无线传感器网络时空查询处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络能够实时地感知、收集、处理部署区域内监控对象的各种信息,利用无线通信将其返回至基站供用户查询和分析。它具有覆盖区域广、监测精度高等优点,在战场监测、医疗卫生、交通控制等领域有着广泛的应用前景,近年来成为研究热点。不同于传统的网络,无线传感器网络在计算、存储、能量、通信带宽等方面有诸多限制。传感器网络部署后,环境噪声、通信干扰、硬件故障均不可控。这些因素导致传感器网络应用开发十分复杂和困难。如何屏蔽传感器网络的复杂性,降低传感器网络应用开发的难度,是目前亟待解决的问题。
     考虑到无线传感器网络是以数据为中心的网络,用户使用它的主要目的是查询其感知到的具有时间和空间属性的数据。本文将无线传感器网络整体看成一个分布式的时空数据库,研究无线传感器网络环境下的时空数据查询处理技术,设计并实现无线传感器网络时空数据查询系统,以有效地管理和查询其感知到的时空数据,从而简化无线传感器网络应用的开发。本文的研究成果包含以下几个方面:
     (1)对于静态无线传感器网络,现有时空范围查询处理算法将全网络或查询区域中的节点组织成一棵路由树,查询区域内的节点通过该路由树将其查询结果返回给用户。采用单棵路由树会使得查询结果返回Sink节点的路径过长,导致能耗较大。证明了在绝大多数情况下,多路由树在能耗方面优于单路由树。设计了一种在查询区域内构造多棵路由树的协议,并基于该协议提出了一种低能耗的无线传感器网络时空范围查询处理算法E2STA (Energy-EfficientSpatio-Temporal Window Query Processing Algorithm for Wireless Sensor Networks)。实验结果表明,E2STA在能量消耗方面优于现有的算法。
     (2)提出了一个高效的动态无线传感器网络时空范围查询处理框架EST(EfficientSpatio-Temporal Query Processing Framework for Wireless Sensor Networks)。它包含三个阶段:查询区域划分、查询消息分发、感知数据收集。通过查询区域划分,查询区域内节点的感知数据通过不同的转发路径返回,减少了网络中的“热点”;提出了一种基于位置路由的查询消息组播协议,并给出了一种基于路线的查询分发和感知数据收集协议,通过调度查询区域内的部分节点广播查询消息,减少了分发查询消息的能耗;感知数据利用位置路由协议直接返回至基站,减少了收集查询结果的能耗。实验结果表明,EST在能量消耗、网络生命周期方面均优于现有的算法。
     (3)现有无线传感器网络环境下的空间范围聚集查询和K近邻查询处理算法能耗大,且当节点失效时查询处理过程易被中断,无法返回查询结果。给出了一种基于查询区域划分的容忍节点失效和能耗优化方案。查询区域被划分为若干个查询子区域。当节点失效时,失效节点所在查询子区域中的未失效节点恢复查询处理过程,减少了算法因节点失效而中断的概率。通过推导空间范围聚集查询和K近邻查询的能耗公式得到:在满足无线通信约束条件的前提下,查询子区域面积越大则总能耗越少。基于该结论,提出了最大化查询子区域面积的查子区域划分算法,降低了算法的总能量。
     (4)设计并实现了一个具有动态可扩充能力的无线传感器网络时空查询处理系统SensorMapReduce。它由基站端的查询编译器和节点端的虚拟机两部分组成。提出了一个时空查询统一处理框架,将各种不同的时空查询抽象为四个基本操作:Map、Reduce、GetNextClusterNode、GetNextClusterShape。查询编译器将用户提交的各种时空查询编译成相应的Map、Reduce等代码,发送至节点虚拟机上解释执行。SensorMapReduce提供了声明性的时空查询语言,以屏蔽底层分布式查询处理的复杂性。通过扩充查询编译器,节点端程序无需改变,SensorMapReduce即可支持其他种类的查询,降低了节点重编程的代价。
Wireless sensor networks (WSNs) can be used to sense, collect and process the information aboutthe monitored objects in the area of deployment. WSNs have a wide coverage area and high precisionof information. It has become a hot spot in recent years for its broad prospects in applications ofnational defense, environment monitoring, medical services, transportation control and etc. Unliketraditional networks, WSNs have many limitations in terms of computing, storage, energy,communication bandwidth, reliability, fault tolerance. After the deployment of sensor networks,ambient noise, communication interference and hardware failures are not predictable and controllable.These factors make the development of WSN application to be very complex and difficult. How toshield the complexity of WSNs and reduce the difficulty of development of sensor network applicationsis an urgent problem to be solved.
     WSNs are data-centric networks. The main purpose of using it is to query the spatio-temporalsensor readings. We view the whole sensor network as a distributed spatio-temporal database, and studythe spatio-temporal query processing technology in WSNs. We designed a spatio-temporal queryprocessing system for WSNs to manage and query the spatio-temporal data sensed. Our final aims is toshields the complexity and difficulty of development of sensor network applications. The maincontributions of this dissertation are summarized as follows:
     (1) In static wireless sensor networks, most of the existing spatio-temporal window queryprocessing algorithms organized all the nodes in the whole network or the nodes in the query area intoa single routing tree. The sensor readings of the nodes in the query area are sent back to the sink guidedby the routing tree. We point out that the path along which the query results are sent back to the sink isfairly long when a single routing tree is adopted, which leads to a large amount of energy consumption.Organizing the nodes in the query area into multiple routing trees can avoid this problem. Based on theabove findings, we design a protocol of constructing multiple routing trees for the nodes in the queryarea, and propose an energy-efficient spatio-temporal query processing algorithm called E2STA.Theoretical and experimental results show that the proposed algorithm based on multiple routing treesoutperforms the existing algorithms based on one single routing tree in terms of energy consumption.
     (2) We propose an efficient spatio-temporal query processing framework for dynamic wirelesssensor networkscalled EST in this paper. It consists of three stages: dividing query area, distributingquery message and collecting sensor readings. Through dividing query area, the sensory data within thequery area been returned through a number of different data forwarding paths, which reduces thenetwork "hot spots". We also proposed a geographic routing based query message multicast protocoland an itinerary based data collection protocol, which saves energy of distributing query messages byscheduling some nodes with the query area broadcast query messages. The proposed data collectionprotocol returns the query results back to the sink through geographic routing protocol, which reducesthe number of data forwarding. Experimental results show that EST outperforms the existingalgorithms in terms of energy consumption and lifetime.
     (3) The energy consumption of existing spatial window query processing algorithms and k nearestneighbor query processing algorithms in wireless sensor networks is fairy high. When some sensornodes fail, the query process of these algorithms is very likely to be interrupted and unable to returnquery results. We propose a node failure tolerant and energy optimization method based on dividingquery area. The query area is divided into several sub-regions. While a node fails, the alive nodes in the sub-region where the failed node resides in recover the interrupted process of query processing, whichreduces the outage probability of query processing due to node failures. We prove that largersub-regions result in less energy consumption while meeting the constraints of wireless communication.Based on this theory, we propose a query area dividing algorithm which maximizes the area of eachsub-region to reduce the total energy consumption.
     (4) We design and implement SensorMapReduce: a dynamically scalable spatio-temporal queryprocessing system in wireless sensor networks. It is composed of the query compiler at the base stationend and the virtual machine at the node side. A unified spatio-temporal query processing framework isproposed. It abstract various spatio-temporal query to four basis operation: Map, Reduce,GetNextClusterNode and GetNextClusterShape. The query compiler compiles the submitted query intoMap and Reduce code which are sent to run in the virtual machine of sensor nodes. SensorMapReduceprovides declarative spatio-temporal query language to shield the complexity of the underlyingdistributed query processing. Through extending the query compiler, SensorMapReduce can supportother types of queries without changing the node-side code, which reduces the cost of nodereprogramming.
引文
[1]任丰原,黄海宁,林闯.无线传感器网络.软件学报.2003.14(7):1282-1291.
    [2]崔莉,鞠海玲,苗勇等.无线传感器网络研究进展.计算机研究与发展.2005.42(1):163-174.
    [3]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念,问题与进展.软件学报.2003.14(10):1717-1727.
    [4] A. Cerpa, J. Elson, D. Estrin, et al. Habitat monitoring: Application driver for wirelesscommunications technology. ACM SIGCOMM Computer Communication Review.2001.31(2supplement):20-41.
    [5] R. Szewczyk, A. Mainwaring, J. Polastre, et al. An analysis of a large scale habitat monitoringapplication. Proceedings of the2nd international conference on Embedded networked sensor systems.2004. Baltimore, MD, USA: ACM. p.214-226.
    [6] A. Chandrakasan, R. Amirtharajah, C. Seonghwan, et al. Design considerations for distributedmicrosensor systems. Proceedings of the IEEE1999Custom Integrated Circuits1999. p.279-286.
    [7] B.L. Sullivan, C.L. Wood, M.J. Iliff, et al. eBird: A citizen-based bird observation network in thebiological sciences. Biological Conservation.2009.142(10):2282-2292.
    [8] N. Noury, T. Herve, V. Rialle, et al. Monitoring behavior in home using a smart fall sensor andposition sensors. Proceedings of the1st Annual International, Conference On Microtechnologies inMedicine and Biology.2000. p.607-610.
    [9] A.M. Tabar, A. Keshavarz, and H. Aghajan. Smart home care network using sensor fusion anddistributed vision-based reasoning. Proceedings of the4th ACM international workshop on Videosurveillance and sensor networks.2006. Santa Barbara, California, USA: ACM. p.145-154.
    [10] N. Young Han, H. Zeehun, C. Young Joon, et al. Development of remote diagnosis system integratingdigital telemetry for medicine. Proceedings of the20th Annual International Conference onEngineering in Medicine and Biology Society.1998. p.1170-1173.
    [11] J. Stankovic, Q. Cao, T. Doan, et al. Wireless sensor networks for in-home healthcare: Potential andchallenges.2005. p.2-3.
    [12] U. Lee, B. Zhou, M. Gerla, et al. Mobeyes: smart mobs for urban monitoring with a vehicular sensornetwork. IEEE Wireless Communications.2006.13(5):52-57.
    [13] B. Hull, V. Bychkovsky, Y. Zhang, et al. CarTel: a distributed mobile sensor computing system.Proceedings of the4th international conference on Embedded networked sensor systems.2006.Boulder, Colorado, USA: ACM. p.125-138.
    [14] J. Eriksson, L. Girod, B. Hull, et al. The pothole patrol: using a mobile sensor network for roadsurface monitoring. Proceedings of the6th international conference on Mobile systems, applications,and services.2008. Breckenridge, CO, USA: ACM. p.29-39.
    [15] M. Tubaishat, Y. Shang, and H. Shi. Adaptive Traffic Light Control with Wireless Sensor Networks.Proceedings of the the4th IEEE Consumer Communications and Networking Conference2007. p.187-191.
    [16]李仁发,魏叶华,付彬等.无线传感器网络中间件研究进展.计算机研究与发展.2008.45(03):383-391
    [17] P. Levis, et al. The emergence of networking abstractions and techniques in TinyOS.2004. USENIXAssociation. p.1-15.
    [18] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight and flexible operating system for tinynetworked sensors. Proceedings of the29th Annual IEEE International Conference on LocalComputer Networks.2004. p.455-462.
    [19] P. Levis, N. Lee, M. Welsh, et al. TOSSIM: accurate and scalable simulation of entire TinyOSapplications. Proceedings of the1st international conference on Embedded networked sensor systems.2003. Los Angeles, California, USA: ACM. p.126-137.
    [20] P. Santi. Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys (CSUR).2005.37(2):164-194.
    [21] K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor networks. Ad HocNetworks.2005.3(3):325-349.
    [22] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Timing-sync protocol for sensor networks. Proceedingsof the1st international conference on Embedded networked sensor systems.2003. Los Angeles,California, USA: ACM. p.138-149.
    [23] G. Mao, B. Fidan, and B. Anderson. Wireless sensor network localization techniques. Computernetworks.2007.51(10):2529-2553.
    [24] A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor networks. Communications of theACM.2004.47(6):53-57.
    [25] A. Perrig, R. Szewczyk, J. Tygar, et al. SPINS: Security protocols for sensor networks. Wirelessnetworks.2002.8(5):521-534.
    [26] H. Chan and A. Perrig. Security and privacy in sensor networks. Computer.2003.36(10):103-105.
    [27] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of encrypted data in wirelesssensor networks. Proceedings of the The Second Annual International Conference on Mobile andUbiquitous Systems: Networking and Services2005. IEEE. p.109-117.
    [28] J.F. Roddick, E. Hoel, M.J. Egenhofer, et al. Spatial, temporal and spatio-temporal databases-hotissues and directions for phd research. ACM SIGMOD Record.2004.33(2):126-131.
    [29] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century challenges: mobile networking for Smart Dust.Proceedings of the5th annual ACM/IEEE international conference on Mobile computing andnetworking.1999. Seattle, Washington, United States: ACM. p.271-278.
    [30] D. Culler. http://smote.cs.berkeley.edu:8000/tracenv/wiki.
    [31] A. Chandrakasan. http://www-mtl.mit.edu/researchgroups/icsystems/uamps/.
    [32] M.A.M. Vieira, C.N. Coelho, Jr., D.C. da Silva, Jr., et al. Survey on wireless sensor network devices.Proceedings of the2003IEEE Conference on Emerging Technologies and Factory Automation.2003.IEEE p.537-544.
    [33] M. Kr mer and A. Geraldy, Energy measurements for micaz node. University of Kaiserslautern,Kaiserslautern, Germany, Technical Report KrGe06,2006.
    [34]L. Nachman, R. Kling, R. Adler, et al. The Intel Mote platform: a Bluetooth-based sensor network forindustrial monitoring. Proceedings of the Fourth International Symposium on Information Processingin Sensor Networks.2005. IEEE. p.437-442.
    [35] C.C. Han, et al. A dynamic operating system for sensor nodes. Proceedings of the3rd internationalconference on Mobile systems, applications, and services.2005. Seattle, Washington: ACM. p.163-176.
    [36] S. Bhatti, J. Carlson, H. Dai, et al. MANTIS OS: An embedded multithreaded operating system forwireless micro sensor platforms. Mobile networks and applications.2005.10(4):563-579.
    [37] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks.SIGMOD record.2002.31(3):9-18.
    [38] S.R. Madden, M.J. Franklin, J.M. Hellerstein, et al. TinyDB: an acquisitional query processing systemfor sensor networks. ACM Transactions on Database Systems (TODS).2005.30(1):122-173.
    [39] J. Chhabra, N. Kushalnagar, B. Metzler, et al. Sensor networks in Intel fabrication plants. Proceedingsof the2nd international conference on Embedded networked sensor systems.2004. Baltimore, MD,USA: ACM. p.324-324.
    [40] microsoft-sensweb. http://research.maicrosoft.com/en-us/projects/sensweb/.
    [41] Fleck. http://www.sensornets.csiro.au/fleck.html.
    [42] scatterweb. http://scatterweb.mi.fu-berlin.de/.
    [43] btnode. http://www.btnode.ethz.ch/.
    [44] P.B. Gibbons, B. Karp, Y. Ke, et al. IrisNet: an architecture for a worldwide sensor Web. IEEEPervasive Computing.2003.2(4):22-33.
    [45] B. Xu and O. Wolfson. Data management in mobile peer-to-peer networks. Databases, InformationSystems, and Peer-to-Peer Computing.2005:1-15.
    [46] S. Ratnasamy, B. Karp, S. Shenker, et al. Data-centric storage in sensornets with GHT, a geographichash table. Mobile networks and applications.2003.8(4):427-442.
    [47] S. Shenker, S. Ratnasamy, B. Karp, et al. Data-centric storage in sensornets. ACM SIGCOMMComputer Communication Review.2003.33(1):137-142.
    [48] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in sensor networks.IEEE/ACM Transactions on Networking (TON).2009.17(6):1902-1915.
    [49] S. Funke and I. Rauf. Information brokerage via location-free double rulings. Proceedings of the6thinternational conference on Ad-hoc, mobile and wireless networks.2007. Morelia, Mexico:Springer-Verlag. p.87-100.
    [50] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: balancing push and pull for discovery inlarge-scale sensor networks. Proceedings of the2nd international conference on Embedded networkedsensor systems.2004. Baltimore, MD, USA: ACM. p.122-133.
    [51] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need a new Data Handlingarchitecture for Sensor Networks? ACM SIGCOMM Computer Communication Review.2003.33(1):143-148.
    [52] B. Greenstein, S. Ratnasamy, S. Shenker, et al. DIFS: A distributed index for features in sensornetworks. Ad Hoc Networks.2003.1(2-3):333-349.
    [53] X. Li, Y.J. Kim, R. Govindan, et al. Multi-dimensional range queries in sensor networks. Proceedingsof the1st international conference on Embedded networked sensor systems.2003. Los Angeles,California, USA: ACM. p.63-75.
    [54] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial queries in sensor networks. Proceedingsof the Third International Conference on Peer-to-Peer Computing.2003. IEEE. p.32-39.
    [55] T.M. Gil and S. Madden. Scoop: An Adaptive Indexing Scheme for Stored Data in Sensor Networks.Procedings of the IEEE23rd International Conference on Data Engineering.2007. IEEE. p.1345-1349.
    [56] N. Li, N. Zhang, S.K. Das, et al. Privacy preservation in wireless sensor networks: A state-of-the-artsurvey. Ad Hoc Networks.2009.7(8):1501-1514.
    [57] H. Wenbo, L. Xue, N. Hoang, et al. PDA: Privacy-Preserving Data Aggregation in Wireless SensorNetworks. Proceedings of the26th IEEE International Conference on Computer Communications.2007. IEEE. p.2045-2053.
    [58] J. Shi, R. Zhang, Y. Liu, et al. Prisense: privacy-preserving data aggregation in people-centric urbansensing systems. Proceedings of the29th conference on Information communications.2010. SanDiego, California, USA: IEEE Press. p.758-766.
    [59] Y. Piyi, C. Zhenfu, D. Xiaolei, et al. An Efficient Privacy Preserving Data Aggregation Scheme withConstant Communication Overheads for Wireless Sensor Networks. IEEE Communications Letters.2011.15(11):1205-1207.
    [60] B. Carbunar, Y. Yu, W. Shi, et al. Query privacy in wireless sensor networks. ACM Transactions onSensor Networks.2010.6(2):1-34.
    [61] Y. Li and J. Ren. Source-location privacy through dynamic routing in wireless sensor networks.Proceedings of the29th conference on Information communications.2010. San Diego, California,USA: IEEE Press. p.2660-2668.
    [62] C. Ozturk, Y. Zhang, and W. Trappe. Source-location privacy in energy-constrained sensor networkrouting. Proceedings of the2nd ACM workshop on Security of ad hoc and sensor networks.2004.Washington DC, USA: ACM. p.88-93.
    [63] P. Kamat, W. Xu, W. Trappe, et al. Temporal privacy in wireless sensor networks: Theory and practice.ACM Transactions on Sensor Networks.2009.5(4):1-24.
    [64] D. Westhoff, J. Girao, and M. Acharya, Concealed Data Aggregation for Reverse Multicast Traffic inSensor Networks: Encryption, Key Distribution, and Routing Adaptation. IEEE Transactions onMobile Computing,2006.5(10): p.1417-1431.
    [65] C. Castelluccia, A.C.-F. Chan, E. Mykletun, et al. Efficient and provably secure aggregation ofencrypted data in wireless sensor networks. ACM Transactions on Sensor Networks2009.5(3):1-36.
    [66] A.C.-F. Chan and C. Castelluccia. A security framework for privacy-preserving data aggregation inwireless sensor networks. ACM Transactions on Sensor Networks.2011.7(4):1-45.
    [67] F. Taiming, W. Chuang, Z. Wensheng, et al. Confidentiality Protection for Distributed Sensor DataAggregation. Proceedings of the27th Conference on Computer Communications.2008. IEEE. p.56-60.
    [68] H. Li, K. Lin, and K. Li. Energy-efficient and high-accuracy secure data aggregation in wirelesssensor networks. Computer Communications.2011.34(4):591-597.
    [69] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal on UncertaintyFuzziness and Knowledgebased Systems.2002.10(5):557-570.
    [70] P. Kamat, Z. Yanyong, W. Trappe, et al. Enhancing Source-Location Privacy in Sensor NetworkRouting. Proceedings of the25th IEEE International Conference on Distributed Computing Systems.2005. IEEE. p.599-608.
    [71] F. Yanfei, J. Yixin, Z. Haojin, et al. An Efficient Privacy-Preserving Scheme against Traffic AnalysisAttacks in Network Coding. Proceedings of the28th Conference on Computer Communications.2009.IEEE. p.2213-2221.
    [72] J. Yao and G. Wen. Preserving Source-Location Privacy in Energy-Constrained Wireless SensorNetworks. Proceedings of the2008The28th International Conference on Distributed ComputingSystems Workshops.2008. IEEE Computer Society. p.412-416.
    [73] S. Madden, M.J. Franklin, J.M. Hellerstein, et al. Tag: a tiny aggregation service for ad-hoc sensornetworks. ACM SIGOPS Operating Systems Review.2002.36(SI):131-146.
    [74] J.M. Hellerstein, W. Hong, S. Madden, et al. Beyond average: toward sophisticated sensing withqueries. Proceedings of the2nd international conference on Information processing in sensornetworks.2003. Palo Alto, CA, USA: Springer-Verlag. p.63-79.
    [75] N. Shrivastava, C. Buragohain, D. Agrawal, et al. Medians and beyond: new aggregation techniquesfor sensor networks. Proceedings of the2nd international conference on Embedded networked sensorsystems.2004. Baltimore, MD, USA: ACM. p.239-249.
    [76] M.A. Sharaf, J. Beaver, A. Labrinidis, et al. TiNA: a scheme for temporal coherency-awarein-network aggregation. Proceedings of the3rd ACM international workshop on Data engineering forwireless and mobile access.2003. San Diego, CA, USA: ACM. p.69-76.
    [77] M. Ding, X. Cheng, and G. Xue. Aggregation tree construction in sensor networks. Proceedings of theIEEE58th Vehicular Technology Conference.2003. IEEE. p.2168-2172.
    [78] J. Considine, F. Li, G. Kollios, et al. Approximate aggregation techniques for sensor databases.Proceedings of the20th International Conference on Data Engineering.2004. IEEE. p.449-460.
    [79] S. Nath, P.B. Gibbons, S. Seshan, et al. Synopsis diffusion for robust aggregation in sensor networks.Proceedings of the2nd international conference on Embedded networked sensor systems.2004.Baltimore, MD, USA: ACM. p.250-262.
    [80] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan. An application-specific protocolarchitecture for wireless microsensor networks. Wireless Communications, IEEE Transactions on.2002.1(4):660-670.
    [81] S. Lindsey and C.S. Raghavendra. PEGASIS: Power-efficient gathering in sensor informationsystems. Proceedings of the2002IEEE Aerospace Conference2002. IEEE. p.1125-1130.
    [82] Tan, H.. and I. K rpeolu, Power efficient data gathering and aggregation in wireless sensornetworks. ACM SIGMOD Record,2003.32(4): p.66-71.
    [83] S. Lin, B. Arai, D. Gunopulos, et al. Region Sampling: Continuous Adaptive Sampling on SensorNetworks. Proceedings of the2008IEEE24th International Conference on Data Engineering.2008.IEEE Computer Society. p.794-803.
    [84] X. Tang and J. Xu. Optimizing lifetime for continuous data aggregation with precision guarantees inwireless sensor networks. IEEE/ACM Transactions on Networking (TON).2008.16(4):904-917.
    [85] X. Chen, X. Hu, and J. Zhu. Minimum data aggregation time problem in wireless sensor networks.Proceedings of the First international conference on Mobile Ad-hoc and Sensor Networks.2005.Wuhan, China: Springer-Verlag. p.133-142.
    [86] B.J. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for in-network queryprocessing. Telecommunication Systems.2004.26(2):389-409.
    [87] D.J. Abadi, S. Madden, and W. Lindner. REED: robust, efficient filtering and event detection insensor networks. Proceedings of the31st international conference on Very large data bases.2005.Trondheim, Norway: VLDB Endowment. p.769-780.
    [88] A. Coman and M.A. Nascimento. A Distributed Algorithm for Joins in Sensor Networks. Proceedingsof the19th International Conference on Scientific and Statistical Database Management.2007. IEEEComputer Society. p.27-37.
    [89] A. Coman, M.A. Nascimento, and J. Sander. On Join Location in Sensor Networks. Proceedings ofthe2007International Conference on Mobile Data Management.2007. IEEE Computer Society. p.190-197.
    [90] X. Zhu, H. Gupta, and B. Tang. Join of multiple data streams in sensor networks. Knowledge andData Engineering, IEEE Transactions on.2009.21(12):1722-1736.
    [91] A. Silberstein, R. Braynard, and J. Yang. Constraint chaining: on energy-efficient continuousmonitoring in sensor networks. Proceedings of the2006ACM SIGMOD international conference onManagement of data.2006. Chicago, IL, USA: ACM. p.157-168.
    [92] S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial correlation on routing withcompression in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN).2008.4(4):24-41.
    [93] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing historical information in sensornetworks. Proceedings of the2004ACM SIGMOD international conference on Management of data.2004. Paris, France: ACM. p.527-538.
    [94] C. Guestrin, P. Bodik, R. Thibaux, et al. Distributed regression: an efficient framework for modelingsensor network data. Proceedings of the Third International Symposium on Information Processing inSensor Networks.2004. IEEE. p.1-10.
    [95] S. Gandhi, S. Nath, S. Suri, et al. GAMPS: compressing multi sensor data by grouping and amplitudescaling. Proceedings of the35th SIGMOD international conference on Management of data.2009.Providence, Rhode Island, USA: ACM. p.771-784.
    [96] A. Deshpande, C. Guestrin, W. Hong, et al. Exploiting Correlated Attributes in Acquisitional QueryProcessing. Proceedings of the21st International Conference on Data Engineering.2005. IEEEComputer Society. p.143-154.
    [97] A. Deshpande, C. Guestrin, S.R. Madden, et al. Model-driven data acquisition in sensor networks.Proceedings of the Thirtieth international conference on Very large data bases-Volume30.2004.Toronto, Canada: VLDB Endowment. p.588-599.
    [98] D. Chu, A. Deshpande, J.M. Hellerstein, et al. Approximate Data Collection in Sensor Networks usingProbabilistic Models. Proceedings of the22nd International Conference on Data Engineering.2006.IEEE Computer Society. p.48-58.
    [99] S. Gandhi, S. Nath, S. Suri, et al. GAMPS: compressing multi sensor data by grouping and amplitudescaling. Proceedings of the35th SIGMOD international conference on Management of data.2009.Providence, Rhode Island, USA: ACM. p.771-784.
    [100]J. Li and S. Cheng.(ε, δ)-Approximate Aggregation Algorithms in Dynamic Sensor Networks. IEEETransactions on Parallel and Distributed Systems.2012:385-396.
    [101]S. Cheng, J. Li, Q. Ren, et al. Bernoulli Sampling Based (element of, delta)-ApproximateAggregation in Large-Scale Sensor Networks. Proceedings of the29th conference on Informationcommunications.2010. San Diego, California, USA: IEEE Press. p.1181-1189.
    [102]S. Cheng and J. Li. Sampling Based (epsilon, delta)-Approximate Aggregation Algorithm in SensorNetworks. Proceedings of the200929th IEEE International Conference on Distributed ComputingSystems.2009. IEEE Computer Society. p.273-280.
    [103]L. Yu, J. Li and S. Cheng,"Approximate Continuous Aggregation via Time Window BasedCompression and Sampling in WSNs," Wireless Sensor Network,2012,2(9):p.675-682.
    [104]M. Wu, J. Jianliang Xu, X. Xueyan Tang, et al. Top-k monitoring in wireless sensor networks. IEEETransactions on Knowledge and Data Engineering.2007.19(7):962-976.
    [105]A.S. Silberstein, R. Braynard, C. Ellis, et al. A Sampling-Based Approach to Optimizing Top-kQueries in Sensor Networks. Proceedings of the22nd International Conference on Data Engineering.2006. IEEE Computer Society. p.68-78.
    [106]D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, et al. The threshold join algorithm for top-k queriesin distributed sensor networks. Proceedings of the2nd international workshop on Data managementfor sensor networks.2005. Trondheim, Norway: ACM. p.61-66.
    [107]A. Coman, M.A. Nascimento, J\, et al. A framework for spatio-temporal query processing overwireless sensor networks. Proceeedings of the1st international workshop on Data management forsensor networks: in conjunction with VLDB2004.2004. Toronto, Canada: ACM. p.104-110.
    [108]A. Coman, J. Sander, and M.A. Nascimento. An Analysis of Spatio-Temporal Query Processing inSensor Networks. Proceedings of the21st International Conference on Data Engineering Workshops.2005. IEEE Computer Society. p.1190-1195.
    [109]A. Coman, M.A. Nascimento, J, et al. Exploiting redundancy in sensor networks for energy efficientprocessing of spatiotemporal region queries. Proceedings of the14th ACM international conferenceon Information and knowledge management.2005. Bremen, Germany: ACM. p.187-194.
    [110]X. Yingqi, L. Wang-Chien, X. Jianliang, et al. Processing Window Queries in Wireless SensorNetworks. Proceedings of the22nd International Conference on Data Engineering.2006. IEEE. p.70-80.
    [111]Goldin D, Song M, Kutlu A et al. Georouting and delta-gathering: Efficient data propagationtechniques for geosensor networks. Proceedings of the1st GeoSensor Networks Workshop. Portland,USA,2003:1-23
    [112]J. Winter and W.-C. Lee. KPT: a dynamic KNN query processing algorithm for location-aware sensornetworks. Proceeedings of the1st international workshop on Data management for sensor networks:in conjunction with VLDB2004.2004. Toronto, Canada: ACM. p.119-124.
    [113]J. Winter, Y. Xu, and W.-C. Lee. Energy Efficient Processing of K Nearest Neighbor Queries inLocation-aware Sensor Networks. Proceedings of the The Second Annual International Conference onMobile and Ubiquitous Systems: Networking and Services.2005. IEEE Computer Society. p.281-292.
    [114]T.Y. Fu, W.C. Peng, and W.C. Lee. Parallelizing itinerary-based KNN query processing in wirelesssensor networks. IEEE Transactions on Knowledge and Data Engineering.2010.22(5):711-729.
    [115]W. Shan-Hung, C. Kun-Ta, C. Chung-Min, et al. DIKNN: An Itinerary-based KNN Query ProcessingAlgorithm for Mobile Sensor Networks. Proceedings of the IEEE23rd International Conference onData Engineering.2007. IEEE. p.456-465.
    [116]S.H. Wu, K.T. Chuang, C.M. Chen, et al. Toward the optimal itinerary-based KNN query processingin mobile sensor networks. Knowledge and Data Engineering, IEEE Transactions on.2008.20(12):1655-1668.
    [117]E. Fasolo, M. Rossi, J. Widmer, et al. In-network aggregation techniques for wireless sensor networks:a survey. Wireless Communications, IEEE.2007.14(2):70-87.
    [118]W.H. Liao, Y. Kao, and C.M. Fan. Data aggregation in wireless sensor networks using ant colonyalgorithm. Journal of Network and Computer applications.2008.31(4):387-401.
    [119]D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, et al. MINT Views: Materialized In-NetworkTop-k Views in Sensor Networks. Proceedings of the2007International Conference on Mobile DataManagement.2007. IEEE Computer Society. p.182-189.
    [120]H. Chen, S. Zhou, and J. Guan. Towards energy-efficient skyline monitoring in wireless sensornetworks. Proceedings of the4th European conference on Wireless sensor networks.2007. Delft, TheNetherlands: Springer-Verlag. p.101-116.
    [121]I. Su, Y.C. Chung, C. Lee, et al. Efficient skyline query processing in wireless sensor networks.Journal of Parallel and Distributed Computing.2010.70(6):680-698.
    [122]J. Xin, G. Wang, L. Chen, et al. Continuously maintaining sliding window skylines in a sensornetwork. Proceedings of the12th international conference on Database systems for advancedapplications.2007. Bangkok, Thailand: Springer-Verlag. p.509-521.
    [123]W. Liang, B. Chen, and J.X. Yu. Energy-efficient skyline query processing and maintenance in sensornetworks. Proceedings of the17th ACM conference on Information and knowledge management.2008. Napa Valley, California, USA: ACM. p.1471-1472.
    [124]Koubarakis, M., Spatio-temporal databases: The CHOROCHRONOS approach. Vol.2520.2003:Springer-Verlag New York Inc.
    [125]T. Abraham and J.F. Roddick. Survey of spatio-temporal databases. GeoInformatica.1999.3(1):61-99.
    [126]Tao, Y. and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and IntevalQueries. Proceedings of the27th International Conference on Very Large Data Bases.2001. MorganKaufmann Publishers Inc. p.431-440.
    [127]V. Botea, D. Mallett, M.A. Nascimento, et al. PIST: An efficient and practical indexing technique forhistorical spatio-temporal point data. GeoInformatica.2008.12(2):143-168.
    [128]刘亮,秦小麟,戴华等.能量高效的无线传感器网络时空查询处理算法.电子学报.2010.38(1):54-59.
    [129]A. Guttman. R-trees: a dynamic index structure for spatial searching. Proceedings of the1984ACMSIGMOD international conference on Management of data.1984. Boston, Massachusetts: ACM. p.47-57.
    [130]A. Coman, J. Sander, and M.A. Nascimento. Adaptive processing of historical spatial range queries inpeer-to-peer sensor networks. Distributed and Parallel Databases.2007.22(2):133-163.
    [131]B. Karp and H.T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. Proceedingsof the6th annual international conference on Mobile computing and networking.2000. Boston,Massachusetts, United States: ACM. p.243-254.
    [132]Hung, C., W. Peng, and W. Lee, Energy-Aware Set-Covering Approaches for Approximate DataCollection in Wireless Sensor Networks. IEEE Transactions on Knowledge and Data Engineering,2011(99): p.1-21.
    [133]X. Tang and J. Xu. Adaptive data collection strategies for lifetime-constrained wireless sensornetworks. Parallel and Distributed Systems, IEEE Transactions on.2008.19(6):721-734.
    [134]N. Jain, D. Kit, P. Mahajan, et al. STAR: self-tuning aggregation for scalable monitoring. Proceedingsof the33rd international conference on Very large data bases.2007. Vienna, Austria: VLDBEndowment. p.962-973.
    [135]N. Jain, P. Yalagandula, M. Dahlin, et al. Self-Tuning, Bandwidth-Aware Monitoring for DynamicData Streams. Proceedings of the2009IEEE International Conference on Data Engineering.2009.IEEE Computer Society. p.114-125.
    [136]M. Sharifzadeh and C. Shahabi. Supporting spatial aggregation in sensor network databases.Proceedings of the12th annual ACM international workshop on Geographic information systems.2004. Washington DC, USA: ACM. p.166-175.
    [137]C. Shahabi, L.A. Tang, and S. Xing. Indexing land surface for efficient knn query. Proceedings of theVLDB Endowment.2008.1(1):1020-1031.
    [138]B. Cui, H.T. Shen, J. Shen, et al. Exploring bit-difference for approximate KNN search inhigh-dimensional databases. Proceedings of the16th Australasian database conference-Volume39.2005. Newcastle, Australia: Australian Computer Society, Inc. p.165-174.
    [139]D. Gay, P. Levis, R.v. Behren, et al. The nesC language: A holistic approach to networked embeddedsystems. Proceedings of the ACM SIGPLAN2003conference on Programming language design andimplementation.2003. San Diego, California, USA: ACM. p.1-11.
    [140]R.N. Murty, G. Mainland, I. Rose, et al. CitySense: An Urban-Scale Wireless Sensor Network andTestbed. Proceedings of the2008IEEE Conference on Technologies for Homeland Security.2008.IEEE. p.583-588.
    [141]A. Boulis, C.C. Han, R. Shea, et al. SensorWare: Programming sensor networks beyond code updateand querying. Pervasive and Mobile Computing.2007.3(4):386-412.
    [142]C.L. Fok, G.C. Roman, and C. Lu. Agilla: A mobile agent middleware for self-adaptive wirelesssensor networks. ACM Transactions on Autonomous and Adaptive Systems (TAAS).2009.4(3):16.
    [143]D. Chu, L. Popa, A. Tavakoli, et al. The design and implementation of a declarative sensor networksystem. Proceedings of the5th international conference on Embedded networked sensor systems.2007. Sydney, Australia: ACM. p.175-188.
    [144]D. Chu, A. Tavakoli, L. Popa, et al. Entirely declarative sensor network systems. Proceedings of the32nd international conference on Very large data bases.2006. Seoul, Korea: VLDB Endowment. p.1203-1206.
    [145]R. Mueller, J.S. Rellermeyer, M. Duller, et al. A dynamic and flexible sensor network platform.Proceedings of the2007ACM SIGMOD international conference on Management of data.2007.Beijing, China: ACM. p.1085-1087.
    [146]R. Müller, G. Alonso, and D. Kossmann. A virtual machine for sensor networks. ACM SIGOPSOperating Systems Review.2007.41(3):145-158.
    [147]J. Hill, R. Szewczyk, A. Woo, et al. System architecture directions for networked sensors. ACMSigplan Notices.2000.35(11):93-104.
    [148]V. Kodaganallur. Incorporating Language Processing into Java Applications: A JavaCC Tutorial.IEEE Software.2004.21(4):70-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700