线型饱和聚酯与共聚酯的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在相同实验条件下,合成了含不同组成单元的线型饱和脂芳族均聚酯(聚对苯二甲酸乙二醇酯,PET;聚对苯二甲酸丙二醇酯,PTT;聚对苯二甲酸丁二醇酯,PBT;聚间苯二甲酸乙二醇酯,PEI:聚萘二甲酸乙二醇酯,PEN)及含不同共聚组分的PET系共聚酯(含IPA的PEIT;含NDA的PENT以及含PEG的PEET),对比研究了它们的酯化及酯交换反应动力学、缩聚反应动力学,得到了相应的动力学参数(反应速度常数及反应活化能),具有较好的规律性,并从分子结构的角度进行了解释。说明随着脂肪二元醇中亚甲基数目的增加,都使得反应速度降低;随着芳香二酰基空间位阻的增大,也使得反应速度降低,反应活化能增大。其中,关于PTT合成的直接酯化和缩聚反应的动力学研究、关于PEI合成的酯化和缩聚反应动力学研究,关于PEN合成的酯化和缩聚反应动力学研究的结果(活化能数据),至今尚未见文献报道
     对所得的均聚酯和共聚酯都进行了转变温度测试,并研究了它们的结晶性能和流变性能。结果指出,IPA的引入,破坏了PET大分子的规整性,使PEIT的玻璃化温度降低,熔点显著降低,冷结晶温度升高,当IPA含量达一定程度时,PEIT不再结晶;刚性较大的NDA的引入,使PENT的玻璃化温度和冷结晶温度都升高,熔点则降低;柔性PEG链的引入,使PEET的玻璃化温度和冷结晶温度都降低,熔点稍有降低。
     用DSC法研究了均聚酯从熔体降温的等温结晶动力学和非等温结晶动力学,结果表明,PBT、PTT的结晶速度常数最大,PEN的结晶速度常数最小,PET的结晶速度常数介于它们之间,而PEI不结晶。这一结果与DSC法测得的均聚酯转变
    
     四{!}大学博士学位论文2003届
    温度结果中Tc的变化规律是一致的。
     用解偏振光法对共聚酷的结晶速度进行了研究,指出具有空间位阻的工PA
    和具有空间位阻并有更大刚性的NDA的引入,使共聚酷的结晶速度降低,且随添
    加量的增多,共聚醋的结晶速度降低越多。柔性PEG链的引入,使共聚酷的结晶
    速度加快,且随PEG含量增多,结晶速度加快越多。这一结果也与DsC法测得的
    共聚酷转变温度结果中Tc的变化规律是一致的。
     流变性能的研究结果表明,PET、PTT、PBT的粘流活化能相近,含刚性蔡环
    的PEN的粘流活化能最大,PEI的粘流活化能则居中间。对于共聚酷来说,随着
    工PA、NDA含量的增加,PEIT、PE附的粘流活化能增大,PEET的粘流活化能随PEG
    含量和添加量而变,但受PEG的分子量的影响更明显。
A Series of linear saturated fatty-aromatic homo-polyesters (Polyehtylene terephthalate, PET; Polytrimethylene terephthalate, PTT; Polybutylene terephthalate, PBT; Polyethylene isophthalate, PEI; Polyethylene-2,6-naphthalate, PEN) and co-polyesters (PEIT, PENT, PEET) have been synthesized under the same conditions. The kinetics have been studied and compared, and the activation energies have been obtained for the esterification, ester-exchange reaction, and polycondensation. It has been shown that with the increase of secondary methyl(-CH2-), the rates of the reactions above decrease. The activations energies for esterification of TPA and PDO, IPA and EQ NDA and EQ and the activation energies for the polycondensation of PTT, PEI, PEN have not been reported on literature up to now.
    The study results of transition temperatures have shown that: the homo-polymer of PEI is not crystalline; with IPA leading into the macromolecules, the glassy transition and melting temperatures of PEIT decrease, the cold crystallization temperature of PEIT increases; with NDA leading into the macromolecules, the glassy transition and cold crystallization temperatures of PENT increase, the melting temperature of PENT increases; with PEG leading into the macromolecules, the glassy transition temperature, the cold crystallization temperature and the melting temperature of PEET all decrease.
    The isothermal and non-isothermal crystallization of homo-polyesters by the
    
    
    method of DSC have shown that: the crystallization of PTT and PBT is fastest, that of PEN is slowest. The crystallization rates of co-polyesters with depolarized method have shown that with the quantities increase, IPA makes PEIT crystallization slowly, NDA makes PENT crystallization slowly, PEG make PEET crystallization quickly.
    Rheology results have shown that the rheological activation energies(En) of PET, PTT, PBT are quite similar, the En of PEI is bigger, and  of PEN is the biggest. For copolyesters, with the increases of IPA and NDA contents, the rheological activation energies(E,) of PEIT and PENT all increase. The rheological activation energies(Ea) of PEET mainly depends on the molecular weights of PEG
引文
[1]. J.R. Whinfield, D.J. Dickson, 1941:BP 578079
    [2].《化纤信息》,2002,7:11
    [3].依田贤太郎,工业化学杂志(日),1971,74(7):1476-1482
    [4]. J. Yamanis, M. Adelman, J. Polymer Science, Polymer Chemistry Edition, 1976,14:1945
    [5]. G. Challa, Makroml. Chem.,1960,38:123-138
    [6]. L.H. Peebles, W.S. Wagner, J. Phys. Chem.,1959,63:1206
    [7]. K. Tomita, H. Ida, Polymer 1973,14:55
    [8]. W. Griehl, G. Schnock, Faserforschu. u. Textiltechn., 1957,8(10):408
    [9].依田贤太郎,工业化学杂志(日),1964,67:909
    [10].何仁文,北京化纤工学院学报,1980,1:19-34
    [11].何进章,北京化纤工学院学报,1985,1:30-37
    [12]. K. Ravindranath, et al, J. Appl. Polym. Sci.,1982,27:2625
    [13]. G. Rafler, Faserforschu. u. Textiltechn., 1973,24(6):235-239; 24(7):269-272
    [14].富田耕右,Polymer,1973,14(2):50-54
    [15].小林文夫,工业化学杂志(日),1971,74(6):1244-1247
    [16].富田耕右,Polymer,1973,14(2):50-54
    [17]. S. Schauhoff, et al Chem. Fiber Int., 1996,46( ):263-264
    [18]. H.L. Traub, et al Chemical Fiber International, 1995,45(2):110-111
    [19]. USP. 1992:5,093,539
    [20]. EP. 1992:487,903
    [21]. EP. 1993:544,118; 544,120; 572,812
    [22]. EP: 1994:577,972
    [23]. USP. 1993:5,256,827
    
    
    [24]. USP. 1994:5,304,686; 5,304,691;
    [25]. USP. 1995:5,463,146
    [26]. WO. 1998: 9857913
    [27].L A.拉芬德等,1998:CN1189854
    [28].中国化纤信息,1997,(7):8-9;17-18
    [29].刘小云,黄象安 合成纤维2001,30(6):3-6
    [30].李爱萍,北京服装学院硕士学位论文,2001
    [31].刘泽华,合成纤维工业,2000,23(5):5-7
    [32].刘泽华,合成纤维工业,2000,23(6):4-7
    [33]. H.L. Traub, et al Angew Makrom. Chem., 1995,230:179-187
    [34].董红霞,合成纤维工业,2001,24(1):25-27
    [35].吴轶群,吴刚 合成纤维工业.2001,24(3):18-21
    [36].Degussa AG技术交流资料,2001
    [37]. H. Chuah, Chemical Fiber International, 1996,46:424-428
    [38]. I.J. Desborough, et al, Polymer, 1979,20:545-552
    [39]. P.D. Suzie, Polymer, 1979,20:419-426
    [40]. J. R. Caldwell, Encycl. Polym. Sci. Techn., (Supplement), 1976:444
    [41]. J. Dole, Modern Plast. Encycl., 1980-1981:55
    [42].黄嘉,化工技术,1982,(4):1
    [43].王德诚,合成纤维工业,1986,(3):46-49
    [44]. USP. 4056514
    [45]. USP. 4014858
    [46]. USP. 3635899
    [47]. F. pilati, et al, Polymer, 1981,22(6):799
    [48]. R.M. Lum, J. Polym. Sci.,P.C.E., 1979, 17:203
    [49]. B. G. Hudson, R. Backer, J. Org. Chem., 1967,32:3650
    [50]. V. Passalacqua, et al, Polymer, 1976,17:1044
    [51].管沼平六,纤维学会志(日),1987,43(4):186-191
    [52].邓元,合成纤维工业,1993,16(3):31-36
    [53].邓元,合成纤维工业,1994,17(3):28-31
    
    
    [54].邓元,合成纤维工业,1993,16(1):43—47
    [55].何进章,聚酯工业,1989,(3):1—6
    [56].陈星枚,聚酯工业,1998,(1):11—16
    [57].陈星枚,聚酯工业,1996,(4):7—11
    [58].韩亚东,合成纤维工业,1994,17(5):24—28
    [59].韩亚东,合成纤维工业,1990,13(2):10—13
    [60].于同隐,合成纤维,1982,(2):1—7
    [61].赵庆章,合成纤维工业,1988,11(2):43—46
    [62].PTA技术资料,Amoco公司内部资料,1992
    [63].张宜红,顾利霞,合成纤维工业,2000,23(1):53—55
    [64].张宜红,顾利霞,高分子材料科学与工程,2000,(6):90—92
    [65]. J. Otton, S. Ratton, J. Polym. Sci., Polym. Chem.,1988,26:2199-2224
    [66]. J. Otton, S. Ratton, J. Polym. Sci., Polym. Chem.,1988,26:2183-2197
    [67]. Jiayan Yu, et al, J.A.P.S.,1999,73:1191-1195
    [68].顾书英,合成纤维工业,1998,21(6):9—11
    [69].肖海燕,合成技术及应用,2001,16(1):6—8
    [70].杨始堃,合成纤维简讯,1984,(1):8—13
    [71].孙卫杰,聚酯工业,1996,12(2):28—30
    [72].沈发治,聚酯工业,1993,(3):21—25
    [73].PEN—新型工程塑料,MGC公司技术资料,1997
    [74]. Chun-Shan Wang, et al, J.P.S.: Polym. Chem., 1994,32:1295-1304
    [75]. Chun-Shan Wang, et al, J.P.S.: Polym. Chem., 1994,32:1305-1315
    [76]. Tsu-Shang Lu, et al, J.P.S.: Polym. Chem., 1995,33:2841-2850
    [77]. C.C. Mcdowell, et al, J.P.S.: Polym. Phy., 1998,36:2981-3000
    [78]. S. Buchner, et al, Polymer, 1989, 30:480-488
    [79]. X. Lu, et al, Polymer, 1995, 36(3):451-459
    [80]. Y. Shi, et al, J. A.P.S, 2001,81:23-37
    [81].华道本,周晓沧 合成技术及应用,2000,15(2):18—21
    [82].杨海华,合成技术及应用,2001,16(1):1—5
    [83]. D. Colemar, J. P. S., 1954, (14): 15
    
    
    [84].吴美琰,高分子通讯,1980,(2):77
    [85]. D.K. Gilding, A.M. Reed, Polymer, 1979,20:1454-1458
    [86]. A.M. Reed, D.K. Gilding, Polymer, 1981,22:499-504
    [87].吴美琰,应用化学,1988,5(5):34—38
    [88].宋厚春,合成纤维工业,1999,22(6):9—10
    [89].邓元,合成纤维工业,1992,15(5):33—37
    [90].陆嘉,合成技术及应用,1999,14(6):21—24
    [91].武荣瑞,高分子学报,1993,(2):252—256
    [92].王晓松,高分子材料科学与工程,1998,14(1):38—41
    [93]. J.J. Zeilstra, J.A.P.S., 1986,31:1977-1997
    [94].陈稀,合成纤维,1991,20(4):7—11
    [95].董擎之,合成纤维,1991,14(6):19—23
    [96].赵淑芝,合成纤维,1988,(4):37—41
    [97].程贞娟,合成纤维工业,1985,(2):10—17
    [98].曹振林,北京国际化纤会议论文集,1987
    [99].胡宏纹 有机化学(第二版),高等教育出版社,2000年2月
    [100].张师民 聚酯生产工艺学,中国石化出版社,2000年
    [101]. 1985,27(11):2333
    [102]. Luigi Sie, Advances in Polymer Science, 1979, 31:89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700