5329
    [37] Abragam A.. The principle of nuclear magnetism.Oxford:Clarendon Press, 1961
    [38] Slichter S.P.. Principle of Magnetic Resonance.Berlin: Springer, 1990
    [39] Purcell E., Torrey H., Pound R.. Resonance absorption by nuclear magnetic moments in solid[J]. Phys Rev, 1946, 69: 37-38
    [40] Bloch F., Hansen W., Packard M.. Nuclear Induction. Phys Rev, 1946, 69:127
    [41] Wuethrich K.. NMR protein and Necleic Acids. New York: Wiley, 1986
    [42] Chen C.N., Hoult D.I.. Biomedical Magenetic Resonance Technology, New York: IOP Publishing Ltd, 1989
    [43] Coates G.R., Xiao L.Z., Prammer MG. NMR logging Principles and Application[J]. Houston: Halliburton Energy Services, 1999
    [44] DuY.R.,Zhao S.,Shen L. F.. NMR Studies of Micelles[J]. Annu. ReP. NMR Spectrosc 2002, 48: 246-295
    [45]杨晓焱.单链和gemini表面活性剂的NMR研究[D],中科院物理与数学研究所,2007
    [46] Yuan H.Z.,Cheng G.Z.,Zhao S.,et al. Conformational Dependence of Triton X-100 on Environment studied by 2D NOESY and 1H NMR Relaxation[J]. Langmuir, 2000, 16: 3030-3035
    [47] Gao H.C.,Zhao S.,Mao S.Z.,et al. Mixed Micelles Of Polyethylene Glycol(23) Lauryl Ether with Ionic Surfactants Studied by Proton 1D and 2D NMR[J]. J. Colloid Interface Sci., 2002, 249: 200-208
    [48] Jiang Yan, Chen Hong, Cui Xiaohong, et al. 1H NMR Study on Pre-micellization of Quaternary Ammonium Gemini Surfactants[J]. Langmuir 2008, 24: 3118-3121
    [49] Shimizu S., Pires, P.A.R., EI Seoud,O.A. 1H and 13C NMR study on the aggregation of(2-acylaminoethyl) trimethylammonium chloride surfactants in D2O[J]. Langmuir, 2003, 19(23): 9645-9654
    [50] Kohut A., Voronov A.. Hierarchical micellar structure from amphiphilic invertible polyesters: H NMR spectroscopic study[J]. Langmuir, 2009, 25(8): 4356-4360
    [51] Pizzanelli S., Forte C., Monti S.. Study of the interaction of GFG tripeptide with cesium perfluorooctanonate micelles by means of NMR spectroscopy and MD simulations[J]. Langmuir, 2008, 24(11): 5809-815
    [52] Dupont-Leclercq L., Giroux S., Henry B., et al. Solutionbilization of amphiphilic carboxylic acids in nonionic micelles: Determination of partition coefficients from pKa measurements and NMR experiments[J]. Langmuir, 2007, 23(21): 10463-10470
    [53] Ma J. H., Guo, C., Tang Y.L., et al. 1H NMR spectroscopicn investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solution[J]. Langmuir, 2007, 23(19): 9596-9605
    [54] NakaharaY., Kida T., Nakatsuji Y., et al. New fluorescence method for the determination of the critical micelle concentration by photosensitive monoazacryptand derivatives[J]. Langmuir, 2005, 21: 6688-6695
    [55] Hansson P.. A fluorescence study of divalent and monovalent cationic surfactants interacting with anionic polyelectrolytes[J]. Langmuir, 2001, 17: 4161-4166
    [56] Hansson P., Almgren M.. Reliable aggregation numbers are obtained for polyelectrolyte bound cationic micelles using fluorescence quenching with a cationic surfactant quencher[J]. J.Phys.Chem.B, 2000, 104:1137-1140
    [57] Errico G.D., Ciccarelli D., Ortona O.. Effect of glycerol on micelle formation by ionic and nonionic surfactants at 250C[J]. J.Colloid.Interface Sci., 2005, 286: 747–754
    [58] Rodriguez A., Munoz M., Graciani M.M., et al. Kinetic study in water-ethylene glycol cationic, zwitterionic, nonionic, and anionic micellar solutions[J]. Langmuir, 2004, 20:9945-9952
    [59] Griffiths P.C., Paul A., Heenan R.K., et al. Role of counterion concentration in determining micelle aggregation:Evaluation of the combination of constraints from small-angle neutron scattering, electron paramagnetic resonance, and time-resolved fluorescence quenching[J]. J. Phys. Chem.B, 2004, 108: 3810-3816
    [60] Brown W., Rymdik R., Stam J., et al. Static and dynamic properties of nonionic amphlphile micelles: Triton X-100 in aqueous solutlon[J] J.Phys.Chem.1989, 93: 2512-2519
    [61] Fischer A., Houzelle M.C., Hubert P., et al. Detection of int ramolecular associations inhydrophobically modified pectin derivatives using fluorescent probes[J ] . Langmuir, 1998, 14: 4482-4488
    [62] Winnik F. M., Regismond S. T.A., Goddard E. D.. Interactions of cationic surfactants with a hydrophobically modified cationic cellulose polymer: A study by fluorescence spect roscopy[J ] . Colloids and Surfaces, 1996, 106: 243-247
    [63] Becerra N., Toro C., Zanocco A. L., et al. Characterization of micelles formed by sucrose 6-O-monoesters[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 327:134–139
    [64] Frauke Baβmann-Schnitzler, Jean-Marie Séquaris. Sorption properties of hydrophobically modified poly(acrylic acids) as natural organic matter model substances to pyrene[J]. Colloids and surfaces A: Physicochem. Eng. Aspects , 2005,260:119-128
    [65]史学峰,吴文辉,宫瑞英,等.两亲性香豆胶衍生物溶液中的缔合行为[J].功能高分子学报, 2008, 21(2): 152-158
    [66] Lin Guiying, Zhao Jianxi, Rongjiang. Nile red Probing for the micelle-to-vesicle transition of AOT in aqueous solution [J]. Chemical Physics Letters, 2008, 464: 77-81
    [67]史向阳,吴世康,孙曹民.荧光探针法研究胶原蛋白的水溶液聚集状态[J].高分子学报, 1998, 4: 406-411
    [68]曹亚,李惠林,左榘,等.羧甲基纤维素-十二烷基醇聚氧乙烯醚丙烯酸酯聚物表面活性剂在水溶液中的胶束形态[J].高分子学报, 2000, 3: 70-74
    [69] Price C., Hudd A. L., Stubbersfield R.B., et al. A study of micelle formation by a polystyrene-Poly(ethylene/propylene)block copolymer in a base lubricating oil[J]. Polymer, 1980, 21(1): 9-10
    [70] Yang Jinhua. Li Huilin. Micellar behavior of acrylamide-octylphenylpoly(oxyethylene) acrylate copolymer in aqueous solution[J]. Colloid & Polymer Science, 1999, 277 (11) : 1098-1103
    [71] Rosen S.. PEO-brush at the liquid/gas interface[J]. Colloids and surface A: Physicochemical and Engineering Aspects, 1999, 156: 65-70
    [72] Alexandridis P., Olsson U., Lindman B.. A record nine different phases (for cubic, two Hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphilic block copolymer and selective (water and oil)[J]. Langmuir, 1998, 14: 2627-2638
    [73] Yang Z.H., Sharma R.. Dynamics of PEO-PPO-PEO and PPO-PEO-PPO triblock copolymers at the air/water interface upon thermal stimulation[J]. Langmuir, 2001, 17:6245-6261
    [74]吕庆,李林,刘鸣华.双头基两亲分子在气液界面的Langmuir铺展膜结构[J].物理化学学报, 2001, 17(8): 765-768
    [75] Yuan Shiling, Chen Yijian, Xu Guiying. Molecular dynamics studies on octadecylammonium, chloride at the air/liquid interface[J]. Colloid and surface A: Physicochem. Eng. Aspects, 2006, 280: 108-115
    [76] Chen Q.B., Dong Y.M., Liu H.L., et al. Obserbvation of the domain morphology of Gemini surfactant at an air/liquid in terface using BAM[J]. Acta Physico-Chimica Sinica, 2003, 19(11): 1069-1072
    [77] Cristina Delgado, M.Dolores Merchán, M.Mercedes Velázquez, et al. The adsorption kinetics of 1-N-L-tryptophan-glycerol-ether surfactants at the air-liquid interface: effect of surfactant concentration and alkyl chain length[J]. Colloids and surfaces A: Physicochem. Eng. Aspencts, 2004, 233: 37-144
    [78]张力,何秋学,王恩元,等.煤吸附特性的研究[J].太原理工大学学报, 2001, 3(5): 449-451
    [79] Rosen M.J.. Surfactants and Interfacial Phenomena, John-Wiley&Sons, New York, 1978, Ch2
    [80]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社, 1991.4
    [81]赵振国.氨基酸在固/液界面的吸附作用[J].化学研究与应用, 2001, 13(6): 599-604
    [82] E.H..卢开森-闰德斯.阴离子表面活性剂-表面活性剂作用的物理化学[M].轻工业出版社, 1988: 156
    [83]汤烈贵,朱玉琴.可再生资源研究与开发的新动向[J].化工进展, 1994, 23(5):17-23
    [84]杨淑蕙.植物纤维化学(第三版)[M].北京:中国轻工业出版社. 2001: 69, 108-111, 135, 84-85, 118-119
    [85] Río J. C., Gutiérrez A., Romero J., etal. Identification of residual lignin markers in eucalyp tus kraft pulp s by Py2GC /MS [J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 425-439
    [86] (日)中野准三,木质素的化学-基础与应用[M].北京:轻工业出版社,1988: 1-30
    [87]蒋挺大.木质素[M].北京:化学工业出版社, 2001: 10-260
    [88] Neale G., Homof V., Chiwetelu C. Synergistic surfactant mixtures low containing lignosulfonates[J]. Can. J. Chem, 1981, 59(13): 554-556
    [89] Reid B. Grigg, Bai Baojun. Calcium lignosulfonate ad sorption and desorption on Brea sandstone[J]. Journal of Colloid and Interface Sience, 2004, 279: 36-45
    [90]华乃震.农药悬浮剂的进展、前景和加工技术[J].现代农药, 2007 , (1): 1-7
    [91] Rezanowich A., Yean W.Q., Goring D.A.I.. High resolution electron microscopy of sodium lignin sulfonate[J]. Journal of Applied Polymer Science, 1964, 8(4): 1801-1812
    [92] Goring D.A.I., Polymer properties of lignin and lignin derivatives. In: K.V. Sarkanen and C.H. Ludwig, Editors, Lignins, Occurrence, Formation, Structure and Reactions, Wiley Interscience, New York, 1971, 695–768
    [93] Luner and Kempf U., Properties of lignin monolayers at the air–water interface[J]. Tappi, 1970, 53: 2069–2076
    [94] Kerr A. J., Goring D. A. I.. The ultrastructural arrangement of the wood cell wall[J]. Cellulose Chem. Technol., 1975, 9: 563-573
    [95] Goring D.A.I., Vuong R., Gancet C., et al. The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy[J]. Journal of Applied Polymer Science, 1979, 24: 931-936
    [96] Anna-Kaisa Kontturi. Determination of Diffusion Coefficients and effective charge numbers of lignosulphonate[J]. J.Chem. Soc., Faraday Trans. I, 1988, 84(11): 4033-4041
    [97] Anna-kaisa Kontturi. Diffusion coefficients and effective charge numbers of lignosulphonate[J]. J.Chem.Soc., Faranday Trans.I, 1988, 84(11): 4043-4047
    [98] Afanansjiv N., Korobova E., Parfenova L.. Structure of lignosulfonates macromolecules in solutions[A]. 1997ISWPC Proceedings. Monteral, Canadian.1997:1-3
    [99] Gundersen S.A., Sjoblom J.. High and low-molecular-weight lignosulfonates and Kraft lignins as oil/water-emulsion stabilizers studied by means of electrical conductivity[J]. Collid Ploym Sci, 1999, 277:462-468
    [100] Bernt O. Myrvold. A new model for the structure of lignosulphonates Part1. Behavior in dilute solutions[J]. Industrial crops and products, 2008, 27: 214-219
    [101] Stig Are Gundersen, Marit-Helen Ese, Johan Sj?blom. Langmuir surface and interface films of lignosulfonates and Kraft lignins in the presence of electrolyte and asphaltenes: Correlation to emulsion stability[J]. Colloids and surfaces A: Physicochemical and Engineering Aspects, 2001, 182: 199-218
    [102]张延霖.木质素磺酸盐用作水煤浆添加剂的性能及其分散稳定机理研究[D].华理工大学, 2005
    [103]周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散将黏作用机理研究[D].华南理工大学, 2007
    [104]敖先权,周素华,曾祥钦.木质素表面活性剂在水煤浆制备中的应用[J].煤炭转化, 2004, 27(3): 45-48
    [105]邹立壮,朱书全,王晓玲,等.水煤浆分散剂与煤之间的互相作用Ⅷ木质素磺酸钠对煤的成浆性与水煤浆流变特性的影响[J].应用化学, 2005, 22(5): 479-483
    [106]郑大峰.减水剂对盾构砂浆性能的影响及作用机理研究[D].华南理工大学, 2006
    [107] Ratinac K.R., Stand O.C., Bryant P.J.. Lignosulfonate adsorption on and stabilization of lead zironate titanate in aqueous suspension[J]. Colloid and Interface Science, 2004, 273: 442-454
    [108] Bernt O.Myrvold. Interactions between lignosulphonates and the componernts of the lead-acid battery Part1. Adsoption isothrms[J]. Journal of Power Sources, 2003, 117: 187-202
    [109] Heidi Fagerholm, Leena-Sisko Johansson, Mats Graeffe, et al. Surface charge and viscosity of mixed Si3N4-Y2O3 suspensions contaning Lignosulphonate[J]. Journal of the European Ceramic Society, 1996, 16:671-678
    [110] Tom Asselman, Gil Garmier. Adsorption of model wood polymers and colloids on bentonites[J]. Colloids and Surfaces, 2000, 168: 175-182
    [111] Lisa Palmqvist, Ola Lyckfeldt, Elis Carlstr?m, et al. Dispersion mechanisms in aqueous alumina suspersions at high solids loadings[J]. Colloids and Surfaces, 2006, 274: 100-109
    [112]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报, 2003, 54(8): 1155-1159
    [113]张常群,苏海云,赵传钧.表面活性剂在液固界面吸附的热力学[J].化工学报, 1996, 47(2): 137-141
    [1]刘秉钺,石海强,李兴强.稻草浆废液木素含量的紫外分析[J].中国造纸, 2003, 26(6): 19-22
    [2]齐香君,苟金霞,韩戌珺,等. 3,5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术, 2004, 12(3): 17-20
    [3]赵斌元,胡克鳌,范永忠,等.木质素磺酸及其衍生物红外光谱研究[J].分析化学, 2000, 28(6): 716-719
    [4]谌凡更,李静,张旭峰.凝胶渗透色谱法测定木素磺酸盐相对分子质量分布[J].分析化学, 2001, 29(11): 1363-1363
    [5]张树彪,乔卫红,李宗石.木质素分散剂相对分子质量分布的测定[J].色谱, 2000, 18(3): 277-279
    [6] Liane E.C.L, Grealdo Larg, Sant’Anna Jr, et al. Molecular weight distribution of chlorolignin in bleached kraft effluent by GPC and ultrafiltration[J]. Bioresource Technology, 1999, 68: 63-70
    [7]刘琼,吴文辉,陈颖,等.荧光探针法研究疏水改性聚丙烯酰胺溶液的疏水缔合行为[J].功能高分子学报, 2005, 18(1): 22-27
    [8]郑博,李贺先,王国昌,等.水-甲醇混合体系的超分子复合作用[J].物理化学学报,2008, 24(8): 1503-1506
    [9]张国林,马建标,王亦农.聚L-丙氨酸-聚乙二醇嵌段共聚物的胶束化行为研究[J].高等学校化学学报, 2006, 27(4): 767-770
    [10]李新宝,徐丽,孟校威,等.稳态荧光探针法测定三聚季铵盐表面活性剂的胶束聚集数[J].物理化学学报, 2005, 21(2): 1403-1406
    [11]李春艳. ESEM高温环境的创建及其应用[D].天津大学, 2002
    [12]赵振国.吸附作用应用原理[M].北京:化学工业出版社, 2005, 200-238
    [13] Furlong D.N., Hartland S.. Wall effect in the determination of surface tension using a wilhelmy plate[J]. J Colloid Interface Sci., 1979, 71(2): 301-315
    [14] Gosselink R.J.A., Ab?cherli A., Semke H., et al. Analytical protocols for characterization of sulphur-free lignin [J]. Industrial Crops and Products, 2004, 19(3): 11-16
    [1] Ouyang Xinping, Qiu Xueqin, P.Chen. Physicochemical characterization of calcium lignosulfonate-A potentially useful water reducer [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283: 489-497
    [2] Amel Kamoun, Shmed Jelidi, Moncef Chaabouni. Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer-water reducer for cement[J]. Cement and Concrete Research, 2003, 33(7): 995-1003
    [3] Zhou Mingsong, Qiu Xueqing, Yang Dongjie, et al. High-performance dispenrsant of coal- water slurry synthesized from wheat straw alkali lignin[J]. Fuel Processing Technology, 2007, 88: 375-382
    [4] Yang Dongjie, Qiu Xueqing, Zhou Mingsong, et al. Properties of sodium lignosulfonate of coal-water slurry[J]. Energy Conversion Management, 2007, 48:2433-2438
    [5] Chiweteu C.I., Hornof V., Neale G.H., et al. Use of mixed surfactants to improve the transient interfacial tension behavior of heavy oil/alkaline systems [J]. Can. J. Chem. Eng, 1994, 72: 534-540
    [6] Peter Dilling. Effect of cation type on lignosulfonate dispersant performance in disperse dye system[J]. Textile Chemist and Colorist, 1988, 20(5): 17-18
    [7] Zhang Xiao, Andreas Glüsen, Ricard Garcia-Valls. Porous lignosulfonate membranes for direct methanol fuel cells[J]. Journal of Membranes Science , 2006, 276: 301-307
    [8] Keirstead K. F., Caverhill L.. Surface activity of foam fractions of a calcium lignosulphonate[J].The Canadian Journal of Chemical Engineering, 1982, 60: 680-683
    [9] Debora Nabarlatz, Carles Torras, Ricard Garcia-Valls, et al. Purification of xylo-oligosaccharides from almond shells by ultrafiltration[J]. Separation Purification Technology, 2007, 53: 235-243
    [10] Chakrabarty K., Krishna K. V., Saha P., et al. Extraction and recovery of lignosulfonate from its aqueous solution using bulk liquid membrane[J]. Journal Membrane Science, 2009, 330(1-2):135-144
    [11] Ringena O., Saake B., Lehnen R.. Isolation and fractionation of lignosulfonates by amine extraction and ultrafiltration: A comparative study[J]. Holzforschung, 2005, 59(4): 405-412
    [12]赵玉波.蔗渣木质素磺酸盐结构与性能研究[D],南京林业大学,2005
    [1] Bernt O.Myrvold. A new model for the structure of lignosulphonates part 1. Behavior in dilute solutions[J]. Industrial crops and products, 2008, 27: 214-219
    [2] Ratinac K. R., Standard O.C., Bryant P.J.. Lignosulfonate adsorption on and stabilization of lead zirconate titanate in aqueous suspension[J]. Journal of Colloid and Interface Science, 2004, 273(2): 442-454
    [3] Pang Yuxia, Qiu Xueqing, Yang Dongjie, et al. Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 312: 154-159
    [4] Zhou Mingsong, Qiu Xueqing, Yang Dongjie, et al. High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin[J]. Fuel Processing Technology, 2007, 88(4): 375-382
    [5] Qiu Xueqing, Yan Mingfang, Yang Dongjie, et al. Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate[J]. Journal of Colloid and interface Science, 2009, 338: 151-155
    [6] Alexandridis P., Athanassiou V., Fukuda S., et al. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers[J]. Langmuir 1994, 10(8): 2604-2612
    [7] De Lisi R., Milioto S.. Poly(ethylene oxide)13-poly(propylene oxide)30-poly(ethylene oxide)13 electrolyte interactions in aqueous solutions at some temperatures[J]. Langmuir, 2000, 16(13): 5579-5583
    [8]程璐,王浩静,欧阳琴,等.丙烯氰-衣康酸共聚物稀溶液的粘度行为[J].功能高分子, 2008, 21(3): 306-311
    [9] Pla, F. in: Lin, S.Y., Dence, C.W. Methods in lignin chemistry, Springer-verlag Press, Berlin, 1992, 501-505
    [10] Sarkanen S., Teller D.C., Hall J., et al. Lignin. 18. Associative effects among organosolv lignin components[J]. Macromolecules, 1981, 14: 426–434
    [11] Sturmer D. W., Heseltine D. W.. in: James, T. H. (Ed.), The theory of the photographic process macmillan publishing Co. Inc.: New York, 1977, 194
    [12] Pranabesh Dutta, Joykrishna Dey, Goutam Ghosh, et al. Self-association and microenvironment of random amphiphilic copolymers of sodium N-acryloyl-L-valinateand N-dodecylacrylamide in aqueous soluiton [J]. Polymer, 2009, 50:1516-1525
    [13] Ariane boudier, Anne Aubert-Pou?ssel, Pascale Louis-plence, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles [J]. Biomaterial, 2009, 30: 233-241
    [14] Afanasjev N., Korobva E., Parfenova L.. Poater presentations international Symopsiumonwooden Pulping Chemistry, Proceedings ISWPC, 1997, 21, 3
    [1] Pang Yuxia, Qiu Xueqing, Yang Dongjie, et al. Properties of calcium lignosulfonate water reducers with different relative molecular mass[J]. Journal of South China University of Technology, 2002, 30(1): 53-57
    [2] Ouyang Xinping, Qiu Xueqing, Chen P.. Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects , 2006, 282-283: 489-497
    [3] Yang Dongjie, Qiu Xueqing, Pang Yuxia, et al. Physicochemical properties of calcium lignosulfonate with different molecular weights as dispersant in aqueous suspension[J]. Journal of Dispersion Science and Technology, 2008, 29(9): 1296 -1303
    [4] Pang Yuxia, Qiu Xueqing, Yang DongJie, et al. Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 312:154-159
    [5]李本刚,陈正国.表面活性剂溶液动态表面张力及吸附动力学研究[J].化学进展, 2005, 17(2): 233-241
    [6] Ward F.A.H., Tordai L.. Time dependence of boundary tensions of solutions I. The role of diffusion in time effects[J]. J. Chem, Phys., 1964, 14: 453-461
    [7] Alexandridis P., Athanassiou V., Fukuda S., et al. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers[J]. Langmuir, 1994, 10: 2604-2612
    [8] De Lisi R., Milioto S.. Poly(ethylene oxide)13-poly(propylene oxide)30-poly(ethylene oxide)13 electrolyte interactions in aqueous solutions at some temperatures[J], Langmuir, 2000, 16: 5579-5583
    [9] Wang Shaopeng, Roger M. Leblanc, Francisco Arias, et al. Surface and optical properties of langmuir and LB films of a crown-ether C60 derivative[J]. Langmuir, 1997, 13: 1672-1676
    [10] Takeshi Kawai. Photoregulation of molecular orientation of stearic acid in a polyion complex LB film containing azobenzene derivative[J]. J. Phys. Chem. B, 1999, 103: 5517-5521
    [11]陈启斌,董亚明,刘洪来,等. Gemini表面活性剂在气/液界面上的微区形貌随表面压的变化[J].华东理工大学学报, 2004, 30(6): 665-669
    [12]杨红伟,朱谱新,姚永毅,等.两亲性嵌段聚醚酯在空气/水界面上的Langmuir单分子膜[J].高分子学报, 2007, 1: 93-96
    [1] Gregg S. J., Sing K. S. W..吸附、比表面与孔隙率[M]. 1版.高敬琮等,译.北京:化学工业出版社,1989
    [2] Anna-kaisa Kontturi, Ky?sti Kontturi. A method for determination of ionic diffusion coefficients of polydisperse polyelectrolyte[J]. J. Colloid Interf. Sci., 1987, 120(1):256-262
    [3]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社, 1994
    [4] Zhao Guoxi, Zhu Buyao. Principles of Colloid and Surface Chemistry[M]. China Light Industry Press., 2003
    [5]刘福强,陈金龙,李爱民,等.氨基萘酚磺酸在改性超高交联吸附树脂和弱碱树脂上的静态吸附行为比较[J].高分子学报, 2004, 5: 661-666
    [6] Gokmen V., Serpen A.. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin[J]. J. Food Eng., 2002, 63: 221-227
    [7]陈禹银,耿信笃.液/固吸附体系中计量置换吸附模型的热力学研究[J].高等学校化学学报, 1993, 14 (10) : 1432-1436
    [8]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社, 1996
    [9] Filius J. D., Lumsdon D. G., Meeussen J. C. L., et al. Adsorption of fulic acid on goethite[J]. Geochim Cosmochim Ac., 2000, 64(1): 51-60
    [10] Grover P.K., Ryall R.L.. Critical appraisal of salting-out and its implications for chemical and biological sciences [J]. Chem Rev., 2005,105(1):1-10
    [11] Sennerfors T., Solberg D., Tiberg F.. Adsorption of polyelectrolyte-nanoparticle systems on silica: influence of ionic strength[J]. J. Colloid Interf. Sci., 2002, 254(2): 222-226
    [12] Chen J. P., Wu S.. Simultaneous adsorption of copper ions and humic acid onto an activated carbon[J]. J. Colloid Interf. Sci., 2004, 280(2): 334-342
    [13] J.王等.古尔胶在固-液界面上的吸附机理[J].国外金属矿选矿, 2006, 4: 30-33
    [1]曾静,胡文勇,邓莹.活性炭吸附废水中表面活性剂的实验研究[J].工业用水与废水, 2010, 41(3): 38-41
    [2]张金利,冀秀玲,李韡,等.苯酚在活性炭上吸附平衡模型的研究[J].化学工业程, 2001, 18(6): 341-344
    [3]赵振国,金明钟,刘迎清.酪氨酸在活性炭/水界面上的吸附[J].高等学校化学学报, 2000, 21(20): 1904-1907
    [4] Gregg S.J., Sing K.S.W..吸附、比表面与孔隙率[M]. 1版.高敬琮等,译.北京:化学工业出版社,1989
    [5]李开喜.活性炭纤维对模拟烟气中SO2的脱除[D].中国科学院山西煤化所, 1999
    [6] Boehm H. P., Some aspects of the surface chemistry of carbon black and other carbons[J]. Carbon, 1994, 32: 759-769
    [7] Lahaye J. Q.. The chemistry of carbon surface[J]. Fuel, 1998,77(6):543-547
    [8]杨骏,秦张峰,陈诵英,等.温度对酚类在活性炭上表面扩散的影响[J].离子交换与吸附, 1998, 14(1): 82-85
    [9]李坤权,郑正,罗兴章.高比表面植物基活性炭吸附水中对硝基苯胺的性能及影响因素[J],环境科学, 2010, 31(8): 1977-1983
    [10]郑言波,杨海,苏明伟,等.活性炭纤维处理丙烯酸废水的研究[J].应用化工, 2006, 35(3): 198-200
    [11]范延臻,王宝贞.活性炭表面化学[J].煤炭转化, 2000, 23(4): 26-30
    [12] Cookson J. R. J. T.. Ed. by Cherem isinoff P. N., Ellerbuch F. Carbon Adsorption Handbook [M], Ann Arbor Sci.Pub. Inc., 1978: 241-279
    [13]高志明,吴越,田玫.活性炭表面含氧基团对NO的还原作用[J].高等学校化学学报,1996, 17 (6) : 961-964
    [14]古可隆.活性炭的应用(一)[J].林产化工通讯, 1999, 33(4): 37-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700