聚合物聚醚多元醇的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物聚醚多元醇(PPOC)是由微米级聚合物粒子在聚醚多元醇中原位形成的稳定粒子分散体,它为聚醚材料的粒子增强提供了方便的途径。本文以苯乙烯/丙烯腈在聚醚中分散聚合制备高固含量(45%)PPOC,研究了其形成、稳定和粘度的控制规律。采用间歇、连续工艺制备了高固含、低粘度的稳定PPOC,且将它用于聚醚聚氨酯水凝胶的合成,实现了水凝胶的粒子增强。
    为考察稳定剂结构对PPOC分散稳定性的影响,合成了不同结构的丁烯二酸聚醚酯大分子单体(MM),以GPC、NMR和双键滴定等方法表征了MM,阐明了MM结构与分散稳定间的关系,结果表明MM的分子量、不饱和链端结构、及其与聚醚连续介质的匹配性是影响其稳定效能的主要因素。在此基础上,合成了新型大分子单体稳定剂-反丁烯二酸聚醚酯(HFM)。
    以HFM为分散稳定剂,对比研究了半连续、种子法和连续聚合参数对PPOC稳定性和粘度的影响规律,用SEM、动态光散射测定了各条件下分散粒子的形态与粒径。研究表明,聚合过程中内外相聚合比例对PPOC中分散粒子的稳定性和粒径有着重要的影响。PPOC流变行为研究表明,保持PPOC稳定时,分散粒子的粒径和分布则是PPOC粘度的控制因素,因小粒径粒子对PPOC增粘有较大的作用,从而大粒径和宽分布的粒子设计和制备是合成低粘度PPOC的关键。通过优化,制得了固含量为45%、粘度在5500-6000mPa.s的PPOC。
    用全吸附/解吸液-固色谱法(FAD)分离了原位形成的PSAN-g-PPO接枝物,并用UV和1H-NMR对其进行了表征。结合动态光散射跟综分散体形成过程中粒径的变化规律,确认接枝物成核为主的聚合特征。
    以三官能度聚环氧乙烷共聚醚多元醇为原料,合成了稳定的亲水聚醚PPOC,与TDI和不同聚醚二醇扩链剂制备粒子增强的聚醚聚氨酯水凝胶,考察不同交联度、不同粒子填充量对水凝胶吸水率和力学性能的影响。结果表明:随PSAN粒子加入量的增加,PU弹性体和PU水凝胶的拉伸强度和断裂伸长同时增加;而水凝胶的吸水率降低,粒子增强效应明显。通过改变PSAN加入量和交联度,在相同吸水率(250%)下合成PU聚醚水凝胶的拉伸强度为0.75MPa、断裂伸长为120%,而聚醚PU水凝胶则0.22MPa和42%。
Polymer polyether polyol composites (PPOCs), which are stable dispersions of glassy polymers in polyether polyols, provide a feasible method for particle reinforcement of polyether materials. In this work, the PPOC with high solid content of 45% were prepared by dispersion copolymerization of styrene (St) and acrylonitrile (AN) in polyether polyols with macromonomer as a stabilizer precursor in both semi-batch and continuous processes. The characters of formation, stability and viscosity of the dispersion were studied. Preparing conditions for stable PPOC with low viscosity and high solid content were opimized. Moreover a hydrophilic PPOC was used to prepare polyether polyurethane hydrogels in order to realize particle reinforcing hydrogels.
    For the purpose of examining the effect of structure of macromonomers on their stabilizing ability for the PPOC, various macromonomers (MM) were synthesized by reacting polyether with various relative molecular mass (RMM) with maleic anhydride at different temperature or fumarate monoethyl chloride, and their stabilizing abilities were evaluated. The results showed that the RMM and terminal unsaturated structure of MM and the miscibility of MM with the dispersing medium (polyether) were the crucial factors for the stabilizing ability of MM. Therefore, a novel macromonomer (HFM) was synthesized through polyether extending reaction with toluene diisocyanate (TDI) and then reacting with fumarate monoethyl chloride.
    Using HFM as a stabilizer precursor, the effects of polymerization parameters on stability and viscosity of PPOCs were investigated in semi-batch, seeded-batch and continuous processes, respectively, while the corresponding particle shape and size distribution were determined by SEM and dynamic light scattering. The results indicated that the content of HFM and the relative ratio of polymerization in continuous phase and in particle phase played important roles on the stability of PPOC. The rheological behavior of the PPOC revealed that the particle size and distribution were the key factor for controlling the viscosity of PPOC and its non-Newtonian behavior without particle aggregation, because too much small particles increase the viscosity of PPOC. So PPOC with low viscosity can be obtained in two-reactor continuous process, which can produce PPOC with large particle size with wide distribution. By optimizing, the PPOC with solid content of 45% and viscosity of 5500-6000mPa.s was obtained.
    
    
    The stabilizer, graft polymer PSAN-g-polyether, formed in situ was separated by a full-adsorption-desorption liquid-solid chromatograph method (FAD), and characterized by UV and NMR. Combined with the change profile of particle size in the formation process of the dispersion determined by dynamic light scattering, it is proved that the nucleation mechanism of aggregation of graft polymer is dominant in the semi-batch polymerization process.
    A hydrophilic PPOC was prepared by polymerizing St and AN in a trifunctional copolyether of ethylene oxide (EO) and propylene oxide with EO content of 78wt%. By reacting this PPOC with TDI and polyether diols, reinforced polyether polyurethane hydrogels were prepared. The effect of NCO index and the particle (PSAN) content on the degree of swelling (DS) in water and mechanical properties of the hydrogels were investigated. The data showed that there is effective particle reinforcing effect in both xerogel and hydrogel states. Increasing the PSAN particle content resulted in both increase in tensile strength and maximum elongation either for the xerogels or for hydrogels, meantime DS of hydrogels decreased. By adjusting the NCO index and the incorporated PSAN particle content, a reinforced polyether hydrogel was synthesized, it has an elongation of 120% and tensile strength of 0.75MPa at DS of 250%, while the polyether polyurethane hydrogel at the same DS exhibits elongation of 42% and tensile strength of 0.22MPa.
引文
1. Harris J M, Introduction to Biotechnical and Biomedical Applications of Poly(ethylene glycol), In: Harris J M(ED), Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Application, New York: Plenum Press, 1992, 1-14
    2. 顾汉卿,徐国风. 生物医学材料学,天津:天津科技翻译出版公司,1993,290-308
    3. 计剑,邱永兴,封麟先等. 抗凝血聚氨酯材料的研究进展,功能高分子学报,1995,8(2):225-236
    4. Lan P N, Corneillie S, Schacht E et al. Synthesis and Characterization of Segmented Polyurethanes Based on Amphiphilic Polyether Diols, Biomaterials, 1996,17: 2273-2280
    5. Yuko Lkdea等著,郑象国译. 三嵌段共聚醚类聚氨酯生物医用材料,橡胶译丛,1989(3):49-56
    6. Wichterle O, Lim D. Hydrophilic Gels in Biologic Use, Nature, 1960,185:117
    7. Lim F, Sun AM. Microencapsulated Islets as Bioartificial Pancreas, Science, 1980, 210: 908-910
    8. Kudela V. Hydrogel, In Encyclopedia of Polymer Science and Engineering, 2nd edition. New York : John Wiley & Sons, 7: 703-807, 1986
    9. 姚康德,彭涛,高伟. 智能性水凝胶, 高分子通报,1994,(6):103-111
    10. Kamath K R, Park K. Biodegradable Hydrogels in Drug Delivery, Advanced Drug Delivery Reviews, 1993, 11(1-2): 59-84
    11. Mathur A M, Moorjani S K, Scranton A B. Methods for Synthesis of Hydrogel Networks: A Review, J M S- Rev. Macromol Chem Phys, 1996, C36(2): 405
    12. Hoffman A S. Hydrogels for Biomedical Applications, Advanced Drug Delivery Reviews, 2002, 43: 3-12
    13. Jen A C, Wake C, Mikos A G. Review: Hydrogels for Cell Immobilization, Biotechnology and Bioengineering, 1996, 50: 357-364
    14. Rosiak J M, Yoshii F. Hydrogels and Their Medical Applications, Nuclear Instruments and Methods in Physics Research,B, 1999, 151: 56-64
    15. Peppas N A, Bures P, Ichikawa H et al. Hydrogels in Pharmaceutical Formulations, European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50: 27-46
    16. Griffith L G. Polymeric Biomaterials, Acta Materials, 2000, 48:263-277
    17. Rodeheaver G T, Kurtz L, Kircher B J et al. Pluronic F-68: a Promising New Skin Wound Cleaner, Ann Emerg Med, 1980, 9:572-576
    18. Liaw J, Lin Y C. Evaluation of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) (PEO-PPO-PEO) Gels as a Release Vehicle for Percutaneous Fentanyl, J Controlled Release, 2000, 68: 273-282
    Jeong B,Bae Y H,Kim S W. Drug Release From Biodegradable Injectable
    
    19. Thermosensitive Hydrogel of PEG-PLGA-PEG Triblock Copolymers, Journal of Controlled Release,2000, 63(1): 155
    20. Park J H, Bae Y H. Hydrogels Based on Poly(ethylene oxide) and Poly(tetramethylene oxide) or Poly(dimethyl siloxane): Synthesis, Characterization, in vitro Protein Adsorption and Platelet Adhesion, Biomaterials, 2002, 23: 1797-1808
    21. Stringer J L, Peppas N A. Diffusion of Small Molecular Weight Drugs in Radiation-Crosslinked Poly(ethylene oxide) Hydrogels, J Control Release, 1996, 42:195-202
    22. Kofinas P, Athanassiou V, Merrill E W. Hydrogels Prepared by Electron Beam Irradiation of Poly(ethylene oxide) in Water Solution: Unexpected Dependence of Cross-link Density and Protein Diffusion Coefficients on Initial PEO Molecular Weight, Biomaterials, 1996, 17:1547-1550
    23. Merrill E W, Rempp P, Lutz A et al. PEO Hydrogels from Star Polymers by Radiation Crosslinking as Model Biomaterials, Trans Soc Biomat , 1990, 16: 11
    24. Peppas N A, Keys K B, Torres-Lugo M, et al. Poly(ethylene glycol)-containing Hydrogels in Drog Delivery, J Controlled Release, 1999, 62:81-87
    25. Savas H, Guven O. Investegation of Active Substance Release from Poly(ethylene oxide) Hydrogels, Inter J Pharmaceutics, 2001, 224:151-158
    26. Yoshii F, Zhanshan Y, Isobe K, et al. Electron Beam Crosslinked PEO and PEO/PVA Hydrogels for Wound Dressing, Radiation Physics and Chemistry, 1999, 55:133-138
    27. Blair E A, Hudgin D E. U.S.P. 3786035, 1974
    28. Gould F E, Johnston C W. Polyurethane Diacrylate Compositions,U.S.P. 4359558, November 16, 1982
    29. Petrini P, Tanzi M C, Graham N B, et al. Linear Poly(ethylene oxide)-based Polyurethane Hydrogels: Polyurethane-ureas and Polyurethane-amides, Journal of Materials Science. Materials in Medicine. 1999, 10(10/11) : 635
    30. Bromberg L. Crosslinked Poly(ethylene glycol) Networks as Reservoirs for Protein Delivery, J Appl Polym Sci, 1996, 59: 459-466
    31. Braatz J A. Biocompatible Polyurethane-Based Hydrogel, Journal of Biomaterials Applications. 1994, 9(1): 71
    32. Lai Y C, Baccei L J. Novel Polyurethane Hydrogels for Biomedical Applications, J Appl Polym Sci, 1991, 42: 3173-3179
    33. Lee D H, Kim J W, Suh K D. Amphiphilc Urethane Acrylate Hydrogels: pH Sensitivity and Drug-releasing Behaviors, J Appl Polym Sci, 1999, 72:1305
    34. Zulfiqar M, Quddos A, Zulfiqar S. Polyurethane Network Based on Poly(ethylene oxide), J Appl Polym Sci, 1993, 49: 2055-2063
    35. Haschke E, Sendijarevic V, Wong S, et al. Clear Nonionic Polyurethane Hydrogels for Biomedical Applications, The Journal of Elastomers and Plastics. 1994, 26(1): 41-57
    Anseth K S, Bowman C N, Pappas L B. Review: Mechanical Properties of
    
    36. Hydrogels and Their Experiment Determination, Biomaterials, 1996, 17: 1647
    37. Bonn D, Kellay H, Prochnow M, et al. Delayed Fracture of an Inhomogeneous Soft Solid, Science, 1998, 280: 265-267
    38. Moussaid A, Candau S J, Joosten J G H. Structure and Dynamic Properties of Partially Chargrd Poly(acrylic acid) Gels: Nonergodicity and Inhomogeneities, Macromolecules, 1994, 27: 2102-2110
    39. Merrill E W, Dennison K A, Sung C. Partitioning and Diffusion of Solutes in Hydrogels of Poly(ethylene oxide), Biomaterials, 1993, 14: 1117-1126
    40. Philippova, O E, Rulkens R, Kovtunenko B I, et al. Polyacrylamide Hydrogels with Trapped Polyelectrolyte Rds, Macromolecules , 1998, 31: 1168-1179
    41. Yao K D, Peng T, Xu M X, et al. pH-Dependent Hydrolysis and Drug Release of Chitosan/Polyether Interpenetrating Polymer Network Hydrogel, Polymer International. 1994, (2): 213
    42. Hao J, Deng X. Semi-interpenetrating Networks of Bcterial Poly(3-hydroxybutyrate) with Net-poly(ethylene glycol), Polymer, 2001, 42: 4091-4097
    43. Kim S S, Lee Y M. Synthesis and Properties of Semi-Interpenetrating Polymer Net works Compossed of β-Chitin and Poly(ethylene glycol) Macromer, Polymer, 1995, 36(23): 4497-4501
    44. Aranilla C T, Yoshii F, Makuuchi K, et al. Kappa-carrageenan Poly(ethylene oxide) Hydrogel Blends Prepared by Gamma Irradiation, Radiation Physics and Chemistry, 1999, 55:127-131
    45. Wan Y Z, Wang Y L, Yao K D, et al. Carbon Fiber-reinforced Gelatin Composites. I. Preparation and Mechanical Properties. Journal of Applied Polymer Science, 2000, 75( 8): 987-993
    46. In-Seok Oh, Park N H, Park J H. Composite of SiO2 and Hydrogel Having Microphase Separated Structure: Physical Properties Dependence on pH, J. M. S.- Pure Appl Chem, 1998, A35(10), 1695-1709
    47. Edwards D C. Review: Polymer-filler Interactions in Rubber Reinforcement, J Materials Sci., 1990, 25:4175-4185
    48. Fu FS, Mark J E. Elastomer Reinforcement from a Glassy Polymer Polymerized in situ, J Polym Sci, Part B, 1988, 26: 229-2235
    49. Mari Hiljanen-Vainio, Markku Heino and Jukka V. Seppala. Reinforcement of Biodegradable Poly(ester-urethane) with Fillers, Polymer, 1998, 39(4): 865-872
    50. Nunes R C R, Fonseca J L, Pereira M R. Polymer-filler Interactions and Mechanical Properties of a Polyurethane Elastomer, Polymer Testing, 2000, 19: 3-103
    51. 方道斌, 郭睿威, 封彤波, 聚合物聚醚多元醇, 化工进展, 1994,(4):21-27
    52. Lawler L F. The Effects of Formulation Variables on Foam Durability,: Water Content, Polymer Solids, Index, J Cell Plast, 1993, 9: 208
    朱国强,顾良民,高固含量聚合物多元醇在聚氨酯软泡中的应用,聚氨酯
    
    53. 工业,1998,13(2):28-31
    54. Kuryla W C, Critchfield F E, Platt L W, et al. Polymer/Polyols, a New Class of Polyurethane Intermediates, J Cellular Plastics, 1965, (3):84-96
    55. Heyman D A, Grace O M. High Polymer Content Graft Polyols, J Cellular Plastics, 1985,(3/4):101-104
    56. Charles M D, Eugene D J, Dollas G S et al. GB 2235-202(1991)
    57. Cloetens R C, Lidy W A, Phillips B D et al. Modified Polyols and Their Use in the Manufacture of Polymer Polyols, USP 4871,783, 1989
    58. Huang, et al. Method for the Preparation of Graft Polymer Dispersions Having Broad Particle Size Distribution without Wildly Fluctuating Viscosities, USP. 5223570, 1993-6-29
    59. Simroth. Polymer/polyol and Preformed Stabilizer Systems, USP 5268418, 1993-12-7
    60. 邓联东,苯乙烯和丙烯腈在聚醚介质中分散聚合研究,硕士学位论文,天津大学,1997
    61. 么庆金,万小龙,聚合物多元醇的合成,聚氨酯工业,1994,9(4):36-39
    62. 万小龙,颜文礼,高固含量聚合物多元醇合成-巯基聚醚多元醇链转移接枝研究,聚氨酯工业,1994,9(3):24-27
    63. Ionescu M, Gosa K, Mihalache I. Graft Polyether Polyols Based on α-Methylstyrene and Acrylonitrile for Flexible Polyurethane Foams, Cellular Polymer, 1990, 13:339-360
    64. Mssy J P. Improvement in Polyurethane Foam Properties by a Controlled Thermoplastic Dispersion, DO degree, Belgium: Universite de L'ETAT A Liege, 1993
    65. Kau C, Huber L, Hiltner A, et al. Hard Elastic Behavior in Polyurethane Foams, J Appl Polym. Sci, 1992, 44:2081-2089
    66. Kau C, Huber L, Hiltner A, et al. Damage Evolution in Polyurethane Foams, J Appl Polym Sci, 1992, 44:2069-2081
    67. 王福君,有机填料增强软质聚氨酯泡沫性能的研究,硕士学位论文,天津大学,2000
    68. Ramlow G G, Heyman D A and Grace O M. Process for the Preparation of White Graft Polymer Dispersions and Flame-retardant Polyurethane Foams USP 4,689,354 (1987)
    69. Hoffman D K, Low Viscosity, High Solids Polymer Polyols Prepared Using a Preformed Dispersant , USP 4,745,153, 1988 -5-7
    70. Kratz et al. Continuous Process for the Preparation of Highly Stable, Finely Divided, Low Viscosity Polymer Polyols of Small Average Particle Size, United States Patent 5,814,699, September 29, 1998
    71. Critchfield et al. Low Viscosity Polymer Polyols with Improved Dispersion Stability, United States Patent 5,364,906 November 15, 1994
    Starov V, Zhdanov V, Meireles M, et al. Viscosity of Concentrated Suspensions: Influence of Cluster Formation, Advances in Collois and Interface Science,
    
    72. 2002, 96:279-293
    73. Milson C K, Poon S P, Meeker P N, et al. Viscosity and Sructure Relaxation in Concentrated Hard-sphere Colloids, J Non-Newtonian Fluid Mech., 1996, 67: 179-189
    74. Chander S. Challenges in Characterization of Concentrated Suspension, Colloids and Surfaces A, 1998, 133, 143-150
    75. Russel W R, Saville D A, Schowaler W R. Colliodal Dispersions, Cambridge: Cambridge University Press, 1989:310-326
    76. Krieger I M. Trans. Soc. Rheol. 1963, 7: 101
    77. De Kruif C G, Van Iersel E M F, Vrij A. Hard Sphere Colloids Dispersions : Viscosity as a Function of Shear Rate and Volume Fraction, J Chem. Phys. 1986, 83:4717-25
    78. Marshall L and Zukoski Ⅳ C F. Experimental Studied on the Rheology of Hard-sphere Suspensiona Near the Glass Transition, J Phys Chem, 1990, 94: 1164-1171
    79. Campbell G A, Forgagacs G. Viscosity of Concentrated Suspensions: an Approach Based on Percolation Theory, Physical Review A, 1990, 41(8): 4570
    80. Mewis J, Vermant J. Rheology of Sterically Stabilized Dispersions and Latices, Progress in Organic Coatings, 2000, 40: 111-117
    81. Tsenoglou C and Yang S. Fluidity and Optimum Packing in Suspensions of Mixed Dissimilar Particles, Polym Eng Sci, 1990, 30(21): 1407-1412
    82. E.L.Hoffman. J Rheol, 1992, 36: 947
    83. Probstein R F and Sengun M Z. Bimodal Model of Concentrated Suspension Viscosity for Distributed Particle Sizes, Rheol Acta, 1994, 38(4): 811-829
    84. Poslinski A J, Ryan M E, Gupta R K, et al. Rheological Behavior of Filled Polymeric Systems Ⅱ: The effect of a Bimodal Size Distribution of Particulates, J Rheol, 1988, 32: 751-771
    85. Guyot A, Chu F, Schneider M, et al. High Solid Content Latexes, Prog Polym Sci, 2002, 27: 1573-1615
    86. Barrett K E J(ed), Dispersion Polymerization in Organic Media, New York: Wiley-Interscience, 1975
    87. Downing S B. Polymer Microgels in paints, In High Value Polymers, Royal Society of Chemistry, 1989: 326-351
    88. Motoshi Yabuta. High Solids Coatings (Microspheres from Nonaqueous Polymer Dispersions, In Salamone J S, Polymeric materials Encyclopedia, New York: CRC Press, 1996: 3017-3026
    89. 曹同玉, 戴兵, 戴俊燕. 单分散大粒径聚合物微球的合成与应用,高分子通报, 1995(3):174-180
    90. Kawaguchi H. Functional Polymer Microspheres, Prog Polym Sci, 2000, 25: 1171-1210
    91. Bromley C W A. Nonaqueous Dispersion Polymer Microgels as Film Formers in Architectural Paints, J Coatings Technology, 1989, 61(768): 39-43
    
    
    92. Tauer K, Muller H, Rosengarten L, et al. The Use of Polymers in Heterophase Polymerizations, Colloids and Surfaces A: Physiochemical and Engineering Aspects, 1999, 153; 75-88
    93. Arshady R. Suspension, Emulsion, and Dispersion Polymerization: A Methodological Survey, Colloid and Polymer Sci. 1992, 270: 717-732
    94. Tseng C M, Lu YY, El-Aasser MS, Vanderhoff J W. Uniform Polymer Particles by Dispersion Polymerization in Alcohol, J Polym Sci, Part A, 1986, 24: 2995-3007
    95. Lok KP, Ober CK. Monodispersed, Micron-sized Polystyrene Particles by Dispersion Polymerization, J Polym Sci, Polym Letters Edition, 1985, 23(2) : 103-108
    96. Paine A J. Dispersion Polymerization of Styrene in Polar solvents, Ⅳ. Solvency Control of Particle Size from Hydroxypropyl Cellulose Stabilized Polymerizations, J Polym Sci. A, 1990, 28: 2485-2500
    97. Paine A J, Luymes W, McNulty J. Dispersion Polymerization of Styrene in Polar Solvents, 6: Influence of Reaction Parameters on Particle Size and Molecular weight in Poly(N-vinylpyrrolidone) Stabilized Reactions, Macromolecues, 1990, 23: 3104-3109
    98. Paine A J. Dispersion Polymerization of Styrene in Polar Solvents, 7: A Simple Mechanistic Model to Predict Particle Size, Macromolecues, 1990, 23: 3109-3117
    99. Kawaguchi S, Winnik M A. Dispersion Copolymerization of n-Butyl Methacrylate with Poly(ethylene oxide) Macromonomers in Methanol-Water Comparison of Experiment with Theory, Macromolecules, 1995, 28: 1159-1166
    100. Prochazka O, Stejskal J. Spherical Particles Obtained by Dispersion Polymerization : Model Calculations, Polymer, 1992, 33(17): 3658
    101. Lu Y Y, El-Aasser M S E, Vanderhoff J W. Dispersion Polymerization of Styrene in Ethanol: Monomer Partitioning Behavior and Locus of Polymerization, J Polym Sci, 1988, 26: 1187-1203
    102. Chernyshev A V, Surovtsev I V, Maltsev V P, et al. A Mathematical Model of Dispersion Radical Polymerization Kinetics, J Polym Sci A, 1997, 35: 1799
    103. Ahmed S F, Poehlein G W. Kinetics of Dispersion Polymerization of Styrene in Ethol, 1. Model Development, Ind Eng Chem Res, 1997, 36: 2597-2604
    104. Ahmed S F, Poehlein G W. Kinetics of Dispersion Polymerization of Styrene in Ethol, 2. Model Validation, Ind Eng Chem Res, 1997, 36: 2605-2615
    105. Paine A J. Dispersion Polymerization of Styrene in Polar Solvents, J Colloid and Interface Sci. 1990, 138(1): 157-169
    106. Paine A J, Delslandes Y, Gerroir P, et al. Dispersion Polymerization of Styrene in Polar Solvents, J Colloid and interface Sci, 1990, 138(1): 170-179
    107. Dawkins JV, Taylor G. Polymer, 1987, 20:173
    108. Dawkins J V, Shakir S A, Croucher T G. Eur. Polymer J, 1987, 23: 173
    Capek I, Riza M, Akashi M. Dispersion Coplymerization of Poly(oxyethylene )
    
    109. Macromonomers and Styrene, J Polym Sci Part A, 1997, 35: 3131-3139
    110. Riza M, Tokura S, Iwasaki M, et al. Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Banched. Ⅹ. Preparation and Properties of Water-dispersible Polyanionic Microspheres Having Poly(methacrylic acid) Branches on Their Surfaces, J Polym Sci, Part A, 1995,(1): 1219-1225
    111. Liu J, Chew C H, Wong Sy, et al. Dispersion Polymerization of Styrene in Aqueous Ethanol Media Using Poly(ethylene oxide) Macromonomer as a Polymerizable Stabilizer, Polymer, 1998, 39(2): 283-289
    112. Nguyen S H, Berek D, Capek I. Polystyrene-Graft-Poly(Ethylene Oxide) Copolymers Prepared by Macromonomer Technique in Dispersion. I. Liquid Chromatographic Separation of Product Mixtures, J Polym Sci A, 2000, 38: 2284-2291
    113. Brandrup J, Immergut E H(ed), Polymer Handbook ,2nd, Canada, John Wiley & Sons. Inc, 1975
    114. Nguyen, S H ; Berek, D, Liquid Chromatography of Polymer Mixtures by a Combination of Exclusion and Full Adsorption Mechanisms. Three- and Four-Component Polymer Blends, Chromatographia. 1998, 48(1), : 65 -71
    115. Nguyen S H, Berek D, Chiantore O, Reconcentration of diluted polymer solutions by full adsorption/desorption procedure-1. Polymer, 1998,39:5127-5132
    116. 拉贝克 J F 著,吴世康译。高分子科学实验方法,北京:科学出版社,1987,270
    117. Janco M, Prudskova T, Berek D, Liquid chromatography of polymer mixtures applying a combination of exclusion and full adsorption mechanisms: 2. Eluent switching approach, Polymer, 1995,36:3295-3299
    118. ΓΜ 谢缅诺维奇著,聚合物物理化学手册,第三册,金关泰译,中国石化出版社,1995
    119. Shen S,Sudol E D, El-Aasser M S Dispersion Polymerization of Methyl Meacrylate: Mechanism of Particle Formation, Journal of polymer science. Part A, Polymer chemistry. 1994, 32(6):1087
    120. Berriot J, Lequeux F, Pernot H et al. Reinforcement of Model Filled Elastomers: Experimental and Theoretical Approach of Swelling Properties, Polymer, 2002,43: 6131-6138
    121. Chen Y, Yi M, Swelling kinetics and stimuli-responsiveness of Poly(DMAEMA) Hydrogels Prepared by UV-irradiation, Radiation Physics and Chemistry, 2001, 61:65-68
    122. 郑俊萍,明胶/蒙脱土纳米复合材料的研究,博士论文,天津大学,2001
    123. Zulfiqar M, Quddos A, Zulfiqar S, Polyurethane Networks Based on Poly(ethylene oxide), J Appl Polymer Sci, 1993, 49: 2055-2063
    124. Embry, Controlled Release Compositions, USP 4894238, National Research Development Corp. 1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700