耐力训练对高脂膳食大鼠骨骼肌线粒体脂肪氧化及PGC-1α基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高脂膳食与缺乏运动是危害人体健康的不良习惯,它使机体代谢性组织的脂肪酸供应持续增高,继而导致机体对自身胰岛素敏感性降低,很容易造成胰岛素抵抗(IR)现象,引发相关代谢综合症。长期体育锻炼对防治代谢性疾病的效果有目共睹,耐力训练时脂肪为主要供能物质,可以有效的缓解高脂膳食对机体的负作用;另一方面还可提高线粒体功能、增强线粒体脂肪氧化酶活性及上调相关基因的表达。
     脂肪在人体内的贮存量比糖丰富,但机体氧化脂肪酸的能力有限,限制利用贮存脂肪的原因至今尚未完全阐明。线粒体脂肪氧化作为脂肪代谢的限速步骤,从许多方面影响机体脂肪酸氧化,如线粒体膜上的肉碱酰基转移酶(CPT)系统、线粒体脂肪氧化酶活性、多种线粒体膜结合蛋白、磷酸腺苷活化蛋白激酶(AMPK)等。此外,过氧化物酶体增殖物激活受体γ辅激活因子1(PGC-1)是近年来倍受关注的辅激活因子,其中PGC-1α具有多种生理学的功能:在线粒体生物合成、肌纤维类型的转化、葡萄糖代谢、脂肪酸氧化等方面都起重要作用。
     目的:研究耐力训练对高脂膳食大鼠骨骼肌线粒体脂肪氧化过程相关酶活性及相关基因表达的影响,探讨耐力训练对提高高脂膳食大鼠脂肪氧化水平及降低高脂膳食诱发IR指数升高的机制。方法:将24只雄性SD大鼠,约4周龄,体重100±5g随即分成普通膳食对照组(C,n=6)、普通膳食耐力训练组(E,n=6)、高脂膳食对照组(H,n=6)、高脂膳食耐力训练组(R,n=6)。耐力训练组大鼠进行8周的跑台训练,每周训练6天,每天一次,起始跑速为0.8km/h,最大速度不超过1.2km/h,前四周每天训练40分钟,后四周每天训练1小时。经过8周饲养,所有大鼠处死后用酶联免疫法测试血浆胰岛素浓度,用比色法测试血糖浓度及线粒体羟脂酰辅酶A脱氢酶(β-HAD)、柠檬酸合成酶(CS)活性。采用实时荧光定量PCR法检测CPT-1β、PGC-1α基因转录水平,Western Blotting检测CPT-1β、PGC-1α基因蛋白表达水平。结果:1)耐力训练有效降低高脂膳食大鼠较高的IR指数。[IR指数=(空腹血糖浓度×空腹胰岛素浓度)/22.5)];2)耐力训练使高脂膳食大鼠骨骼肌线粒体β-HAD、CS活性显著升高;3)耐力训练上调高脂膳食大鼠CPT-1β基因转录水平,对线粒体内CPT-1β蛋白表达水平并无显著影响;4)耐力训练下调高脂膳食大鼠PGC-1α基因转录水平,但却上调细胞核内PGC-1α蛋白表达水平。
     结论:1)耐力训练可以显著控制高脂膳食大鼠体重增长;2)耐力训练有利于高脂膳食大鼠胰岛素抵抗指数维持在正常水平;(3)耐力训练上调高脂膳食大鼠CPT-1β基因转录,提高线粒体脂肪氧化酶活性,缓解高脂膳食对机体的不利影响。(4)耐力训练通过适度调节PGC-1α蛋白表达水平显著提高高脂膳食大鼠线粒体脂肪氧化水平,可能在协调β氧化与TCA两者关系中发挥了重要作用。
High-fat diet and inactivity are the bad even harmful habit to human health, which makes fatty acid supply in organizations continued to increase,this continuing high fat status will cause the body to be lower insulin sensitivity,even is more likely to result in insulin resistance(IR)phenomenon,induced other metabolic syndrome. The effects of long-term physical training on preventing metabolic disorders are well known.Fat is the major energe material during endurance exercise training,which can effectively alleviate the negative effects that high-fat diet induced;on the other hand,endurance training have an significant effect in improving mitochondrial function,enhancing the activity of mitochondrial lipid oxidation and related gene expression.
     In human body,stored fat is richer than carbohydrate,but the capacity of fatty acid oxidation is limited,the reasons for this restriction on the use of stored fat have not yet been fully explained.Mitochondrial lipid oxidation as the rate-limiting step in fat metabolism,which affect fatty acid oxidation from many aspects,such as the existence of mitochondrial membrane carnitine acyltransferase(CPT)system,various of mitochondrial membrane-binding proteins,phosphoric acid AMP-activated protein kinase(AMPK),and so on.In addition,peroxisome proliferator-activated receptory coactivator 1(PGC-1)has drawn greater attention in recent years,PGC-lαhas a variety of physiological functions and plays an important role in mitochondrial biosynthesis,transformation of muscle fiber types,glucose metabolism,fatty acid oxidation,etc.
     Thus,the aim of this study was to investigate the effects of 8-week endurance training on mitochondrial lipid oxidation-related enzymes and genes expression in high-fat diet Sprague-Dawley rats,discuss the mechanism of endurance training role on improving the lipid oxidation level and reducing the IRI in high-fat diet rats. Methods:24 four-week-old male Sprague-Dawley rats,with a body weight of 100±5g were randomly assigned to standard diet control group(C,n=6),standard diet endurance training group(E,n=6),high-fat diet control group(H,n=6),high-fat diet endurance training group(R,n=6).Endurance training group rats were accustomed to 8-week treadmill training with a speed of 0.8km/h-1.2km/h at an 0%incline,for 40min/d during the first 4-week time,then maintained for 60min/d for the following four weeks.After all Rats were sacrificed,plasma insulin concentration was measured using Enzyme-Linked ImmunoSorbant Assay(ELISA)method;blood glucose concentration and mitochondrial acyl-coenzyme A hydroxybutyrate dehydro-genase (β-HAD)activity,citrate synthase(CS)activity were measured using Colori-metry method.Detected CPT-1β、PGC-lαgene transcription and protein expression level with real-time quantitative PCR(RT-Q-PCR)and Western Blotting respectively. Results:1)Endurance training reduced high IR index in the high-fat diet rats.(IR index=Fasting blood glucose concentrations×fasting insulin concentration)/22.5); 2)Endurance training significantly increased the activity ofβ-HAD,CS in skeletal muscle mitochondrial of high-fat diet rats;3)Endurance training increased CPT-1βgene transcription level in high-fat diet rats,but had no apparent effect on CPT-1βprotein expression;4)Endurance training decreased PGC-lαgene transcription level in high-fat diet rats,but up-regulated PGC-lαprotein expression.
     Conclusion:
     1)Endurance training can significantly control the gain in weight in high-fat diet rats;
     2)Endurance training would help the high-fat diet rats maintain a normal level in insulin resistance index;
     3)Endurance training upregulated CPT-1βgene transcription,Enhance the activity of mitochondrial fat oxidation,alleviate the negative effects of high-fat diet rats;
     4)Endurance training significantly increased mitochondrial fat oxidation level in high-fat diet rats by regulating PGC-lαprotein expression,which may be played a key role in the coordination between mitochondrialβ-oxidation and TCA.
引文
[1]Grant B.McClelland.Fat to the fire:the regulation of lipid oxidation with exercise and environmental stress[J].Comparative Biochemistry and Physiology,2004,Part B 139:443-460.
    [2]许豪文,主编.运动生物化学概论[M].北京:高等教育出版社,2001,9:141
    [3]Belfort R,Mandarino L,Kashyap S,et al.Dose-response effect of elevated plasma free fatty acid on insulin signaling[J].Diabetes,2005,54:1640-1648.
    [4]Kiens B,Roepstorff and Nielsen JN.Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle:influence of physical activity and gender[J].J Appl Physiol.2004,97:1209-1218.
    [5]Brechtel K,Dahl DB,Machann J,et al.Fast elevation of the intramyo-cellular lipid content in the presence of circulating free fatty acids andhyperinsulinemia:a dynamic 1H-MRS study[J].Magn ResonMed,2001,45:179-183.
    [6]徐晓利,马润泉,主编.医用生物化学[M].北京:人民卫生出版社,1998:227-236
    [7]Koonen DP,Glatz JF,and Bonen A.Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle[J].Biochimica et Biophysica Acta,2005,1736(3):163-180.
    [8]Abumrad N,Coburn C,Ibrahimi A.Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells:CD36,FATP and FABPm[J].Biochm Biophys Acta,1999,1441:4-13.
    [9]Bonen A,Miskovic D,Kiens B.Fatty acid transporters(FABPpm,FAT,FATP) in human muscle[J].J Appl Physiol,1999,24:515-523
    [10]Roepstorff C,Helge J,and Vistisen B.Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle[J].Proceedings of the Nutrition Society,2004,63:239-244.
    [11]Glatz JF and Storch J.Unravelling the significance of cellular fatty acid-binding proteins[J].Curr Opin Lipidol,2001,12:267-274.
    [12]Rasmussen JT,Faergeman N J,and Kristiansen K.Acyl-CoA-binding protein(ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis[J].J Biochem,1994,299:165-170.
    [13]Coleman RA,Lewin TM,and Muoio DM.Physiological and nutritional regulation of enzymes of triacylglycerol synthesis[J].Annu Rev Nutr,2000,20:77-103.
    [14]Hall AM,Smith AJ,and Bernlohr DA.Characterization of the Acyl-CoA synthetase activity of purified murine fatty acid transport protein1[J].J Biol Chem,2003,278:43008-43013.
    [15]Schaffer JE.Fatty acid transport:the roads taken[J].Am J Physiol Endocrinol Metab,2002,282:E239-E246.
    [16]Watkins PA,Lu JF,Steinberg SJ,et al.Disruption of the Saccharomyces cerevisiae FAT1gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid con-centrations[J].J Biol Chem,1998,273:18210-18219.
    [17]Coyle EF,Jeukendrup AE,Oseto MC,et al.Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise[J]. Am J Physiol Endocrinol Metab, 2001,280:E391-E398.
    [18]Helge JW, Wulff B, and Kiens B. Impact of a fat-rich diet on endurance in man: role of the dietary period[J]. Med Sci Sports Exercise, 1998, 30:456-461.
    [19]Zderic TW, Davidson CJ, Schenk S, et al. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise[J]. Am J Physiol Endocrinol Metab, 2004, 286: E217-E225.
    [20]Kerner J, Hoppel C. Fatty acid import into mitochondria[J]. Biochim Biophys Acta, 2000,1486: 1-17.
    [21]McGarry JD. Travels with carnitine palmitoyltransferase I: from liver to germ cell with stops in between. Biochemical Society Transactions, 2001, (29): 241-245
    [22]Neil B. Ruderman, Asish K. Saha, Demetrios Vavvas. Malonyl-CoA, fuel sensing, and insulin resistance[J]. Am J Physiol Endocrinol Metab, 1999,276: E1-E18;
    [23]Britton CH, Mackey DW, Esser V, et al. Fine Chromosome Mapping of the Genes for Human Liver and Muscle Carnitine Palmitoyltransferase I (CPT-1α and CPT-1P)[J]. Genomics, 1997, 40:209-211.
    [24]Brown N.F, Weis B.C, Husti J.E, et al. Mitochondrial Carnitine Palmitoyl transferase I Isoform Switching in the Developing Rat Heart[J]. J. Biol. Chem, 1995,270 : 8952-8957.
    [25]Winder WW, Arogyasami J and Elayan IM. Time course of exercise-induced decline in malonyl-CoA in different muscle types[J].Am J Physiol Endocrinol Metab,2003,259:E266-E271.
    [26]Holloway GP, Bezaire V and Heigenhauser GJ. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise[J]. Physiol, 2006, 571: 201-210.
    [27]Bezaire V,Heigenhauser GJ and Spriet LL. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle[J].Am J Physiol Endocrinol Metab, 2004, 286: E85-E91.
    [28]Starritt EC, Howlett RA and Heigenhauser GJ. Sensitivity of CPT I to malonyl -CoA in trained and untrained human skeletal muscle[J].Am J Physiol Endocrinol Metab, 2000, 278:E462-E468.
    [29]Dean D, Daugaard JR and Young ME. Exercise diminishes the activity of acetyl -CoA carboxylase in human muscle [J]. Diabetes, 2000,49:1295-1300.
    [30]Roepstorff C, Halberg N and Hillig T. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise[J].Am J Physiol Endocrinol Metab, 2005, 288:E133-E142.
    [31]Campbell SE, Tandon NN and Woldegiorgis G. A novel function for fatty acid translocase(FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria[J].BiolChem, 2004, 279: 36235-36241.
    [32]Bezaire V, Bruce CR and Heigenhauser GJ. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fattyacid oxidation[J]. Am J Physiol Endocrinol Metab, 2006, 290: E509-E515.
    [33]Holloway GP, Bezaire V and Heigenhauser GJ. Mitochondrial long chain fatty acid oxidation,fatty acid translocase/CD36 content and carnitine palmitoyl transferase I activity in human skeletal muscle during aerobic exercise[J]. J Physiol, 2006, 571: 201-210.
    [34]Bonen A, Han XX and Habets DD. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism[J].Am J Physiol Endocrinol Metab,2007, 292: E1740-E1749.
    [35]Duttaroy AK and Spener F. Cellular Proteins and Their Fatty Acids in Health and Disease[J]. Cambridge, 2003. 11: 432-453.
    [36]Hidekatsu Yanai, Ichiro Watanabe and Kojiro Ishii. Attenuated aerobic exercise capacity in CD36 deficiency[J]. Journal of Medical Genetics, 2007, 44: 445-447.
    [37]Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance[J]. Physiol Rev,2006, 86: 205-243.
    [38]Minokoshi Y, Kim YB, Peroni OD. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nature, 2002, 415: 339-343.
    [39]Raney MA, Yee AJ, Todd MK. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction[J].Am J Physiol Endocrinol Metab, 2005, 288:E592-E598.
    [40]Palanivel R and Sweeney G. Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin[J]. FEBS Lett, 2005, 579:5049-5054.
    [41]Turcotte LP, Raney MA and Todd MK. ERK1/2 inhibition prevents contraction -induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle[J]. Acta Physiol Scand, 2005,184:131-139.
    [42]Rubink DS and WinderWW. Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase[J]. J Appl Physiol,1998:1221-1227.
    [43]Sebastian B and J0rgensen, Erik A. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise[J]. J. Physiol, 2006, 574: 17-31.
    [44]Mogensen M and Sahlin K. Mitochondrial efficiency in rat skeletal muscle: influence of respiration rate, substrate and muscle type[J]. Acta Physiol Scand, 2005, 185: 229- 236.
    [45]Vistisen B, Roepstorff K and Roepstorff C. Sarcolemmal FAT/CD36 in human skeletal muscle colocalizes with caveolin-3 and is more abundant in type 1 than in type 2 fibers[J]. Lipid Res, 2004, 45: 603-609.
    [46]White MF. IRS proteins and the common path to diabetes[J]. Am J Physiol Endocrinol Metab,2002, 283: E413-422.
    [47]Whitehead JP, Humphreys P, Krook A, et al. Molecular scanning of the insulin receptor substrate gene in subjects with severe insulin resistance: detection and functional analysis of a naturally occurring mutation in a YMXM motif[J]. Diabetes, 1998, 47: 837-839.
    [48]Yamauchi T, Tobe K, Tamemoto H, Ueki K, Kaburagi Y, Yamamoto-Honda R et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate-deficient mice[J]. Mol Cell Biol, 1996,16: 3074-3084.
    [49]Previs SF, Withers DJ, Ren M, et al. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo[J], J Biol Chem, 2000, 275:38990-38994.
    [50]Schinner S, Scherbaum WA, et al. Molecular mechanisms of insulin resistance [J]. J Diabetic Medicine, 2005, 22: 674-682
    [51]Edward W. Kraegen, Gregory J. Cooney, and Nigel Turner. Muscle insulin resistance: A case of fat overconsumption, not mitochondrial dysfunction[J]. J PNAS, 2008, 105(22): 7627-7628
    [52]Michael P, Stefania L, and Roger A. Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise[J]. Am J Clin Nutr, 2007, 85:662-77.
    [53]Deborah M. Muoio and Timothy R. Koves. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGCla: implications for metabolic disease[J]. J Appl.Physiol. Nutr. Metab, 2007,32:874-883
    [54]Sidossis LS, Wolfe RR and Coggan AR. Regulation of fatty acid oxidation in untrained vs trained men during exercise[J]. Am J Physiol Endocrinol Metab, 1998, 274: E510-E515.
    [55].Jong-Yeon K, Hickner RC and Dohm GL. Long- and medium-chain fatty acid oxidation is increased in exercise-trained humanskeletal muscle[J]. Metabolism, 2002,51: 460-464.
    [56]Koves TR, Noland RC and Bates AL. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism[J]. Am J Physiol Cell Physiol, 2005, 288: C1074-C1082.
    [57]Puigserver P, Wu Z, Spiegelman BM, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998,9:829- 839.
    [58]Pratley R E , Thompson D B , Prochazka M ,et al. An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians[J]. J Clin Invest, 1999,101 :1757-1764
    [59]Yan Z, Li P, Akimoto T.Transcriptional control of the PGC-1α gene in skeletal muscle in vivo[J]. Exerc Sport Sci Rev, 2007,35(3):97-101.
    [60]Lin J, Puigserver P, Donovan J, et al. Peroxisome proliferators-activated Receptorγ coactivator1β(PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor[J]. J Biol Chem, 2002,277:1645-1648.
    [61]Andersson U, Scarpulla RC. PGC-1-related coactivator, a novel, serum inducible coactivator of nuclear respiratory factorl-dependent transcripttion in mammalian cells[J]. Mol Cell Biol, 2001,21:3738-3749.
    [62]Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family transcription coactivators[J]. Cell Metab, 2005,1:361-370.
    [63]Donovan J, Tarr P, Spiegelman B M,et al. Peroxisome proliferators-activated receptor gamma coactivator 1β(PGC-1β), a novel PGC-1β related transcription coactivator associated with host cell factor[J] . J Biol Chem, 2002, 277: 1645-1648.
    [64]Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting responseby PPAR- gamma coactivator-lalpha(PGC-1): requirement for hepatocyte nuclear factor 4 alpha in gluconeogenesis[J]. Proc Natl Acad Sci USA, 2003, 100: 4012-4017.
    [65]Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenes is through the transcriptional coactivator PGC-1[J].Nature, 2001, 413: 131-138.
    [66]Tiraby C, T avernier G, Lefort C,et al. Acquirement of brown fat cell features by human white adipocytes[J]. J Biol Chem, 2003, 278: 33370-33376
    [67]Cannon B, Houstek J, Nedergaard J. Brown adipose tissue. More than an effector of thermogenes is[J] Ann NY Acad Sci, 1998, 856: 171-187
    [68]Puigserver P, Spiegelman BM. Peroxisome proliferators-activated receptor- -gamma coactivator 1 alpha(PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev,2003, 24 :78-90
    [69]Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenes[J].Biochim Biophys Acta, 2002,1576 :1-14.
    [70]ScarpuIla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells[J]. Gene, 2002, 286: 81-89.
    [71]Lin J, Wu H, Tarr PT, et al. Transcriptional coactivator PGC-1α drives the for mation of slow-twitch muscle fibres [J]. Nature, 2002,418 (6899):797- 801.
    [72]Leone, T.C. et al. PGC-la deficiency causesmulti-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis[J]. PLoS Biol, 2005, 3:101-109.
    [73]Wu Z, Puigserver P, Anderss on U, et al. Mechanisms controlling mitochondrial biogenesis and res p iration thr ough the thermogenic coactivatorPGC-1α[J]. Cell, 1999, 98 (1): 115 - 124.
    [74]Lehman JJ, Barger PM, Kovacs A, et al. Peroxis ome proliferator- activated recep tor gamma coactivator-1 promotes cardiac mitochondrial biogenesis[J]. J Clin Invest, 2000,106 (7): 847-856.
    [75]Leone TC, Lehman JJ, Finck BN, et al. PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight contr ol and hepatic steatosis [J].PLoS B iol, 2005, 3 (4): 672 - 687.
    [76]Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter(GLUT4)gene expression in muscle cells by the transcriptional coactivator PGC-1[J].Proc Natl Acad Sci, USA, 2001, 98:3820-3825.
    [77]Wende AR, Huss JM, Schaeffer PJ, et al. PGC-la coactivates PDK4 gene expression via the orphan nuclear receptor ERR: a mechanism for transcriptional control of muscle glucose metabolism[J]. Mol Cell Biol, 2005, 25: 10684-10694.
    [78]Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR α-dependent induction of TRB231[J]. Nat Med, 2004, 10: 530-534.
    [79]Cao W, Collins QF, Becker TC, et al . P38 mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis[J]. J B iol Chem, 2005, 280 (52): 42731-42737.
    [80]Oberkofler H, Schraml E, Krempler F ,et al. Potentiation of liver X receptor transcriptional activity by peroxisome-proliferator-activated receptor gamma coactivator la[J].Biochem J, 2003, 371:89-96.
    [81]Zhang Y, Castellani LW, Sinal CJ, et al. Peroxisome proliferators-activated receptor-gamma coactivator 1 alpha (PGC-1α) regulates t riglyceride metabolism by activation of the nuclear receptor FXR[J].Genes Dev, 2004, 18 :157-169.
    [82]Louet JF, Hayhurst G, Gonzalez FJ, et al. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmit oyltransferasel gene expression by cAMP in combination with HNF4α and cAMP response element-binding protein(CREB)[J]. J Biol Chem, 2002, 277(41):37991-38000.
    [83]Finck, B.N. and Kelly, D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease[J]. J. Clin. Invest, 2006,116: 615-622.
    [84]Handschin, C. and Spiegelman, B.M. PGC-1 coactivators, energy homeostasis, and metabolism[J]. Endocr. Rev, 2006, 27: 728-735.
    [85]Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1- -PGC-1α interaction[J]. Nature, 2003,423: 550-555.
    [86]Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes[J]. Science, 2005,307:3842387.
    [87]Kelley DE ,He J, Menshikova EV ,et al. Dys function of mitochondria in human skeletal muscle in type 2 diabetes[J]. Diabetes, 2002,51: 2944-2950.
    [88]Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes : Potential role of PGC1 and NRF1[J].Proc Natl Acad Sci USA, 2003, 100: 8466-8471.
    [89]Terada S, Kawanaka K, G oto M, et al. Effect s of high-intensity intermit tent swimming on PGC-lα aprotein expression in rat skeletal muscle[J]. Acta Physiol.Scand, 2005,184: 59-65.
    [90]Taylor EB, Lamb JD, Hurst RW, et al. Endurance t raining increases skeletal muscle LK.B1 and PGC-1α aprotein abundance: effects of time and intensity[J]. Am J Physiol. Endocrinol Metab, 2005, 289: E960-E968.
    [91]Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training inhumans leads to fiber type2specific increases in levels of peroxisome proliferators-activated receptor-γcoactivator-1 and peroxisome proliferatoractivated receptor-α in skeletal muscle[J]. Diabetes, 2003, 52: 2874-2881
    [92]Wu H, Kanatous SB, Thurmond FA ,et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK[J]. Science, 2002, 296: 349-352.
    [93]Handschin C, Rhee J, Lin J, et al. An autoregulatory loop cont rols peroxisome proliferators-activated receptor gamma coactivator 1 alpha expression in muscle[J]. Proc Natl Acad Sci USA, 2003,100:7111-7116
    [94]Zong H, Ren JM,Y oung LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J]. Proc Natl Acad Sci USA, 2002, 99:15983-15987
    [95]Jorgensen, S.B, J.F. Wojtaszewski, B. Viollet, F.et al. Effects of alpha- AMPK knockout on exercise- induced gene activation in mouse skeletal muscle[J]. FASEB J. 2005,19: 1146- 1148.
    [96]Calvo JA, Daniels TG, Wang X, et al. Muscle-specific expression of PPARy coactivator-lα improves exercise performance and increases peak oxygen uptake[J]. J Appl Physiol, 2008, 104:1304-1312.
    [97]Wende AR, Schaeffer PJ, Parker GJ, et al. A role for the transcriptional coactivator PGC-l alpha in muscle refueling[J]. J Biol Chem, 2007, 282: 36642-51.
    [1]ZengKui Guo.Intramyocellular lipids:Maker vs.marker of insulin resistance[J].Medical Hypotheses,2008,70(2):625-629.
    [2]Bente,Kiens.Skeletal Muscle Lipid Metabolism in Exercise and Insulin Resistance[J].Physiol Rev,2006,86(2):205-243.
    [3]Puigserver P,Wu Z,Park CW,et al.A cold inducible coactivator of nuclear receptors linked to white adipocytes adaptive thermogenes[J].Cell,1998,92:829-839.
    [4]Lin J,Handschin C,Spiegelman BM.Metabolic control through the PGC-1 family transcription coactivators[J].Cell Metab,2005,1:361-370.
    [5]Calvo JA,Daniels TG,Wang X,et al.Muscle-specific expression of PPARγ coactivator-1αimproves exercise performance and increases peak oxygen uptake[J].J Appl Physiol,2008,104:1304-1312.
    [6]潘玲,李德良,张立群,成年营养性肥胖大鼠模型[J].中药药理与临床,2003,19(5):47-49。
    [7]陈丹,毕会民,毕欣,运动对胰岛素抵抗大鼠骨骼集中糖原合成酶激酶-3表达的影响[J].中华物理医学与康复杂志,2006,28(3):153-156.
    [8]Chad R.Hancock,Dong-Ho Han,May Chen,Shin Terada.High-fat diets cause insulin resistance despite an increase in muscle mitochondria[J].PNAS,2008,105(22):7815-7820.
    [9]Goodpaster BH,He J,Watkins S,et al.Skeletal muscle lipid content and insulin resistance:evidence for a paradox in endurance-trained athletes[J].J Clin Endocrinol Metab,2001,86:5755-5761.
    [10]Coyle EF,Jeukendrup AE,Oseto MC,et al.Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise[J].Am J Physiol Endocrinol Metab,2001,280:E391-E398.
    [11]Lowell BB,Shulman GI.Mitochondrial dys function and type 2 diabetes[J].Science,2005,307:384-387.
    [12]刘奇刚、衣雪洁,运动影响胰岛素抵抗的机制[J]。北京体育大学学报,2007,30(4),519-521。
    [13]Turcotte LP and Fisher JS.Skeletal Muscle Insulin Resistance:Roles of Fatty Acid Metabolism and Exercise[J].Physical Therapy,2008,88(11):1279-1296.
    [14]Miller,WC,Bryce,GR and Conlee,RK.Adaptations to a high-fat diet that increase exercise endurance in male rats[J].Journal of Applied Physiology,1984,56:78-83.
    [15]Imi,B,Sempore,B,Mayet,M.et al.Additive effects of training and high-fat diet on energy metabolism during exercise[J].Journal of Applied Physiology,1991,71:197-203.
    [16]许豪文,主编.运动生物化学概论[M].北京:高等教育出版社,2001,9:141
    [17]Cheng B,Karamizrak O,Noakes T.Time Course of the Effects of a High-Fat Diet and Voluntary Exercise on Muscle Enzyme Activity in Long-Evans Rats[J].Physiology & Behavior,1997,61(5):701-705.
    [18]Peters S J,Amand TA,Howlett RA,et al.Human skeletal muscle pyruvate dehydrogenase kinase activity increases after a low-carbohydrate diet[J].Am J Physiol Endocrinol Metab,1998,275:E980-E986.
    [19]David CS,Louise MB,Damien JA,et al.A short-term,high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle[J].Am J Clin Nutr,2003,77:313-318.
    [20]Kiens B,Essen G,Gad P,et al.Lipoprotein lipase activity and intramuscular triglyceride stores after long-term high-fat and high-carbohydrate diets in physically trained men[J].Clin Physiol,1987,7:1-9.
    [21]David AC.Excess Lipid Availability Increases Mitochondrial Fatty Acid Oxidative Capacity in Muscle.DIABETES,2007,8,(56):2085-2092.
    [22]Jong SL,Clinton RB,Interaction of diet and training on endurance performance in rats[J].Experimental Physiology,2001,86(4):499-508.
    [23]Holloszy JO,Oscai LB,Don IJ,et al.Mitochondrial citric acid cycle and related enzymes:adaptive response to exercise[J].Biochem Biophys Res Commun,1970,40:1368-1373.
    [24]Lawler JM,Powers SK,Van Dijk H,et al.Metabolic and antioxidant enzyme activities in the diaphragm:effect of acute exercise[J].Respir Physiol,1994,96:139-149.
    [25]Parco M,David AD.Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles[J].J Appl Physiol,2003,94:555-560.
    [26]Muoio DM,Koves TK.Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARγ and PGC-1α:implication for metabolic disease[J].Appl.physiol.Nutr.Metab,2007,32:874-883.
    [27]Gaster M.Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects[J].Biochemical and Biophysical Research Communication,2009,382:766-770.
    [28]白秀平,李宏亮,杨文英等。高脂饲养大鼠脂代谢调控基因的表达与胰岛素抵抗的关系及机制[J],中华内科杂志,2007,46(9):24-28。
    [29]Schenk S and Horowitz JF.Coimmunoprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training[J].Am J Physiol Endocrinol Metab,2006,291:E254-E260.
    [30]张玥;姜宁;苏丽。PPARα与运动改善脂质代谢的关系[J],中国康复医学杂志,2008,23(6):495-498。
    [31]Bezaire V,Heigenhauser GJ,Spriet LL.Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle[J].Am J Physiol Endocrinol Metab,2004,286(1):E85-E91.
    [32]Ruderman NB,Park H,Kaushik VK,et al.AMPK as a metabolic switch in rat muscle,liver and adipose tissue after exercise[J].Acta Physiol Scand,2003,178(4):435-442.
    [33]Dean D,Daugaard JR,Young ME,et al.Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle[J].Diabetes,2000,49:1295-1300.
    [34]Roepstorff C,Halberg N,Hillig T.Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise[J].Am J Physiol Endocrinol Metab,2005,288:E133-E142.
    [35]Holloway GP,Bezaire V,Heigenhauser GJ,et al.Mitochondrial long chain fatty acid oxidation,fatty acid translocase/CD36 content and carnitine palmitoyl-transferase I activity in human skeletal muscle during aerobic exercise[J].J Physiol,2006,571:201-210.
    [36]Morifuji M, Sanbongi C, Sugiura K. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats[J]. Br J Nutr, 2006, 96(3):469-475.
    [37]Lauren M. Sparks, Hui Xie, Robert A.et al. A High-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle[J]. DIABETES,2005, 54(7): 1926-1933.
    [38]Turner N, Bruce CR, Beale SM. Excess Lipid Availability Increases Mitoch- -ondrial Fatty Acid Oxidative Capacity in Muscle[J]. DIABETES, 2007, 56(8): 2085-2092.
    [39]Terada S, Kawanaka K, et al. Effect s of high-intensity intermit tent swimming on PGC-1α aprotein expression in rat skeletal muscle[J]. Acta Physiol, 2005,184: 59-65.
    [40]Taylor EB, Lamb JD, Hurst RW, et al. Endurance t raining increases skeletal muscle LK.B1 and PGC-lα aprotein abundance: effects of time and intensity[J]. Am J Physiol. Endocrinol Metab, 2005, 289: E960-E968.
    [41]Henriette Pilegaard, Bengt Saltin. Exercise induces transient transcriptional activation of the PGC-lα gene in human skeletal muscle[J]. J Physiol, 2003, 546(3): 851-858.
    [42]Christoph Handschin. The biology of PGC-la and its therapeutic potential[J]. Trends in Pharmacological Sciences, 2009, 30(3): 105-113.
    [43]Arany, Z. et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-g coactivator lα[J].Proc.Natl.Acad.Sci, 2006,103:10086-10091.
    [44]Choi, CS. et al.Paradoxical effects of increased expression of PGC-lα on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism[J]. Proc. Natl. Acad. Sci, 2008,105:19926-19931.
    [45]Benton, CR. et al. Modest PGC-lα overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria[J]. J. Biol. Chem, 2008, 283:4228-4240.
    [46]Kove,TR, Li,P, et al. Peroxisome proliferator-activated receptor-gamma coactivator lalpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency[J]. J. Biol. Chem, 2005, 280: 33588-33598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700