脊椎动物Hoxall基因进化分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Hox基因具高度保守的180 bp的同源异型框(homeobox),它编码具螺旋—转角—螺旋结构的转录因子,能与特定区域的DNA结合,从而调节动物个体发育过程中体轴的形态建成。在动物进化过程中,形态特征的改变与控制发育的基因演化有关。Hoxa-11基因在鱼类鳍和四足动物肢发育过程中起着重要作用。因此,对Hoxa-11基因的研究不仅有利于我们了解动物个体发育过程中的遗传控制,也有助于我们从分子水平上解释脊椎动物从水生到陆生进化过程中鳍到肢的转变。
     根据已报道的人和鼠的Hoxa-11基因序列,设计了简并引物,用PCR法扩增和克隆了斑马鱼、大黄鱼、花鲈、罗非鱼、红鳍东方鲀、乌鳢、矛尾鱼、热带爪蟾、绿背树蜥和家鸡等动物的Hoxa-11基因。克隆的基因与从GenBank中获取的人、小家鼠、黄牛、匙吻白鲟、角虎鲨Hoxa11基因及青鳉Hoxa11a基因进行比较分析,这些动物代表了有颌类的三个谱系:软骨鱼类谱系(角虎鲨)、辐鳍鱼类谱系(斑马鱼、大黄鱼、花鲈、罗非鱼、红鳍东方鲀、乌鳢、青鳉和匙吻白鲟)和肉鳍鱼类谱系(矛尾鱼、热带爪蟾、绿背树蜥、家鸡、人、小家鼠和黄牛)。无论在核苷酸水平还是在氨基酸水平,三个不同谱系动物间的Hoxa11基因都表现出了很高的相似性。
     在核苷酸水平上,不但编码序列具有较高的保守性,而且内含子的5'端也是非常保守的。在内含子的5'端发现了两个高度保守的序列——进化印记(phylogenetic footprints),长度分别为35 bp和17 bp,35 bp的核苷酸片段能与HeLa细胞和鸡胚细胞抽提物中的蛋白结合,可能是一种调节元件。采用Tajima试验分析脊椎动物Hoxa11基因的核苷酸进化相对速率,结果表明Hoxa11基因编码序列的进化速率在角虎鲨谱系与匙吻白鲟谱系之间没有明显差异,而高等硬骨鱼类谱系的进化速率明显高于角虎鲨谱系和匙吻白鲟谱系;在高等硬骨鱼类之中斑马鱼谱系的进化速率不同于其它鱼类谱系,存在明显加速现象。且发现在硬骨鱼类,基因进化速率的差异是基因特异的,而非谱系特异的。高等硬骨鱼类高的进化速率可能与进化过程中硬骨鱼类Hox基因簇经历一次额外的复制有关。内含子序列的进化速率在不同的谱系之间存在差异,在硬骨鱼类谱系和哺乳动物谱系,Hoxa11基因的内含子与外显子组成了一个共进化单位(co-evolutionary unit);而在绿背树蜥谱系和热带爪蟾谱系,Hoxa11
Hox genes, containing a 180 bp homeobox, encode helix-turn-helix transcription factors. Hox proteins can bind DNA, and regulate the axial patterning during embryonic development of animals. The evolution of morphological characters is thought to be mediated through the evolution of genes controlling embryonic development in animal phylogenesis. Hoxa-11gene plays an important role in the development of fish fins and tetrapod limbs. Therefore, studies on Hoxall gene can help us to understand both the genetic control in animal development and the fin-limb transition in vertebrate evolution.Degenerate primers for PCR, based on reported Hoxall genes from human and mouse, were designed to amplify fragments of Hoxall genes from ten vertebrates, Danio rerio, Pseudosciaena crocea, Lateolabrax japonicus, Oreochromis niloticus, Fugu rubripes, Ophiocephalus argus, Latimeria chalumnae, Xenopus tropicalis, Calotes jerdoni and Gallus gallus. Hoxall genes from 16 vertebrates were analyzed, containing 10 cloned Hoxall genes mentioned above and 6 Hoxall genes from GenBank, Homo sapiens, Mus musculus, Bos taurus, Polyodon spathula, Heterodontus francisci, and Oryzias latipes, in representatives of the three major gnathostome lineages: cartilaginous fish, ray-finned fish and lobe-finned fish. Hoxall genes from the three lineages have high similarity in both nucleotide and amino acid sequences.In nucleotide level, both the coding sequence and 5' intron sequence are very conservative. Two phylogenetic footprints, 35 bp and 17 bp in length respectively, were found in 5' intron sequence. 35 bp nucleotide fragment can bind proteins from HeLa cell extract and chicken embryonic cell extract, which means that the 35 bp nucleotide fragment may be a regulatory element. Relative rates of Hoxall coding sequences among vertebrates were analyzed by Tajima test. The results showed that there was no significant different between horn shark (Heterodontus francisci) and Mississippi paddlefish (Polyodon spathula) lineages. However, the evolutionary rate in higher teleost lineages was significantly higher than that in horn shark and Mississippi paddlefish lineages. Among higher teleost sampled, the zebrafish (Danio rerio) lineage had the highest rate. The difference of relative rates among teleost was a gene-, and not lineage-, specific phenomenon. The high
    rate in higher teleost might be relative to an additional Hox cluster duplication during teolest evolution. In addition to the coding sequence, relative rates of intron sequences also had significant difference among vertebrate lineages. Exons and intron of Hoxall gene belonged to a co-evolutionary unit in teleost and mammalian lineages, and evolved independently in frog (Xenopus tropicalis) and lizard (Calotes jerdoni) lineages. The results of both Z test and Fisher exact test showed that Darwin's positive selection acted on Hoxall coding sequence, and the positive selection caused a large change to Hoxall N-terminal amino acid sequence.Hoxall protein was divided into three regions, N-terminal conservative region, intermediate changeable region and C-terminal conservative region according to Clustal W alignment. The similarity of Hoxall amino acid sequences from different vertebrates was very high in both N- and C-terminal conservative regions. The number of amino acids was nearly equal from horn shark to human in the two conservative regions. The similarity was low, and the number of amino acids was changeable in the intermediate changeable region. Therefore, the evolutionary model of different regions was various in Hoxall. Polyalanine and closely neighboring polyhistone were first found in the Hoxall changeable region in Percomorpha fishes.Hoxall proteins from all sampled vertebrates had an obvious hydrophilic region, and its position remained relatively stable. It contained the majority of the changeable region and the little minority of the C-terminal conservative region. In the hydrophilic region, the number of amino acids was gradually increased from fish to mammals, which reflected a lengthened tendency of the hydrophilic region in tetrapod lineage. In a similar way, alanine content was also gradually increased in the hydrophilic region from fish to mammals. Horn shark had the lowest alanine content, about 3.03%;the next was coelacanth (Latimeria chalumnae), about 4.55%;other teleosts ranged from 5.88% to 8.82%;frog {Xenopus tropicalis), lizard (Calotes jerdoni) and chick (Gallus gallus) were 10.81%, 15.38% and 17.50% respectively;mammals were more than 20%.
引文
1. Altschul, SF, Madden, TL, Schaffer, Aaet al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17):3389-402.
    2. Amores A, Force A, Yan Y, Joly L, Amemiya C et al. 1998. Zebrafish hox clusters and vertebrate evolution. Science ,282:1711-1714.
    3. Andrews NC, Faller DV. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acid Res., 19:2499.
    4. Aparicio S, Morrison A, Goul A et al. 1995. Detecting conserved regulatory elements with the model genome of the Jananese puffer fish Fugu rubripes. PNAS , 92:1684-1688.
    5. Arnone MI, Davidsion EH. 1997. The hardwiring of development: organization and function of genomic regulatory system. Development, 124:1851-1864.
    6. Bailey W J, Wagner G P, Ruddle F H. 1997. Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol, 14(8):843-853.
    7. Beeman R, Stuart J, Hass M, et al. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev Biol, 1989, 133(l):196-209.
    8. Blanchette M, Tompa M. 2002. Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res., 12:739-748.
    9. Blanco MJ, Misof BY, Wagner GP. 1998. Heterochronic differences of Hoxaall expression in Xenopus fore-and hind limb development: evidence for a lower limb identity of the anuran ankle bones. Dev. Genes Evol., 208:175-187.
    10. Boulet AM, Capecchi MR.2004. Multiple roles of Hoxall and Hoxdll in the formation of the mammalian forelimb zeugopod. Development, 131:299-309.
    11. Brown LY, Brown SA. 2004. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet., 20:51-58.
    12. Burke AC, Nelson CE, Morgan BA et al. 1995. Hox genes and the evolution of vertebrate axial morphology. Development, 121:333-346.
    13. Caburet S, Vaiman D, Veitia RA. 2004. A genomic basis for the evolution of vertebrate transcription factors containing amino acid runs. Genetics, 167:1813-1820.
    14. Carr J L, Shashikant C S, Bailey W J et al. 1998. Molecular evolution of Hox gene regulation: cloning and transgenic analysis of the lamprey HoxQ8 gene[J]. J Exp Zool, 280(l):73-85.
    15. Carrasco AE, McGinnis W, Gehring WJ et al. 1984. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell, 37:409-414.
    16. Chiu C, Nonaka D, Xue L et al. 2000. Evolution of Hoxall in lineages phylogenetically positioned along the fin-limb transition. Molecular Phylogenetics and Evolution, 17:305-316.
    17. Chiu C, Amemiya C, Dewar K et al. 2002. Molecular evolution of the HoxA cluster in the three major gnatostome lineages. PNAS, 99:5492-5497.
    18. Chiu C, Dewar K, Wagner G P et al. 2004. Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic volution. Genome Research, 14:11-17.
    19. Coates MI. 1995. Fish fins or tetrapod limbs-a simple twist of fate? Corrent Biology, 5:844-848.
    20. Cocquet J, Baere ED, Cabyret S et al. 2003. Compositional biases and polyalanine runs in human. Genetics, 165:1613-1617.
    
    21. Cohn MJ, Tickle C. 1996. Limbs: a model for pattern formation within the vertebrate bodv plan. Trends Genet., 12: 253-257.
    22. Daeschler EB, Shubin NH, Jenkins FA. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440:757-763
    23. DavisAP, Witte DP, Hsieh-Li HM et al. 1995. Absence of radius and ulna in mice lacking hoax-11 and hoxd-11. Nature ,375:791-795.
    24. Easteal S. 1988. Rate constancy of globin gene evolution in placental mammals. Proc. Natl. Acad. Sci. USA, 85:7622-7626.
    25. Fares MA, Bezemer D, Moya A et al. 2003. Selection on coding regions determined Hox7 gene evolution. Mol. Biol. Evol., 20:2104-2112.
    26. Force A, Amores A, Postlethwait JH. 2002. Hox clustal organization in the jawless vertebrate Petromyzon marinus. J. Exp. Zool. (Mol. Dev. Evol.), 294:30-46.
    27. Force A, Lynch M, Pickett FB et al.1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 151:1531-1545.
    28. Fromental-Ramain C, Warot X, Messadecq N et al.1996. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development, 122:2997-3011.
    29. Galtier N, Gouy M. 1998. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol. Evol., 15:871-879.
    30. Garcia-Fernfindez J, Holland PWH. 1994. Archetypal organization of Amphioxus Hox gene cluster. Nature 370:563-566.
    31.Gehring WJ. 1994. A history of the homeobox. In "Guedebook to the Homeobox Genes" (Duboule D ed.). Oxford University Press, Oxford, UK.
    32. Gendron RL, Paradis H, Hsien-Li HM et al. 1997. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hox-11 null mice. Biol. Reprod., 56:1 097-1105.
    33. Gerard M, Duboule D, Zakany J. 1993. Structure and activity of regulatory elements involved in the activation of the Hoxd-11 gene during late gastrulation. EMBO, 12:3539-3550.
    34. Greer JM, Puetz J, Thomas KR et al. 2000. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature, 403:661-665.
    35. Haack H, Gruss P. 1993. The Establishment of Murine Hox-1 Expression Domains during Patterning of the Limb. Developmental Biology, 157:410-422.
    36. Haerry TE, Gehring WJ. 1996. Intron of the mouse Hoxa7 gene contains conserved homeodomain binding sites that can function as an enhancer element in Drosophila. Proc. Natl. Acad. Sci. USA, 93:13884-13889.
    37. Haerry TE, Gehring WJ. 1997. A conserved cluster of homeodomain binding sites in the mouse Hoxa-4 intron functions in Drosophila embryos as an enhancer that is directly regulated in Ultrabithorax. Dev. Biol., 186:1-15.
    38. Han K, Manley JL. 1993. Functional domains of the Drosophila Engrailed
    ??protein. EMBO J., 12:2723-2733.
    39. Hartl DL, Clark AG. 1997. principles of population genetics. Sinauer Associates, Sunderland, MA, USA.
    40.Higgins D, Thompson J, Gibson T et al.1994. CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22:4673-4680.
    41.Hoegg S, Brinkmann H, Taylor JS et al. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teloest fish. J. Mol. Evol., 59:190-203.
    42. Holland PWH, Garcia-Fernfindez J, Williams NA et al.1994. Gene duplication and the origins of vertebrate development . Development (Suppl.):125-133.
    43. Holland PWH, Garcia-Fernfindez J.1996. Hox genes and chordate evplution. Developmental Biology, 173:382-395.
    44. Hsieh-Li HM, Witte DP, Weinstein M et al.1995. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development ,121:1373-1385.
    45. Jaynes JB, 0' Farrel PH. 1988. Activation and repression of transcription by homeodomain-containing proteins that bind a common site.Nature ,336:744-749.
    46. Jaynes JB, O' Farrell PH.1991. Active repression oftranscription by the engrailed homeodomain protein. EMBO J., 10:1427-1433.
    47. Kappen C, Schugart K, Ruddle FH. 1993. Early evolutionary origin of major homeodomain sequence classes. Genomics, 18:54-70.
    48. Kenyon C, Wang B. A cluster of Antennapedias-class homeobox genes in a nonsegmental animal [J]. Science, 1991, 253(5019):516-517.
    49. Kim C, Shashikant CS, Sumiyama K et al. 2003. Phylogenetic analysis of the mammalian Hoxc8 non-coding region. J. Struct. Funct. Genom., 3:195-199.
    50. Kmita-Cunisse M, Loosli F, Bierne J, et al. Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications [J]. Proc Natl Acad Sci USA, 1998, 95(6):3030-3035.
    51.Kocabas AM, Kucuktas H, Dunham RA et al. 2002. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochemica et Biophysica Acta-Gene Structure and Expression, 1575:99-107.
    52. Koussoulakos S. 2004. Vertebrate limb development: from Harrison's limb disk transplantations to targeted disruption of Hox genes. Anat. Embryol, 209:93-105.
    53. Krieger J, Fuerst PA. 2002. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Mol. Biol. Evol., 19:891-897.
    54. Krumlauf R. 1992. Evolution of the vertebrate Hox homeobox genes [J]. BioEssays, 14(4):245-252.
    55. Krumlauf R. 1994. Hox genes in vertebrate development. Cell, 78:191-201.
    56. Kumar S, Tamura K, and Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150-163.
    57. Leung JY, Mckenzie FE, Uglialoro AM et al. 2000. Identifiction of phylogenetic footprints in primate tumor necrosis factor- α promoters. Proc. Natl. Acad. Sci. USA, 97:6614-6618.
    58. Licht JD, Grossel MJ, Figge J et al. 1990. Drosophila Kruippel protein is a transcriptional repressor. Nature, 346: 76-79.
    59. McGinnis W, Hart CP, Gehring WJ et al. 1984. Molecular clong and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila. Cell, 38:675-680.
    60. McGinnis W, Krumlauf R. 1992. Homeobox genes and axial patterning. Cell, 68:283-302.
    61.McPherron AC, Lawler AM, Lee SJ. 1997. Regulation of skeletal muscle mass in mice by a new TGF- β superfamily member. Nature. 387(6628):83-90.
    62. McPherron AC, Lee SJ. 2002. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest., 109:595-601.
    63. Merrit TJS, Quattro JM. 2003. Evolution of the vertebrate cytosolic malate dehydrogenase gene family: duplication and divergence in actinopterygian fish. J. Mol. Evol., 56:265-276.
    64. Meyer A, Schartl M. 1999. Gene and Genome duplications in vertebrates: the
     one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell BioL, 11:699-704.
    65. Minguillon C, Gardenyes J, Serra E et al. 2005. No more than 14: the end of the amphioux Hox cluster. Int. J. Biol. Sci., 1:19-23.
    66. Misof B Y, Wagner G P. 1996. Evidence for four Hox clusters in the killifish Fundulus heteroclitus (Teleostei) [J]. Mol Phylogen Evol, 5(2):309-322.
    67. Mitchell PJ, Tjian R. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 245:371-378.
    68. Mortlock DP, Sateesh P, Innis JW. 2000. Evolution of N-terminal sequences of the vertebrate HOXA13 protein. Mammalian Genome, 11:151-158.
    69. Muragaki Y, Mundlos S, Upton J et al. 1996. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science, 272:548-551.
    70. Nahachi Y, Hayakawa T, Oota H et al. 1997. Nucleotide compositional constraints on genomes generate alanine-,glycine-, and proline-rich structures in transcription factors. Mol. Biol. Evol., 14:1042-1049.
    71.Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol., 3:418-426.
    72. Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Inc. UK.
    73. Nelson C E, Morgan BA, Burke AC et al. 1996. Analysis of Hox gene expression in the chick limb bud. Development, 122:1449-1466.
    74. Ohno S. 1970. Evolution by Gene Duplication. Springer Verlag, New York, USA.
    75. Patterson LT, Pembauer MT, Potter SS. 2001. Hoxall and Hoxdll regulate branching morphogenesis of the ureteric bud in the developing kidney. Development, 128:2153-2161.
    76. Powers TP, Amemiya CT. 2004. Evidence for a Hoxl4 paralog group in vertebrates. Current Biology, 14: 183-184.
    77. Prohaska SJ, Fried C, Flamm C et al. 2004. Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications. Molecular Phylogenetics and Evolution, 31: 581-604.
    78. Raff R. 1996 .The Shape of Life. Chicago University Press, Chicago, IL, USA.
    79. Rijli FM, Chambo P. 1997.Genetic interactions of Hox genes in limb development: learning from compound mutant. Curr Opin Genet Dev., 7:481-487.
    80. Robinson-Rechavi M, Laudet V. 2001. Evolutionary rates of duplicated genes in fish and mammals. Mol. Biol. Evol., 18:681-683.
    81.Rodgers BD, Weber GM, Sullivan CV et al. 2001. Isolation and characterization of myostatincomplementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysop. Endocrinol. 142:1412-1418.
    82. Roth JJ, Breitenbach M, Wagner GP. 2005. Repressor domain and nuclear localization signal of the murine Hoxall protein are located in the homeodomain: no evidence for role of poly alanine stretches in transcriptional repression. J. Exp. Zool. B Mol. Dev. Evol., 304:468-475.
    83. Santini S, Boore JL, Meyer A. 2003. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res., 13:1111-1122.
    84. Santini S, Bernardi G. 2005. Organization and base composition of tilapia Hox genes: implications for the evolution of Hox clusters in fish. Gene, 346:51-61.
    85. Satokata I, Benson G, Maas R. 1995. Sexually dimorphic sterility phenotypes in HoxalO-deficient mice. Nature, 374:460-462.
    86. Sharma M, Kambadur R, Matthews KG. et al. 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol. 180:1-9.
    87. Shubin N. 1995. The evolution of paired fins and the origin of tetrapod limbs. Evolutionary Biology, 28:39-86.
    88. Sordino P, v d Hoeven F, Duboule D. 1995. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature, 375:678-681.
    89. Spring J. 1997. Vertebrate evolution by interspecific hybridization-are we polyploid? FEBS Lett., 400:2-8.
    90. Stern DL. 2000. Evolutionary developmental biology and the problem of variation. Evolution, 54:1079-1091.
    91. Suzuki M, Kuroiwa A. 2002. Transition of Hox expression during limb cartilage development. Mechanisms of Development, 1 18:241-245.
    92. Sweet R M, Eisenberg D. 1983. Correlation of sequence hydrophobicities measures similarity in three-dimensional structure. J. Mol. Biol., 171: 479-488.
    93. Tabin C. 1995. The initiation of tile limb bud: growth factors, Hox genes, and retinoids. Cell, 80:671-674.
    94. Tagle DA, Koop BF, Goodman M et al. 1988. Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints.J. Mol. Biol., 203: 439-455.
    95. Taylor HS, vanden Hervet GB, Igarashi P. 1997. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes.Biol Reprod, 57:1338-345.
    96. Taylor HS, Bagot C, Kardana A et al. 1999. HOX gene expression is altered in the endometrium of women with endometriosis . Hum. Reprod., 14:1328-1331.
    97. Thompson JD, Higgins DJ, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
    98. Utsch B, Becker K, Brock D et al. 2002. A novel stable polyalanine [poly(A)]expansion in the HOXA13 gene associated with hand-foot-genital syndrome: proper function of poly(A)-harbouring transcription factors depends on a critical repeat length? Hum. Genet., 110:488-494.
    99. Wagner GP, Takahashi K, Lynch V et al. 2005. Molecular evolution of duplicated ray finned fish Hox A clusters: increased synonymous substitution rate and asymmetrical co-divergence of coding and non-coding sequence. J. Mol. Evol., 60:665-676.
    100. Wlellik DM, Capecchi MR. 2003. Hox10 and Hoxllgenes are required to globally pattern the mammalian skeleton. Science, 301:363-367.
    101. Wolgemuth DJ, Viviano CM, Gizang-Ginsberg E et al. 1987. Differential
     expression of the mouse homeobox-containing gene Hox-1.4 during male germ cell differentiation and embryonic development. PNAS, 84:5813-5817.
    102. Yokouchi Y, Ssaki H, Kuroiwa A. 1991. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature, 353:443-445.
    103.李难。进化生物学基础。高等教育出版社,2005。
    104.王介东,朱正美,罗宏志。2000。小剂量米非司酮对分泌中期人子宫内膜HOXA11基因表达的影响.生殖医学杂志,2000,9(3):165-170。
    105.王介东,朱正美,罗宏志。2002。雌/孕激素对原代培养的子宫内膜上皮细胞Hoxa11和PR基因表达的影响。生殖与避孕,22(1):18-22。
    106.王莉芬,王弘毅,罗宏志等.2000。原位杂交检测同源框基因HoxA11在入月经周期子宫内膜的表达。生殖与避孕,20(3):147-150。
    107.张士璀,袁金铎,刘振辉。2003。基因倍增和脊椎动物起源。生命科学,15(1):18—20。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700