秸秆热化学液化工艺和机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热化学液化是一种高效的生物质转化技术,能够将木质纤维素类材料转化为液体。将农业废弃物——农作物秸秆,通过热化学液化转化成为工业原料,替代石化产品,能够减轻农业废弃物对环境的污染,减少人类对石化资源的消耗与依赖,同时使大量农作物秸秆被增值转化,为农业生产开拓一个新的发展领域,将有利于生态环境的改善和农业的可持续发展。
     本课题以农作物秸秆(玉米秸、麦秸、稻草、玉米芯)作为主要原料,以不同液化条件的选择、液化规律的探索以及液化工艺参数的优化为主要研究过程,分析了液化产物的得率及各质量参数,研究了秸秆循环液化、液化机理以及液化反应动力学,对液化工艺进行了优化,并建立秸秆液化反应动力学模型,以期为秸秆液化的工业化生产提供理论依据。
     试验了不同的液化剂和催化剂对液化效果的影响,研究表明:EC和EC/EG混合溶剂是高效的液化剂,浓硫酸是一种高效的催化剂。在此基础上,进行了各参数的单因素试验,根据各液化条件与液化得率之间的关系,确定了秸秆液化的较适宜工艺参数范围:液化温度130~180℃、物料量20%~40%、催化剂量2.5%~4.5%以及液化时间60~90 min。秸秆在EC以及EC/EG混合溶剂中的液化趋势基本相同;单一组分较全秸秆容易液化,且其中木质素较纤维素容易液化。液化产物粘度的变化与液化得率基本上呈负相关性。在液化过程中,酸值和羟值在试验中变化范围较小。随着液化得率提高,羟值会相应增加,而酸值在试验过程中则相应减少或保持不变。
     利用FTIR对纤维素、木质素以及玉米秸的液化产物及残渣进行分析,结果如下:纤维素在液化过程中有大量酯键生成,并且吡喃环消失;木质素在液化过程中紫丁香环消失,芳香环减少但仍然存在;玉米秸在液化的过程中,其中的纤维素和木质素先于半纤维素被液化,并且木质素变化程度较大。
     以液化得率为试验指标,安排了二次回归正交旋转组合设计试验,得出试验指标和各参数之间的回归数学模型,并以此为基础对液化工艺进行了优化,得到优化工艺条件为:反应温度170℃,反应时间95 min,物料量20%,催化剂量3.70%,此时液化得率为92.06%。
     为了节省液化剂并为秸秆连续液化生产提供依据,对秸秆循环液化进行研究,得到各循环次数下的最优组合条件:第一次液化,反应温度170℃,反应时间60 min,物料量25%,催化剂量4%;第二次液化,反应温度160℃,反应时间45 min,物料量20%,催化剂量4%;第三次液化,反应温度170℃,反应时间60 min,物料量25%,催化剂量3.5%。
     纤维素以及不同秸秆液化的化学动力学研究结果显示,秸秆在液化反应初期(约12 min)符合伪一级反应,液化的化学反应动力学方程为-dC_m/dt=k·C_m,反应速率常数因物料的不同而不同。纤维素在液化初期阶段符合伪一级反应,液化反应动力学模型为-dC_m/dt=k·C_m,反应活化能公式为K=3.09×10~8e 79.20/RT,活化能为79.20 kJ/mol,属于容易进行的反应。
Biomass based materials such like crop residues are abundant renewable resources in the world. Converting biomass materials into alternative petrochemical will release the dependence on fossile oils of the human society as well as to reduce the environment pollution. The purpose of this study was to investigate the liquefaction process for converting crop residues into biopolyols to develop a new approach to the reasonable and high efficient utilization of crop residues.Four kinds of crop residues, including corn stover, rice straw, wheat straw and corn cob, were selected as materials. A series of experiments were conducted with various operational parameters under different conditions of liquefaction. The yield of liquefaction, the physical and chemical properties of biopolyols and the re-circulated liquefaction of crop residues were analyzed. The kinetic liquefaction model of crop residues was established based on the liquefying mechanism and the reacting kinetics analyses and on the experimental data. The optimized model of liquefaction process was also established.The results showed that it was efficient to liquefy corn stover with ethylene carbonate or EC/EG blended solvents as a liquefying solvent and 98% sulfur acid as a catalyst. The suitable temperature and the reaction time were among 130-180℃ and 60-90 min, respectively. The optimum ratio of material/solvent and the catalyst/solvent were among 20%-40% and 2.5%-4.5%, respectively.The experiments of liquefaction of crop residues with EC and EC/EG blended solvents indicated that the liquefying results with the two solvents were similar. It was easier to liquefy the mono-component than the crop residues and the lignin than the cellulose with the two solvents. The changes of viscosity were inverse correlative with liquefaction yield. The higher the liquefaction yield was, the lower the viscosity, vice versa. There was positive correlation between the liquefaction yield and the hydroxyl numbers. The acid numbers decreased or kept in the same value with the increase of liquefaction yield.A lot of C=O bond formed and the pyranoid ring disappeared during the liquefaction of cellulose according to the analysis of FTIR. The syringic ring disappeared, however, the aromatic ring could be detected during the liquefaction of lignin. When the corn stover was liquefied with EC as liquefying solvent, it was easier to break for the components of cellulose and lignin than that of hemicellulose. The degree of cleavage for lignin was more significant.The regression model of liquefaction was obtained from the quadratic orthogonal experimental data. With the regression equation, the liquefaction yield reached 92.06% at optimum conditions of 170℃ for 95 min with the ratio of material/solvent and catalyst/solvent were 20% and 3.70%, respectively.In the re-circulated liquefaction, the optimized condition of the first liquefaction with fresh liquefying solvent was 170℃, 60 min, and the ratio of the material/solvent and the catalyst/solvent were 25%
    and 4%. respectively. For the second and the third liquefaction with biopolyols as the solvent, the condition was 160℃ and 170℃, 45 min and 60 min, the material/solvent ratio of 20% and 25%, and the catalyst/solvent ratio of 4% and 3.5%, respectively.The experimental results indicate that both the liquefaction of cellulose and crop residues at the early stage follow the pseudo-first-order reaction. The kinetic model is -(dC_m)/(dt)= k·Cm To cellulose, the reaction activation faction is k = 3.09×10~8e The reaction activation energy of cellulose is 79.20 kJ/mol, which suggests the cellulose is easier to be liquefied.
引文
[] 宋明爽.现代化与社会持续发展.社会科学战线,1996(1):26~32
    [2] Lennon, S. J. United nations conference on the environment and development: a power utility perspective. Journal of Energy in Southern Africa, 1993, 4:27~29
    [3] 曲音波.开发生物质资源实现可持续发展.国际技术经济研究,1999,2(2):29~34
    [4] Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 2004, 45:651~671
    [5] 但卫华,曾睿.生物质与生物质工程.中国皮革,2002,31(11):31~35
    [6] 肖军,段菁春,王华等.生物质利用现状.安全与环境工程,2003,10(1):11~14
    [7] 蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业,2002,22(2):75~80
    [8] 中华人民共和国国家统计局.中国统计年鉴2003.北京:中国统计出版社,2003
    [9] 中国农业统计年鉴2000.北京:中国农业出版社,2000,52
    [10] 钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4):62~67
    [11] 胡代泽.我国农作物秸秆资源的利用现状与前景.资源开发与市场,2000,16(1):19~20
    [12] 韩鲁佳,闫巧娟,刘向阳等.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87~91
    [13] 李伟,蔺树生.谭豫之等.作物秸秆综合利用的创新技术.农业工程学报,2000,16(1):14~17
    [14] 钱湘群.秸秆切碎及压缩成型特性与设备研究:[硕士学位论文].浙江:浙江大学,2003
    [15] 黄忠乾,龙章富,彭卫红.农作物秸秆资源的综合利用.资源开发与市场,1999,15(1):32~34
    [16] 周定国,梅长彤.面向21世纪的农作物秸秆材料工业.南京林业大学学报,2000,24(5):1~4
    [17] 丁武,杨中平.热压成型工艺对秸秆复合餐具耐水性能的影响.西北农林科技大学学报,2003,31(2):137~140
    [18] 王保利,杨中平,高梦祥等.纤维复合模塑品耐水性能的试验研究.西北农林科技大学学报.2002,30(6):219~221
    [19] 古坚.秸秆固态发酵酒精动力学研究:[硕士学位论文].北京:中国农业大学,2003
    [20] 潘峰.秸秆微生物共发酵生产单细胞蛋白研究:[博士学位论文].南京:南京理工大学,2001
    [21] 高洁,汤烈贵.纤维素科学.北京:科学出版社,1999,10
    [22] 邬义明.植物纤维化学.北京:北京轻工业出版社,1997
    [23] 天津轻工业学院,华南工学院,西北轻工业学院等.植物纤维化学.北京:北京轻工业出版社,1980.127
    [24] 刘仁庆.纤维素化学基础(第一版).北京:科学出版社,1985,163~189
    [25] Nada, A. M. A., Hassan, M. L. Thermal behavior of cellulose and some cellulose derivatives. Polymer Degradation and Stability, 2000, 67: 111~115
    [26] 高洁,汤烈贵.纤维素科学.北京:科学出版社,1999,199~202
    [27] Minowa, T., Zhen, F., Ogi, T., et al. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. Journal of Chemical Engineering of Japan, 1998, 31 (1):131~134
    [28] Minowa, T., Zhen, F., Ogi, T., et al. Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures. Journal of Chemical Engineering of Japan, 1997, 30:186~190
    [29] 高洁,汤烈贵.纤维素科学.北京:科学出版社,1999,211~229
    [30] Xiao, B., Sun, X. F., Sun, R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 2001, 74:307~319
    [31] 宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究.煤炭转化,2003,26(3):91~97
    [32] 高洁,汤烈贵.纤维素科学.北京:科学出版社,1999,230~234
    [33] Hatfield, R., Vermerris, W. Lignin formation in plants:the dilemma of linkage specificity. Plant Physiol, 2001, 126:1351~1357
    [34] Davin. L. B., Lewis, N. G. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol, 2000, 123:453~461
    [35] Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, 42: 1357~1378
    [36] 宋春财.农作物秸秆的热解及在水中的液化研究:[博士学位论文].大连:大连理工大学,2003
    [37] Scholze, B., Hanser, C., Meier, D. Characterization of the water-insoluble fraction from fast pyrolysis liquid(pyrolytic lignin) Part Ⅱ. Journal of Analytical and Applied Pyrolysis, 2001, 58:387~400
    [38] Diebold, J. P., Czernik, S., Scahill, J. W. et al. Hot-gas filtration to remove char from pyrolysis vapours produced in the vortex reactor at NREL. Biomass Pyrolysis Oil Properties and Combustion Meeting, 1994: 90~108
    [39] 刘荣厚,鲁楠,曹玉瑞等.旋转锥反应器生物质热裂解工艺过程及实验.沈阳农业大学学报,1997,28(4):307~311
    [40] Demirbas, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management, 2000, 41 : 633~646
    [41] Demirbas, A. Effect of lignin content on aqueous liquefaction products of biomass. Energy Conversion & Management, 2000, 41 : 1601~1607
    [42] Fierz, H. E. Chemistry of wood utilization. Chemistry and Industry Review, 1925, 44:942
    [43] Appell, H. R., Fu, Y. C., et al. Conversion of cellulosic waste to oil. Bureau of Mines. Report of Investigations7560, 1971
    [44] Yokoyama, S., Ogi, T., Koguchi, K., et al. Oilification of wood. Liquid Fuels Technology, 1994, 2: 115
    [45] Minowa. T., Kondo, T., Sudirjo, S. Thermochemical liquefaction of Indonesian biomass residues. Biomass and Bioenergy, 1998, 14:517~524
    [46] Stiller, A. H., Dadyburjor, D. B., et al. Co-processing of agricultural and biomass waste with coal. Fuel Processing Technology, 1996, 49:167~175
    [47] 张求惠,赵广杰.木材的苯酚及多羟基醇液化.北京林业大学学报,2003,25 (6): 71~76
    [48] Hesse, W., Jung, A. Harderable binding agents and their use. EP43097, 1980
    [49] Ono, H., Yamada, T., Hatano, Y., et al. Adhesives from waste paper by means of phenolation. Journal of Adhesion, 1996, 59:135~145
    [50] Celeghini, R. M. S., Lancas, F. M. Experimental variables effects on the direct liquefaction of lignin sugar cane bagasse. Energy Sources, 1998, 20:673~679
    [51] Lancas, F. M., Rezemini, A. L., Donate, P. M. Upgrading of sugar cane bagasse by thermal processes. 9. Catalytic liquefaction in ethanol. Energy Sources, 1999, 21:299~308
    [52] Celeghini, R. M. S., Lancas, F. M. Optimization of the direct liquefaction of lignin obtained from sugar cane bagasse. Energy Sources, 2001,23:369~375
    [53] Celeghini, E. A., Celeghini, D. S., Renata, M., et al. Experimental variables and their effects on the liquefaction of cellulose from sugar cane bagasse, Energy Sources, 2001, 23:93~99
    [54] Maldas, D., Shiraishi, N. Liquefaction of biomass in the presence of phenol and H_2O using alkalies and salts as the catalyst. Biomass and Bioenergy, 1997, 12:273~279
    [55] Pu, S., Shiraishi, N. Liquefaction of wood without a catalyst Ⅰ: Time course of wood liquefaction with phenols and effects of wood/phenol ratios. Mokuai Gakkaishi, 1993, 39 (4): 446~452
    [56] Pu, S., Shiraishi, N. Liquefaction of wood without a catalyst Ⅱ: Weight loss by gasification during wood liquefaction and effects of temperature and water. Mokuai Gakkaishi, 1993, 39 (4): 453~458
    [57] Lin, L., Yao, Y., Shiraishi, N. Liquefaction mechanism of β-0-4 lignin model compound in the presence of phenol under acid catalysis. Part 1. Identification of the reaction products. Holzforschung, 2001, 55 (6): 617~624
    [58] Lin, L., Naksgame, S., Yao, Y., et al. Liquefaction mechanism of β-0-4 lignin model compound in the presence of phenol under acid catalysis. Part 2. Reaction behavior and pathways. Holzforschung, 2001,55 (6): 625~630
    [59] Lin, L., Yao, Y., Yashioka, M., et al. Molecular weights and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysisi. Journal of Applied Polymer Science, 1997, 64 (2): 351~357
    [60] Alma, M. H., Shiraishi, N. Novolak resin-type moldings prepared from phenolated wood in the presence of sulfuric acid as catalyst. Journal of Polymer Engineering, 1998, 18 (3): 197~220
    [61] Alma, M. H., Maldas, D., Shiraishi, N. Liquefaction of several biomass wastes into phenol in the presence of various alkalis and metallic salts as catalyst. Journal of Polymer Engineering, 1998, 18:161~177
    [62] Alma, M. K., Yoshioka, M., Yao, Y., et al. Preparation and properties of a esterified wood into polyhydric alcohols or bisphenol A and their application in preparing wooden polymeric materials. Mokuai Gakkaishi, 1985, 31 (5): 418~420
    [63] Lee, S. H., Yoshioka, M. Shiraishi, N. Liquefaction and product identification of corn bran (CB) in phenol. Journal of Applied Polymer Science, 2000, 78:311~318
    [64] Lee, S. H., Yoshioka, M. Shiraishi, N. Preparation and properties of phenolated corn bran(CB)/phenol/formaldehyde cocondensed resin. Journal of Applied Polymer Science, 2000, 77:2901~2907
    [65] Lee, S. H., Yoshioka, M. Shiraishi, N. Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. Journal of Applied Polymer Science, 2000, 78:319~325
    [66] Lee, S. H, Teramoto, Y., Shiraishi, N. Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to novolak-type phenolic resin. Journal of Applied Polymer Science, 2002, 83:1473~1481
    [67] Shiraishi, N., Shirakawa, K., Kurimoto, Y. Japanese Patent, 106128, 1992
    [68] Yamada, T., Ono, H. Rapid liquefaction of lignocellulose waste by using ethylene carbonate. Bioresource Technology, 1999, 70:61~67
    [69] Rezzoug, S. A., Capart, R. Solvolysis and hydrotreatment of wood to provide fuel. Biomass and Bioenergy, 1996, 11 (4): 343~352
    [70] Rezzoug, S. A., Capart, R. Liquefaction of wood in two successive steps: solvolysis in ethylene-glycol and catalytic hydrotreatment. Applied Energy, 2002, 72:631~644
    [71] Yu, F., Ruan, R., Hare, E., et al. Preparation of biopolymer from liquefied corn stover. ASAE paper, No. 046085, 2004,
    [72] Yu, F., Ruan, R., Liu, Y. H., et al. Preparation of biopolymer from liquefied corn stover. CIGR paper, 2004
    [73] Qu, Y. X., Wei, X. M., Zhong, C. L. Experimental study on the direct liquefaction of cunningharnia lanceolata in water. Energy, 2003, 28:597~606
    [74] 涂宾,卢卓敏,谌凡更.麦草的催化热化学液化研究Ⅰ反应条件对液化的影响.纤维素科学与技术,2002,10(2):26~31
    [75] 王华,常如波,王梦亮.秸秆纤维的催化液化及其产物的初步研究.山西大学学报(自然科学版),2004,27(1):48~53
    [76] 戈进杰,吴睿,邓葆力等.基于甘蔗渣的生物降解材料研究(Ⅰ)甘蔗渣的液化反应和聚醚酯多元醇的制备.高分子材料科学与工程,2003,19(2):194~198
    [77] 戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料的研究(Ⅰ)玉米棒的液化反应及植物 多元醇的制备.高分子材料科学与工程,2003,19(3):194~197
    [78] 戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料的研究(Ⅱ)以玉米棒为原料的聚氨酯的合成与生物降解性.高分子材料科学与工程,2003,19(4):176~180
    [79] 汤国龙.工业分析.北京:中国轻工业出版社,2004:195~196
    [80] 中华人民共和国国家技术监督局.GB/T 2677.2.造纸原料水分的测定.北京:中国标准出版社,1994-09-24
    [81] 中华人民共和国国家技术监督局.GB 6438-92.北京:中国标准出版社,1994-09-24
    [82] 杨胜.饲料分析及饲料质量检测技术.北京:北京农业大学出版社,1999
    [83] 谢涛,谌凡更,詹怀宇.木材液化及其在高分子材料中的应用.纤维素科学与技术,2004,12(2):47~53
    [84] 谌凡更,涂宾,卢卓敏.麦草催化热化学液化产物的组成分析.林产化学与工业,2003,23(1):78~82
    [85] Lee, S. H., Teramoto, Y., Shiraishi, N. Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradablility and genotoxicity. Journal of Applied Polymer Science, 2002, 83:1482~1489
    [86] Tshiteya, M. Conversion of wood to liquid fuel. Energy, 1985, 10 (5): 581~588
    [87] Nakano, T. Mechanism of thermoplasticity for chemically-modified wood. Holzforschung, 1994, 48:318~324
    [88] Lin, L., Yoshioka, M., Yao, Y., et al. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. Journal of Applied Polymer Science, 1994, 52: 1629~1636.
    [89] Yao, Y., Yoshioka, M., Shimishi, N. Soluble properties of liquefied biomass prepared in organic solvents. I . The soluble behavior of liquefied biomass in various diluents. Mokuzai Gakkaishi, 1994, 40 (2): 176~184
    [90] Maldas, D., Shiraishi, N. Liquefaction of wood in the presence of phenol using sodium hydroxide as a catalyst and some of its characterizations. Polymer-Plastics Technology and Engineering, 1996, 35 (6): 917~933
    [91] Kurimoto, Y., Takeda, M., Koizumi, S. D. et al. Proceedings of 10th international symposium on wood and pulping chemistry. 1999, 1: 486~491
    [92] Kurimoto, T., Koizumi, A., Doi, S., et al. Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass and Bioenergy, 2001, 21:381~390
    [93] Kurimoto, Y., Takeda, M., Koizumi, A., et al. Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technology, 2000, 74:151~157
    [94] 徐培林,张淑琴.聚氨酯材料手册.北京:化学工业出版社,2002:25
    [95] Kleinert, T. M. Organosov pulping with aqueous alcohol. Tappi, 1974, 57 (8): 99~102
    [96] Thring, R. W., Chomet, E. Recovery of solvolytic lignin: Effect of spent liquor/acid volume ratio, acid concentration and temperature. Biomass, 1990, 23:289~305
    [97] 高洁,汤烈贵.纤维素科学.北京:科学出版社,1999:4~5
    [98] 戈进杰.生物降解高分子材料及其应用.北京:化学工业出版社
    [99] 童朝晖.麦草化学液化及其机理研究:[硕士学位论文].天津:天津轻工业学院,2000
    [100] 姚新生.有机化合物波谱分析.北京:中国医药科技出版社,2004,40~96
    [101] Pretsch, E. (著),荣国斌(译),朱士正(校).波谱数据表——有机化合物的结构解析.上海:华东理工大学出版社,2002,245~312
    [102] 廖双泉,马凤国,邵自强等.不同预处理对剑麻纤维组分和结构的影响.纤维素科学与技术,2002,10(2):37~42
    [103] 殷祥刚,滑钧凯.“闪爆”处理大麻纤维的研究.纤维素科学与技术,2003,11(3):22~28
    [104] 谢益民,伍红,赖燕明等.桉木CTMP法制浆过程中化学成分的变化.中国造纸学报,1999,14:20~25
    [105] 杜甫佑,张晓昱,王宏勋等.白腐菌降解木质纤维素顺序规律的研究.纤维素科学与技术,2005,13(1):17~25
    [106] 陈洪章.李佐虎.麦草蒸汽爆破处理的研究Ⅱ.麦草蒸汽爆破处理作用机制分析.纤维素科学与技术,1999,7(4):14~22
    [107] 顾继友,高振华,李志国等.利用FTIR对苯基异氰酸酯与不同含水率纤维素反应的研究.林业科学,2004,40(2):142~147
    [108] 高瑀珑,王允祥,江汉湖.超高压杀菌条件的响应曲面法优化研究.中国农业科学,2004,37(10):1544~1549
    [109] 李耕,章克昌,徐柔等.微生物转化生产木糖醇中工业化原料培养基组成的优化.无锡轻工大学学报,1996,15(4):318~321
    [110] Pan, X. J., Ruan, R., Liu, Y. H., et al. Preparation of polyurethane and polyester from liquefied starch. ASAE paper, 2002, No. 026169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700