双螺杆反应挤出纺丝级PA6/蒙脱土纳米复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早在20世纪30年代,聚酰胺(尼龙)就投入工业化生产,早期的聚酰胺主要用于制造纤维,是世界上最早的合成纤维品种,由于聚酰胺良好的耐热性,优异的耐磨性和优良的耐碱性,不发霉、不腐烂、不怕虫蛀等特性,在整个60年代,聚酰胺纤维以15%的速率增长着,广泛应用于军工、航天航空、汽车各种工业领域,以及日常用品中。1950年以后,由于成核剂的进步及纤维增强塑料的开发,使得聚酰胺作为五大工程塑料之一在材料工程领域中得到广泛应用。
     尼龙虽然具有以上一些优良的性能,但由于尼龙大分子结构的原因,也存在一些缺点,如模量低,易变形,耐热性差等。无法满足一些场合如高性能轮胎帘子线、输送履带等要求,而受到很大限制。
     日本的Y.Fukushima等于1987年首次报导了采用原位插层聚合方法制备PA6/粘土纳米复合材料以来,各国研究人员进行了广泛的研究,在PA6/粘土纳米复合材料(NCH)的制备、表征、结构研究等方面取得了重要的进展,所得到的PA6/纳米复合材料具有高强度、高模量、高热变形温度、良好的阻隔性等性能。然而大多数报道的相关研究采用的是己内酰胺水解开环聚合法,而且开发的相关产品多为塑料和薄膜制品。而采用双螺杆反应挤出PA6/蒙脱土纳米复合材料的纺丝级切片,进行纺丝研究还未见任何报导。
     本论文①首次以双螺杆挤出机作为制备的PA6/蒙脱土纳米复合材料的反应器。采用原位聚合法,使己内酰胺单体在双螺杆中短时间内快速反应聚合,制备出PA6/蒙脱土纳米复合材料。此方法可以在双螺杆中通过适当的参数控制(温度、螺杆形状)进行连续聚合,与一般PA6/蒙脱土纳米复合材料原位聚合法相比,时间大大缩短,而且可直接挤出成型,符合生产上对工艺过程的经济性,高效率的要求,为未来的生产工业化提供了可能。
     ②专门设计了适合PA6/蒙脱土纳米复合材料聚合反应的双螺杆元件组合。对不同螺杆形状的产生的实验结果进行了对比,对螺杆元件形状和停留时间的关系进行了讨论。实验数据表明采用此方法所获得的PA6/蒙脱土纳米复合材料分子量比较高,可达24000左右,分子量分布比较窄,可以达到1.8。适合于纺制纤维。
Polyamide has been found and commercialized since 1935.Early polyamide was mainly produced as raw material for polyamide (Nylon6) fiber, which is the earliest synthetic fiber in the word. For several decades, Nylon6 fiber was developing at the annual rate of 15% and have been applied in various industry fields of military, aerospace, vehicle and daily articles for its excellent mechanical properties such as high strength, excellent resistances to abrasion, chemicals and mildew, etc. Since 1950, Nylon6 has become one of the five most important engineering plastics due to the developments of nucleating agent and fiber reinforcement of plastics.However, it has some disadvantages, such as low Young's modulus, easy to deforming and poor thermal resistance, which seriously limit its further and wide applications in some special fields, such as high quality tire-cord, conveyer belt etc.On the other hand, hydro-open ring polymerization is a classical method for polymerization of ε -caprolactom with tedious production process and expensive equipments, and polymerization time will take more than 20 hours; it is difficult to prepare modified or differential products by this method; anion polymerization of ε -caprolactom can produce Nylon6 in a short time, such as several minutes, however, with very high molecular weight, wide molecular weight distribution and its product is difficult to be spun into fiber and can only be used as plastics.In situ polymerization of Nylon6/montmorillonite (PA6/MMT) composites was first introduced by professor Y. Fukushima in 1987 and since then great progress has been obtained in preparation, characterization and applications of PA6/MMT with high strength, high modulus and high thermal resistance. However, most of the studies are depended on hydro-open ring polymerization process and their products are on the forms of plastics or films and there is nothing concerned about the fiber grade PA6/MMT composite chip prepared by twin-screw extruder.The thesis focuses on the preparation and characterization of MMT modified PA chips and fibers. The results show that:1. At the first time to prepare MMT modified PA6 chips using twin-screw extruder as reactor, ε -caprolactom was in situ anion polymerized at the presence of MMT
    
    in a short time. By control polymerization parameter such as temperature, screw profile, fiber grade PA6/MMT nanocomposite chips was prepared continually in a quite shorter time compared with that by classical hydro-open ring polymerization method.2. The effect of screw profile on polymer properties was studied and a special combination of screw elements was designed in order to obtain a modified polyamide with suitable molecular weight (about 24000), narrow molecular weight distribution (about 1.8) for fiber making.3. The studies on crystallization kinetics and morphological studies show that the nanoMMT added in the system would react as nucleating agent. With the increase of MMT, Avrami index decreases. The spherulite develops rather in three dimensions when the amount of MMT is below l(wt)%, and show two dimensional propagation when the amount reaches 3%.4. The rheological studies on PA6/MMT system show that with the increase of shear rate and temperature, the apparent melt viscosity decreases. With the increase of MMT amount, melt apparent viscosity will increases.5. TGA was used to study PA6/MMT thermal property. The results show that its thermal stability is greatly improved compared with that of pure PA6 sample. The maximal degradation temperature for 3% MMT modified PA reaches 350℃. At same weight loss, such as 10%, pure PA6 was at temperature about 290 ℃, while modified one was 325 ℃.6. PA6/MMT composite chips with different MMT contents were spun and drawn into fibers. Fiber mechanical properties were tested and the results shown that the adding of nano-MMT could improve fiber mechanical properties. Compared with pure PA6 fiber, the tensile strengths of fibers with 1 and 2(wt)% MMT increased by 3% and 4%, while fiber Young's modulus increased by 10.7% a
引文
1.周震,王先有,纳米材料的特性及其在电催化中的应用,化学通报,1998,(4):23
    2.张玉龙等,纳米技术与纳米塑料,中国轻工业出版社,2002
    3. Roy R, et al., Cation-exchange properties of hydrated cements. Mater Res. Soc. Symp. Proc.,1984, 32:347
    4.杨勇,朱子康,漆宗能,有机—无机纳米复合材料的进展,上海交通大学学报,Vol 32,No 7,1998
    5.张立德,牟季美,纳米材料和纳米结构,北京,科学出版社,2001
    6. Gerhard Lagaly, Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanaocomposites, Applied Clay Science, 1999, No 15, 1~9
    7.王娜,田光,封禄田,PA6/蒙脱土纳米复合材料的制备和性能研究,沈阳化工学院学报,2002年,第16卷,第2期,99
    8.佘希林,宋国君,王俊霞,PA6/粘土纳米复合材料的熔融挤出制备和研究及表征,青岛大学学报,2002年,第15卷,第2期,36
    9.柯林萍,阳明书,张世民,PA66/蒙脱土复合材料结晶行为的研究,高分子学报,2002年,第4期,427
    10.乔放,李强,漆宗能,聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究,高分子通报,1997年,第三期,135
    11.陈光明,漆宗能,聚苯乙烯/蒙脱土纳米复合材料中的剪切诱导有序结构(Ⅰ)—广角X射线衍射与透射电镜研究,高等学校化学学报,1999年,Vol 20
    12.王胜杰,李强,王新宇等,聚苯乙烯/蒙脱土熔融插层复合的研究,高分子学报,1998年,第2期,129
    13.俞强,林明德,刘建忠等,PET/蒙脱土纳米复合材料的结晶行为,江苏石油化工学院学报1999年,第11卷第1期,22
    14.徐锦龙,李伯耿,李乃祥,PET/有机蒙脱土纳米复合材料等温结晶动力学过程研究,高分子材料科学与工程,2002年,第18卷,第6期,123
    15.钱芝龙,聚酯/蒙脱土纳米复合材料的制造与应用,金山油化纤,2002年,第1期,31
    
    16.徐笑非,聚丙烯/纳米蒙脱土复合材料的结晶动力学研究,分析测试技术与仪器,第8卷,第1期,2002年,26~30
    17.顾群,吴大诚,聚醚酯/蒙脱土复合材料的结晶动力学和结晶形态,高等学校化学学报,1999年,Vol 20,324~326
    18.王立新,张福强,王新,环氧树脂/粘土纳米复合材料的制备与表征,河北工业大学学报,1999年,第28卷,第1期,21
    19. Giannelis E. P., Polymer layered silicate nanocomposites, Adv. Mater., 1996, 8(1): 28-30
    20. Lan T., Kaviratana P.D., Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites, Chem. Mater.,1995,7:2144-2150
    21.肖泳,聚合物/蒙脱土纳米复合材料最新进展,工程塑料应用,1998,26(8):28-30
    22. Le Baron P.C., Wang Z, Pinnavaia T., J Applied Clay Science,1999, 15:11~19
    23. Vaia R. A., Giannelis E. P., Macromolecules, 1997, 8:8000~8009
    24. Yano k, Usuki A, OkadaA, J. Polym. Sci., Part A:1997, 35:2289~2498
    25. Vaia R. A. Jandt K D, Kramer E J, et al., Chem. Mater.,1996,8:2628~2635
    26. Prassas M., Hench L. L., Physical chemical factor in sol-gel processing, Ultrastructrure proceeding of ceramics, glasses and composites, 1984:100-125
    27. Tcheng B K G., The chemistry of Clay-Organic Reactions, Adam Hilger London, 1974
    28. Mehrotra V, Gianelis E P., Polymer Based Molecular Composites, edited by Shaefer D W and Mark J E, Mater. Res. Soc. Proc.,171, Pittsburgh, PA 1990
    29. Vaia RA, Ishii H, Giannelis E P.[J]., Chem. Mater,1993,5:1695
    30. Vaia RA, Vasudevan S, Krawiec W, et al, [J].Adv Mater,1995,7:154
    31. Fukuhima Y, Inagaki. Synthesis of an Intercalated Compound of Montmorillonite and 6-Polymide, J. Inclusion Phenomena, 1987,5:473
    32. Kurokawa Y., Yasuda H., Preparation of a nanoeomposites of polypropylene and smectite, J. Mater. Sci. Lett., 1996,15 (17): 1481-1483
    33. Furuichi N., Kurokawa Y., Fujita K., Preparation and properties of polypropylene reinforced by smieite, J. Mater. Sci., 1996, 31 (16):4307-4310
    
    34. Moet A. S., Akelah A., Polymer-clay nanocomposites: polystyrene grafted onto monotmorillonite interlayers, Mater. Lett., 1993,18(1-2):97-102
    35. Akelan A., Moet A., Polymer-clay nanocomposites: free-radical grafting of onto polystyrene organophilic montmorillonnite interlayers, J. Mater. Sci., 1996, 31(13): 3589-3596
    36. Moet A., Akelan A., Layered silicate/polystyrene montmorillonnite, Proceedings of the 1994 MRS Symposium,1994,351:91-96
    37. Messersmith P. B., Giannelis E.P., In-situ network composites, Novel Technigues in Synthesis and Processing of Advanced Materials, Warrendale Pennsylvania: Singh J., Publication of Minerals, Metals&Materials Society, 1994
    38. Lan T. Kaviratna P. D., Synthesis, Characterization and mechanical properties of expoxy-clay, Proceeding of the ACS division of polmeric materials science and engineering, 1994,527
    39. Lee D.C., Jang L. W., Preparation and characterization of PMMA-clay hybrid comosite by emulsion polymerization, J. Appli. Polym.Sci., 1996,61 (7) 1117-1112
    40. Pinnavaia T.J., Lan T., Kaviratna P.P., Clay-polymer nanocomposites: polyether and polyimide systems, Proceeding of the 1994 MRS spring Meeting, 1994346:81-88
    41. Muzny C. D., Butler B. D., Hanley H. J. M., Clay platelet disperion in a polymer matrix, Mater.Lett., 1996,28(4-6):379-384
    42. Hajji P., Cavaillie J.Y., Tensile behavior of nanocomposites from latex and cellulose whiskers, Polym. Comp., 1996,17(4):612-619
    43. Bergaya F, kooli JF., Acryloitrile-smeetitie complexes, Clay Mine., 1991,26(1):33
    44.赵杏媛,张有瑜,粘土矿物与粘土矿物分析,北京:海洋出版社,1990
    45.任磊天,粘土矿物与粘土岩,北京,地质出版社,1992
    46. Figueras. E, Pillared clays as catalysts. Catal. Rev.-Sci. Eng., 1998,30(3): 457~499
    47. Kojima Y., Matsuoka T., Takanashi H., Crystallization of a nylon-6-clay hybrid by injection moulding trader elevated pressure, J. Mater. Sci. Lett., 1993, 12(21): 1714-1715
    
    48. Usuki A., Kawasumi M., Swelling behavior of montmorillonnite cation exchanged for amino acids by caprolactam, J. Mater. Res., 1993, 8(5): 1174-1178
    49. Usuki A., Kojima Y., Characterization and properties of nylon-6-clay hybrid, Polym. Prep., Division of Polym. Chem., Ameri. Chem. Soc., 1990, 30 (20): 651-652
    50. UsukiA., KojimaY., Kawasumi M., Synthesis of nylon 6-clay hybrid, J. Mater. Res., 1993,8(5): 1179-1184
    51. Kojima Y., Matsuoka T., Crystallization of nylon 6-clay hybrid by annealing under elevated pressure, J. Apppl. Polym.Sci., 1994,51 (4):683-687
    52. Kojima Y., Usuki A., Fine structure of nylon 6-clay hybrid, J. Polym. Sci., Part B, 199432(4)625-630
    53. Kojima Y., Usuki A., Matsuoka T., Kawasumi M., Mechanical properties of nylon 6-clayhybrid, J. Mater. Res.,1993, 8(5):1185-1189
    54.刘立敏,朱晓光,漆宗能,PA6/蒙脱土纳米复合材料的等温结晶动力学研究,高分子学报,1999年,第三期,274
    55.李强,赵竹第,欧遇春等,PA6/蒙脱土纳米复合材料结晶行为,1997年,第二期,188
    56.赵竹第,李强,欧遇春,PA6/蒙脱土纳米复合材料的制备、结构与力学性能的研究,高分子学报,1997年,第5期,519
    57.王德禧,何黎虹,纳米粘土母粒的应用研究,塑料,2000年,03期,11~14
    58. Kojima Y, Usuki A, Kawasumi M, et al, Synthesis of nylon6-clay hydrid by montmorllonite intercalated with ε-caprolactam. J. Polvm. Sci. Part A: Polym. Chem., 1993, 31:983-986
    59. Kojima Y, Usuki A, Kawasumi M, et al, One-pot synthesis of nylon 6-clay hybrid [J]. J. Polymer Sci A: Polymer Chem., 1993:1755-1758
    60. Ilman J W, Kashiwagi T, Lichtenhan J D., Nanocomposites:A revolutionary new flame retardant approach, [J].SAMPE Journal,1997,33(4):40~46
    61. Vaia R A, Price G. Ruth P N, et al., Polymer/layered silicate nanocomposites as high performance ablative materials, APPL CLAY SCI 15 (1—2): 67—92 1999
    
    62. Okada A, Usuki A, The chemistry of polemer-clay hybrid, [J].Mater. Sci. Eng.: C3, 1995:109~115
    63. J. F. Rung, First commercial nylon/organo-clay compound hits, [J]. Injection Molding, 1999,7(6):46
    64. lou Reade, Polymer nanocomposite, [J]. Plastic Engineering, 1999,55(7): 75
    65. K. Tarverdi, Nylon nanocomposites add barrier to PET bottles, [J]. Plastics Technology, 46(3):31
    66. LEW R, Nanocomposites nylon barrier for PETP bottles, [J]. Plastics News International, 2000,(4):42
    67. CHEUNG P, Thermoplastic deals struck, [J].European Chemical News, 1999,70 (1848):36
    68. VANBALLEGOOIE P, RUDIN A modified polystyrenes with linear low-density polyethylenes, 16-Poly Part 2 JUN 5 1988,195
    69. VANBALLEGOOIE P, RUDIN A, Reactive extrusion of polystyrene polyethylene blends, Polymer Engineering and Science,28 (21): 1434-1442 NOV 1988
    70. Lew R, C heuug P, BA Slake ST, Reactive extrusion of polypropylene-elucidating degrati kinetics, ACS Synposium series, 404:507-520 1989
    71. D Suwana, ST Balke, Combined reactive extrusion orientation of polyethylene, Polym. Eng. Sci. 33(8): 455-465 APR 1993
    72. G H Hu, J J Flat, LAMBLA M, Exchange and free-radical grafting reactions in reactive extrusion, Makromol. Chem.-M. Symp. 75:137-157 OCT 1993
    73.马里诺·赞索斯,《反应挤出—原理与实践》(美),北京,化学工业出版社,1999
    74.高雨生等编著,《化纤设备》,上海,中国纺织出版社,1989
    75. P.R. Hornsby, J.F. Rung, K. Tarverdi, Characterization of Polyamide 6 Made by Reactive Extrusion. I. Synthesis and Characterization of Properties, J. Applied Polymer Science, Vol.53,891~897(1994)
    76. J. Sebenda, V. Kouril, Anionic Polymerization of Caprolactam-XL, Coll. Czech. Chem. Commun., 23,766, 1958
    
    77. Tadamoto Sakai, Sport on the State of the Art: Reactive Processing Using Twin-Screw Extruders, Reactive Processing, vol. 11, NO.2, p.99-108
    78. J. Gimenez, M. Boudris, P. Cassagnau and A. Michel, Bulk Polymerization of ε-Caprolactone in Twin Screw Extruder, Inter Polymer Processing XV(2000)1, p.20-27
    79. G.Menges, T.Bartilla, P. Heidemeyer, REACTIVE EXTRUSION, New Polymeric Materials, VNU Science Press, p. 129-148
    80. A.Poulesquen, B.Vergnes, Polymerization of ε-Caprolactone in a Twin Screw Extruder Modeling and Experiments, INT. POLYM. PROC. 16(1): 31—38 2001
    81.邵佳敏等,双螺杆反应挤出PA6的开发生产,现代塑料加工应用,1998,10,2:33
    82.邵佳敏,夏浙安,刘小华等,双螺杆反应挤出PA6,塑料科技,1997年06期,40~42
    83.李兴田,邵佳敏,PA6双螺杆反应挤出工艺,化学工业和工程技术,2000年5期,16~17
    84. Wang Y, Chen FB, Li YC, et al, Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers, COMPOS PART B-ENG 35 (2): 111-124 2004
    85. Hu XB, Lesser AJ, Effect of a silicate filler on the crystal morphology of poly(trimethylene terephthalate)/clay nanocomposites, J. POLYM. SCI. POL. PHYS., 41 (19): 2275-2289 OCT 1 2003
    86. Fornes TD, Yoon PJ, Paul DR, Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites, Polymer, 44 (24): 7545-7556 NOV 2003
    87. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Effect of organoclay structure on nylon 6 nanocomposite morphology and properties, Polymer, 43 (22): 5915-5933 OCT 2002
    
    88. Eric Devaux, Serge Bourbigot, Ahmida El Achari, Crystallization Behavior of PA-6 Clay Nanocomposite Hybrid, Journal of Applied Polymer Science,Vol.86, 2416-2423(2002)
    89. Lou Reade, Plastics Engineering, 2001, 57(1):56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700