叶酸对细菌脂多糖诱发小鼠不良妊娠结局的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:不良妊娠结局主要包括自然流产、出生缺陷、早产、死胎和低出生体重等。大量研究表明,孕鼠接触细菌脂多糖(LPS)引起胚胎吸收、流产、胚胎和胎儿死亡、畸胎、宫内生长发育迟缓和早产等不良妊娠结局。LPS引起的这些不良妊娠结局与Toll样受体信号下游活性氧和炎性细胞因子密切相关。叶酸(FA)属B族水溶性维生素,具有抗炎和抗氧化作用,但叶酸是否能有效预防LPS引起的不良妊娠结局目前尚不清楚。
     目的:研究孕鼠补充适量叶酸对孕中期和孕晚期LPS暴露所致不良妊娠结局的保护效应,阐明叶酸对孕期接触LPS致炎和氧化应激的拮抗效应及分子机理。
     方法:本研究由六个独立的实验组成。实验一,孕鼠被随机分成6组,即生理盐水对照组、叶酸对照组、LPS组、LPS+叶酸灌胃组、LPS+叶酸注射组和LPS+叶酸饮用组。对照组孕鼠分别给予生理盐水或叶酸;LPS组孕鼠于孕第8-12天(GD8-GD12)经腹腔注射LPS (20μg/kg/d);LPS+叶酸灌胃组孕鼠于注射LPS前1h经口灌胃补充叶酸(3mg/kg/d);LPS+叶酸注射组孕鼠于注射LPS前1h经腹腔注射补充叶酸(3mg/kg/d);LPS+叶酸饮用组孕鼠于GD7-GD12通过饮水补充叶酸(15mg/L,根据孕鼠饮水量换算相当于口服叶酸3mg/kg/d)。所有孕鼠于GD18剖杀,记录吸收胎数、死胎数和活胎数,检查并记录活胎外观畸形,称量活胎体重和测量活胎身长,评价活胎鼠骨骼畸形及发育情况。实验二,孕鼠被随机分为4组,即生理盐水对照组、叶酸对照组、LPS组和LPS+叶酸组。对照组孕鼠分别给予生理盐水或叶酸;LPS组孕鼠于GD8-GD12经腹腔注射LPS (20μg/kg/d);LPS+叶酸组孕鼠于注射LPS前1h经口灌胃补充叶酸(3mg/kg/d)。孕鼠于末次LPS处理后2h剖杀取材,用Western blotting检测胎盘TLR4/NF-κB信号通路相关蛋白水平,用实时定量RT-PCR检测胎盘tnf-α、il-1β和il-6mRNA水平,用ELISA检测孕鼠血清和羊水TNF-α、IL-1β和IL-6水平,用Beutler改良法测定孕鼠肝脏和胎盘还原型谷胱甘肽(GSH)含量。实验三,孕鼠被随机分成6组,即生理盐水对照组、叶酸对照组、LPS组、LPS+低剂量叶酸组、LPS+中剂量叶酸组和LPS+高剂量叶酸组。对照组孕鼠分别给予生理盐水或叶酸;LPS组孕鼠于GD15经腹腔注射LPS (300μg/kg);三个叶酸补充组于LPS注射前1h分别经口灌胃补充不同剂量叶酸(0.6、3、15mg/kg)。LPS注射后,密切观察并记录孕鼠早产和早产潜伏时间。实验四,孕鼠被随机分成6组,即生理盐水对照组、叶酸对照组、LPS组、LPS+低剂量叶酸组、LPS+中剂量叶酸组和LPS+高剂量叶酸组。对照组孕鼠分别给予生理盐水或叶酸;LPS组孕鼠于GD15经腹腔注射LPS (300μg/kg);三个叶酸补充组于LPS注射前1h分别经口灌胃补充不同剂量叶酸(0.6、3、15mg/kg)。所有孕鼠于LPS注射后14h剖杀,判断并记录活胎和死胎数。实验五,孕鼠被随机分为6组,即生理盐水对照组、叶酸对照组、LPS组、LPS+低剂量叶酸组、LPS+中剂量叶酸组和LPS+高剂量叶酸组。对照组孕鼠分别给予生理盐水或叶酸;LPS组孕鼠于GD15-GD17经腹腔注射LPS (75μg/kg/d);三个叶酸补充组于LPS注射前1h分别经口灌胃补充不同剂量叶酸(0.6、3、15mg/kg/d)。GD18剖杀孕鼠,记录吸收胎数、死胎和活胎数,称量活胎胎盘重量和胎仔体重,测量活胎胎仔身长。实验六,孕鼠随机分为4组,即生理盐水对照组、叶酸对照组、LPS组和LPS+叶酸组。对照组孕鼠分别给予生理盐水或叶酸;LPS组孕鼠于GD15经腹腔注射LPS(300μg/kg);LPS+叶酸组于LPS注射前1h经口灌胃补充叶酸(3mg/kg)。LPS处理后2h剖杀半数孕鼠并收集胎盘标本,用Western blotting检测胎盘核蛋白NF-κBp65水平,用免疫组化方法对胎盘NF-κB p65进行细胞定位。剩余孕鼠于LPS注射后6h剖杀,收集孕鼠血清、羊水和胎盘,用Western blotting检测胎盘COX-2蛋白水平,用ELISA检测孕鼠血清和羊水IL-6和角化细胞源性细胞因子(KC)水平,用硝酸还原酶法检测孕鼠血清和羊水NO水平。
     结果:主要包括以下两个方面:(1)补充叶酸对孕中期LPS暴露所致不良妊娠结局的保护作用。结果发现,孕中期暴露低剂量LPS主要引起胎鼠外观和骨骼畸形,最常见的外观畸形为露脑和脑膜膨出,最常见的骨骼畸形为胸骨畸形和肋骨畸形。经腹腔注射、经口灌胃和饮用等三种方式补充叶酸均能明显降低胎鼠外观和骨骼畸形发生率,其中以经口灌胃方式效果最明显,其平均每窝外观畸形率从19.95%降至0.96%,胸骨畸形率从19.10%降至2.95%,肋骨畸形率从26.86%降至11.62%。为探讨叶酸抑制LPS致畸的机理,进一步研究了叶酸的抗炎和抗氧化效应,结果发现,补充叶酸抑制孕中期LPS暴露诱导的胎盘MyD88上调、JNK和I-κB磷酸化及NF-κB激活;补充叶酸对抗孕中期LPS暴露引起的胎盘tnf-α、il-1β和il-6mRNA上调,降低LPS处理组孕鼠血清和羊水TNF-α、IL-1β和IL-6水平;补充叶酸减轻孕中期LPS暴露引起的孕鼠肝脏和胎盘GSH耗竭。(2)叶酸补充对孕晚期LPS暴露所致不良妊娠结局的保护效应。结果显示,孕晚期暴露高剂量LPS引起100%孕鼠发生早产,平均早产潜伏时间为14h;孕晚期暴露高剂量LPS引起89.3%胎仔死亡。孕晚期暴露低剂量LPS导致29.3%胎仔死亡;孕晚期暴露低剂量LPS引起活胎平均体重明显下降、身长降低。补充叶酸显著减轻孕晚期LPS暴露引起的早产,并呈剂量-效应关系;补充叶酸明显减少孕晚期LPS暴露引起的胎仔死亡;补充叶酸明显对抗孕晚期LPS暴露引起的宫内生长迟缓。进一步研究结果显示,补充叶酸抑制孕晚期LPS暴露引起的胎盘NF-κB信号激活;补充叶酸抑制孕晚期LPS暴露引起的胎盘迷路层滋养巨细胞NF-κB p65核转位;补充叶酸抑制孕晚期LPS暴露引起的胎盘COX-2上调;补充叶酸显著降低LPS处理组孕鼠羊水IL-6和KC水平。叶酸对LPS上调孕鼠血清和羊水NO水平无明显影响。
     结论本研究得出如下结论:(1)叶酸补充可有效预防孕中期LPS暴露引起的胎鼠外观和骨骼畸形,其中经口灌胃方式效果最佳;(2)叶酸补充可减轻小鼠孕晚期LPS暴露引起的早产、死胎和宫内生长发育迟缓;(3)叶酸补充对LPS诱发小鼠不良妊娠结局的保护与其抗炎和抗氧化性能有关。
Background Adverse pregnancy outcomes include early pregnancy loss, birth defects,preterm delivery, stillbirth and intra-uterine growth restriction (IUGR). Numerousreports have demonstrated that maternal lipopolysaccharide (LPS) exposure results inadverse pregnancy outcomes, including embryonic resorption, fetal malformation,preterm delivery, fetal death and IUGR in mice. LPS-induced adverse pregnancyoutcomes are associated with excess production of reactive oxygen species (ROS) andrelease of inflammatory cytokines. Folic acid (FA) is a water-soluble B-complexvitamin. FA has anti-inflammatory and antioxidant effects. Nevertheless, it is unknownwhether FA protects against LPS-induced adverse pregnancy outcomes.
     Objective To explore the protective effects of FA on LPS-induced adverse pregnancyoutcomes and to clarify whether FA could alleviate LPS-induced inflammation andoxidative stress.
     Methods This study included six experiments.(1) To investigate the effects of FA onLPS-induced adverse pregnancy outcomes during the second trimester, the pregnantmice were divided into six groups randomly. All pregnant mice except controls (eithersaline or FA) were intraperitoneally (i.p.) injected with LPS (20μg/kg) daily from GD8to GD12. FA was administered in three different modes. In LPS+FAig group, pregnantmice were administered with FA (3mg/kg/d) by gavage at1h before LPS injection. In LPS+FAip group, pregnant mice were i.p. injected with FA (3mg/kg/d) at1h beforeLPS injection. In LPS+FAdw, pregnant mice were administered with FA throughdrinking water (15mg/L) from GD7to GD12. All dams were sacrificed on GD18. Foreach litter, the number of resorption sites, dead fetuses and live fetuses were counted.Live fetuses in each litter were weighed and examined for gross morphologicalmalformations. Crown-rump length was measured. All fetuses were subsequentlyevaluated the supraoccipital ossification and skeletal malformations.(2) To investigatethe effects of FA supplementation on LPS-induced oxidative stress and inflammationduring the second trimester, the pregnant mice were divided into four groups randomly.In LPS group, pregnant mice were i.p. injected with LPS (20μg/kg) daily from GD8toGD12. In LPS+FA group, pregnant mice were administered with FA (3mg/kg/d) bygavage at1h before LPS injection. In control group, pregnant mice were i.p. injectedwith NS daily from GD8to GD12. In FA alone group, pregnant mice were administeredwith FA (3mg/kg/d) by gavage before NS injection. All dams were sacrificed on GD12.Maternal serum and amniotic fluid were collected for measurement of inflammatorycytokines (TNF-α, IL-1β and IL-6). Some placentae were collected for real-timeRT-PCR and Western blotting. Maternal liver and other placentae were collected formeasurement of GSH content.(3) To investigate the effects of FA on LPS-inducedpreterm delivery, the pregnant mice were divided randomly into six groups. All pregnantmice except controls (either saline or FA) received an injection of LPS (300μg/kg) onGD15. In LPS+FA groups, the pregnant mice were orally administered with differentdoses of FA (0.6,3,15mg/kg)1h before LPS injection. Pregnant mice were observedclosely for any signs of preterm delivery.(4) To investigate the effects of FA onhigh-dose LPS-induced fetal death, the pregnant mice were divided randomly into sixgroups. All pregnant mice except controls (either saline or FA) received an injection ofLPS (300μg/kg) on GD15. In LPS+FA groups, the pregnant mice were orallyadministered with different doses of FA (0.6,3,15mg/kg)1h before LPS injection. All pregnant mice were sacrificed at14h after LPS injection. It was rapidly determinedwhether the fetus was viable by tactile stimulation.(5) To investigate the effects of FAon LPS-induced IUGR, the pregnant mice were divided randomly into six groups. Allpregnant mice except controls (either saline or FA) received an i.p. injection of LPS (75μg/kg) daily from GD15to GD17. In LPS+FA groups, the pregnant mice were orallyadministered with different doses of FA (0.6,3,15mg/kg/d)1h before LPS injection.All dams were sacrificed on GD18. For each litter, the number of resorption sites, deadfetuses, and live fetuses were counted. Live fetuses in each litter were weighed.Crown-rump length was measured.(6) To investigate the effects of FA on LPS-inducedinflammation during the third trimester, the pregnant mice were divided into four groupsrandomly. All pregnant mice except controls (either saline or FA) received an i.p.injection of LPS (300μg/kg) on GD15. In LPS+FA group, the pregnant mice wereorally administered with3mg/kg of FA1h before LPS injection. Half of the dams weresacrificed2h after LPS injection. Placentae were collected for measurements of nuclearNF-κB p65. The remaining animals were sacrificed at6h after LPS injection. Maternalserum and amniotic fluid was collected for measurement of IL-6, keratinocyte-derivedcytokine (KC) and nitric oxide (NO). Placentae were collected for measurements ofCOX-2.
     Results A five-day LPS (20μg/kg/d) injection during the second trimester resulted in50%(8/16) of litters with externally malformed fetuses. The incidence of externalmalformed fetuses was significantly increased in fetuses from dams injected with LPSfrom GD8to GD12, in which19.95%of fetuses per litter were externally malformed.Exencephaly and encephalomeningocele were two of the most common malformations.In addition, the incidence of fetus with supraoccipital ossification and skeletalmalformations was significantly increased in LPS-treated mice. FA supplementation bythree ways all attenuated LPS-induced external and skeletal malformations. And thebest protective effect was by orally. Additional experiment showed that FA significantly attenuated LPS-induced expression of MyD88in placenta. Moreover, folic acidinhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation, I-κBphosphorylation and NF-κB activation in placenta. Correspondingly, FA significantlyattenuated LPS-induced TNF-α, IL-1β and IL-6in placenta, maternal serum andamniotic fluid. In addition, FA significantly attenuated LPS-induced GSH depletion inmaternal liver and placenta. LPS injection with a high dose of LPS on GD15resulted in100%dams delivered before GD18. FA pretreatment delayed the latency interval ofpreterm delivery and reduced the incidence of preterm delivery. Moreover, FApretreatment significantly reduced the number of dead fetuses per litter in LPS-treatedmice. In addition, FA pretreatment significantly attenuated LPS-induced IUGR in adose-dependent manner. Additional experiment showed that FA pretreatment inhibitedLPS-induced activation of NF-κB in placenta. Correspondingly, FA pretreatmentsignificantly reduced the level of IL-6and KC in amniotic fluid of LPS-treated mice. Inaddition, FA pretreatment significantly attenuated LPS-induced upregulation of placentalCOX-2. However, FA had little effect on LPS-induced release of NO in maternal serumand amniotic fluid.
     Conclusions (1) FA supplementation during pregnancy efficiently preventsLPS-induced teratogenicity in mice.(2) FA supplementation during pregnancy protectsagainst LPS-induced preterm delivery, fetal death and IUGR in a dose-dependentmanner.(3) The protection of FA against LPS-induced adverse pregnancy outcomesmight be, at least partially, attributed to its anti-inflammatory and antioxidant effects.
引文
1. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A,Vera GC, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimatesof preterm birth rates in the year2010with time trends since1990for selectedcountries: a systematic analysis and implications. Lancet.2012;379(9832):2162-2172.
    2. Cousens S, Blencowe H, Stanton C, Chou D, Ahmed S, Steinhardt L, Creanga AA,Tuncalp O, Balsara ZP, Gupta S, Say L, Lawn JE. National, regional, andworldwide estimates of stillbirth rates in2009with trends since1995: a systematicanalysis. Lancet.2011;377(9774):1319-1330.
    3. Veloso HJ, Silva AA, Barbieri MA, Goldani MZ, Lamy FF, Simoes VM, BatistaRF, Alves MT, Bettiol H. Secular trends in the rate of low birth weight in BrazilianState Capitals in the period1996to2010. Cad Saude Publica.2013;29(1):91-101.
    4.中华人民共和国卫生部.中国妇幼卫生事业发展报告(2011).中国妇幼卫生杂志.2012;3(02):49-58.
    5.中华人民共和国卫生部.中国出生缺陷防治报告(2012).
    6. Messerlian C, Maclagan L, Basso O. Infertility and the risk of adverse pregnancyoutcomes: a systematic review and meta-analysis. Hum Reprod.2013;28(1):125-137.
    7. Baud D, Greub G. Intracellular bacteria and adverse pregnancy outcomes. ClinMicrobiol Infect.2011;17(9):1312-1322.
    8. Causes of death among stillbirths. JAMA.2011;306(22):2459-2468.
    9. Vrachnis N, Vitoratos N, Iliodromiti Z, Sifakis S, Deligeoroglou E, Creatsas G.Intrauterine inflammation and preterm delivery. Ann N Y Acad Sci.2010;1205:118-122.
    10. Zheng XY, Zhang T, Wang YF, Xu C, Chen G, Xin RL, Chen JP, Hu XM, Yang Q,Song XM, Pang LH, Ji Y, Sun HM, Zhang L, Liu JF, Guo YL, Zhang Y.Intrauterine infections and birth defects. Biomed Environ Sci.2004;17(4):476-491.
    11. Bartha JL, Romero-Carmona R, Comino-Delgado R. Inflammatory cytokines inintrauterine growth retardation. Acta Obstet Gynecol Scand.2003;82(12):1099-1102.
    12. Sperandeo P, Deho G, Polissi A. The lipopolysaccharide transport system ofGram-negative bacteria. Biochim Biophys Acta.2009;1791(7):594-602.
    13. Platz-Christensen JJ, Mattsby-Baltzer I, Thomsen P, Wiqvist N. Endotoxin andinterleukin-1alpha in the cervical mucus and vaginal fluid of pregnant womenwith bacterial vaginosis. Am J Obstet Gynecol.1993;169(5):1161-1166.
    14. Jacob AI, Goldberg PK, Bloom N, Degenshein GA, Kozinn PJ. Endotoxin andbacteria in portal blood. Gastroenterology.1977;72(6):1268-1270.
    15. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview.Gastroenterology.1995;108(5):1566-1581.
    16. Koh YY, Jeon WK, Cho YK, Kim HJ, Chung WG, Chon CU, Oh TY, Shin JH. Theeffect of intestinal permeability and endotoxemia on the prognosis of acutepancreatitis. Gut Liver.2012;6(4):505-511.
    17. Ilan Y. Leaky gut and the liver: a role for bacterial translocation in nonalcoholicsteatohepatitis. World J Gastroenterol.2012;18(21):2609-2618.
    18. Zhao L, Chen YH, Wang H, Ji YL, Ning H, Wang SF, Zhang C, Lu JW, Duan ZH,Xu DX. Reactive oxygen species contribute to lipopolysaccharide-inducedteratogenesis in mice. Toxicol Sci.2008;103(1):149-157.
    19. Chua JS, Rofe AM, Coyle P. Dietary zinc supplementation amelioratesLPS-induced teratogenicity in mice. Pediatr Res.2006;59(3):355-358.
    20. Aisemberg J, Vercelli CA, Bariani MV, Billi SC, Wolfson ML, Franchi AM.Progesterone is essential for protecting against LPS-induced pregnancy loss. LIFas a potential mediator of the anti-inflammatory effect of progesterone. PLOS ONE.2013;8(2):e56161.
    21. Chen YH, Zhao M, Chen X, Zhang Y, Wang H, Huang YY, Wang Z, Zhang ZH,Zhang C, Xu DX. Zinc supplementation during pregnancy protects againstlipopolysaccharide-induced fetal growth restriction and demise through itsanti-inflammatory effect. J Immunol.2012;189(1):454-463.
    22. Xu DX, Wang H, Zhao L, Ning H, Chen YH, Zhang C. Effects of low-doselipopolysaccharide (LPS) pretreatment on LPS-induced intra-uterine fetal deathand preterm labor. Toxicology.2007;234(3):167-175.
    23. Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. Tumor necrosis factor alphapartially contributes to lipopolysaccharide-induced intra-uterine fetal growthrestriction and skeletal development retardation in mice. Toxicol Lett.2006;163(1):20-29.
    24. Xu DX, Chen YH, Zhao L, Wang H, Wei W. Reactive oxygen species are involvedin lipopolysaccharide-induced intrauterine growth restriction and skeletaldevelopment retardation in mice. Am J Obstet Gynecol.2006;195(6):1707-1714.
    25. Chen YH, Xu DX, Wang JP, Wang H, Wei LZ, Sun MF, Wei W. Melatonin protectsagainst lipopolysaccharide-induced intra-uterine fetal death and growth retardationin mice. J Pineal Res.2006;40(1):40-47.
    26. Chen YH, Xu DX, Zhao L, Wang H, Wang JP, Wei W. Ascorbic acid protectsagainst lipopolysaccharide-induced intra-uterine fetal death and intra-uterinegrowth retardation in mice. Toxicology.2006;217(1):39-45.
    27. Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. Effect of N-acetylcysteineon lipopolysaccharide-induced intra-uterine fetal death and intra-uterine growthretardation in mice. Toxicol Sci.2005;88(2):525-533.
    28. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4mediates lipopolysaccharide-induced signal transduction. J Biol Chem.1999;274(16):10689-10692.
    29. Koga K, Mor G. Toll-like receptors at the maternal-fetal interface in normalpregnancy and pregnancy disorders. Am J Reprod Immunol.2010;63(6):587-600.
    30. Holmlund U, Cebers G, Dahlfors AR, Sandstedt B, Bremme K, Ekstrom ES,Scheynius A. Expression and regulation of the pattern recognition receptorsToll-like receptor-2and Toll-like receptor-4in the human placenta. Immunology.2002;107(1):145-151.
    31. Abrahams VM, Mor G. Toll-like receptors and their role in the trophoblast.Placenta.2005;26(7):540-547.
    32. Li L, Kang J, Lei W. Role of Toll-like receptor4in inflammation-induced pretermdelivery. Mol Hum Reprod.2010;16(4):267-272.
    33. Arce RM, Caron KM, Barros SP, Offenbacher S. Toll-like receptor4mediatesintrauterine growth restriction after systemic Campylobacter rectus infection inmice. Mol Oral Microbiol.2012;27(5):373-381.
    34. Muller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, amediator of lipopolysaccharide effects. Immunobiology.1993;187(3-5):233-256.
    35. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. SciSTKE.2006;2006(357):re13.
    36. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries andinsights. Annu Rev Immunol.1996;14:649-683.
    37. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcriptionfactors in the immune system. Annu Rev Immunol.2009;27:693-733.
    38. Ulivi V, Giannoni P, Gentili C, Cancedda R, Descalzi F. p38/NF-kB-dependentexpression of COX-2during differentiation and inflammatory response ofchondrocytes. J Cell Biochem.2008;104(4):1393-1406.
    39. Vila-del SV, Diaz-Munoz MD, Fresno M. Requirement of tumor necrosis factoralpha and nuclear factor-kappaB in the induction by IFN-gamma of inducible nitricoxide synthase in macrophages. J Leukoc Biol.2007;81(1):272-283.
    40. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaBsignaling. Cell Res.2011;21(1):103-115.
    41. Xu DX, Wang H, Ning H, Zhao L, Chen YH. Maternally administered melatonindifferentially regulates lipopolysaccharide-induced proinflammatory andanti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetalbrain. J Pineal Res.2007;43(1):74-79.
    42. Ning H, Wang H, Zhao L, Zhang C, Li XY, Chen YH, Xu DX.Maternally-administered lipopolysaccharide (LPS) increases tumor necrosis factoralpha in fetal liver and fetal brain: its suppression by low-dose LPS pretreatment.Toxicol Lett.2008;176(1):13-19.
    43. Li XY, Zhang C, Wang H, Ji YL, Wang SF, Zhao L, Chen X, Xu DX. Tumornecrosis factor alpha partially contributes to lipopolysaccharide-induceddownregulation of CYP3A in fetal liver: its repression by a low dose LPSpretreatment. Toxicol Lett.2008;179(2):71-77.
    44. Gendron RL, Nestel FP, Lapp WS, Baines MG. Lipopolysaccharide-induced fetalresorption in mice is associated with the intrauterine production of tumour necrosisfactor-alpha. J Reprod Fertil.1990;90(2):395-402.
    45. Carpentier PA, Dingman AL, Palmer TD. Placental TNF-alpha signaling inillness-induced complications of pregnancy. Am J Pathol.2011;178(6):2802-2810.
    46. Silver RM, Edwin SS, Trautman MS, Simmons DL, Branch DW, Dudley DJ,Mitchell MD. Bacterial lipopolysaccharide-mediated fetal death. Production of anewly recognized form of inducible cyclooxygenase (COX-2) in murine decidua inresponse to lipopolysaccharide. J Clin Invest.1995;95(2):725-731.
    47. Gross G, Imamura T, Vogt SK, Wozniak DF, Nelson DM, Sadovsky Y, Muglia LJ.Inhibition of cyclooxygenase-2prevents inflammation-mediated preterm labor inthe mouse. Am J Physiol Regul Integr Comp Physiol.2000;278(6):R1415-1423.
    48. Agrawal V, Hirsch E. Intrauterine infection and preterm labor. Semin FetalNeonatal Med.2012;17(1):12-19.
    49. Sakai M, Tanebe K, Sasaki Y, Momma K, Yoneda S, Saito S. Evaluation of thetocolytic effect of a selective cyclooxygenase-2inhibitor in a mouse model oflipopolysaccharide-induced preterm delivery. Mol Hum Reprod.2001;7(6):595-602.
    50. Hoffbrand AV, Weir DG. The history of folic acid. Br J Haematol.2001;113(3):579-589.
    51. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr.2006;83(5):993-1016.
    52. Vandevijvere S, Amsalkhir S, Van Oyen H, Moreno-Reyes R. Determinants offolate status in pregnant women: results from a national cross-sectional survey inBelgium. Eur J Clin Nutr.2012;66(10):1172-1177.
    53. Recommendations for the use of folic acid to reduce the number of cases of spinabifida and other neural tube defects. MMWR Recomm Rep.1992;41(RR-14):1-7.
    54. Prevention of neural tube defects: results of the Medical Research Council VitaminStudy. MRC Vitamin Study Research Group. Lancet.1991;338(8760):131-137.
    55. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP,Fielding DW. Apparent prevention of neural tube defects by periconceptionalvitamin supplementation. Arch Dis Child.1981;56(12):911-918.
    56. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP,Fielding DW. Possible prevention of neural-tube defects by periconceptionalvitamin supplementation. Lancet.1980;1(8164):339-340.
    57. Czeizel AE, Dudas I. Prevention of the first occurrence of neural-tube defects bypericonceptional vitamin supplementation. N Engl J Med.1992;327(26):1832-1835.
    58. Wolff T, Witkop CT, Miller T, Syed SB. Folic acid supplementation for theprevention of neural tube defects: an update of the evidence for the U.S. PreventiveServices Task Force. Ann Intern Med.2009;150(9):632-639.
    59. Gareskog M, Eriksson UJ, Wentzel P. Combined supplementation of folic acid andvitamin E diminishes diabetes-induced embryotoxicity in rats. Birth Defects ResA Clin Mol Teratol.2006;76(6):483-490.
    60. Dawson JE, Raymond AM, Winn LM. Folic acid and pantothenic acid protectionagainst valproic acid-induced neural tube defects in CD-1mice. Toxicol ApplPharmacol.2006;211(2):124-132.
    61. Wentzel P, Gareskog M, Eriksson UJ. Folic acid supplementation diminishesdiabetes-and glucose-induced dysmorphogenesis in rat embryos in vivo and invitro. Diabetes.2005;54(2):546-553.
    62. Shin JH, Shiota K. Folic acid supplementation of pregnant mice suppressesheat-induced neural tube defects in the offspring. J Nutr.1999;129(11):2070-2073.
    63. Hsieh CL, Wang HE, Tsai WJ, Peng CC, Peng RY. Multiple point actionmechanism of valproic acid-teratogenicity alleviated by folic acid, vitamin C, andN-acetylcysteine in chicken embryo model. Toxicology.2012;291(1-3):32-42.
    64. Oyama K, Sugimura Y, Murase T, Uchida A, Hayasaka S, Oiso Y, Murata Y. Folicacid prevents congenital malformations in the offspring of diabetic mice. Endocr J.2009;56(1):29-37.
    65. Yuan Q, Zhao S, Liu S, Zhang Y, Fu J, Wang F, Liu Q, Ling EA, Hao A. Folic acidsupplementation changes the fate of neural progenitors in mouse embryos ofhyperglycemic and diabetic pregnancy.LID-S0955-2863(12)00244-6[pii]LID-
    10.1016/j.jnutbio.2012.09.004[doi]. J Nutr Biochem.2012.
    66. Gelineau-van WJ, Starr L, Maddox J, Aleman F, Voss KA, Wilberding J, Riley RT.Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an invivo mouse model. Birth Defects Res A Clin Mol Teratol.2005;73(7):487-497.
    67. Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tubedefects: balancing genome synthesis and gene expression. Birth Defects Res CEmbryo Today.2007;81(3):183-203.
    68. Doshi SN, McDowell IF, Moat SJ, Lang D, Newcombe RG, Kredan MB, Lewis MJ,Goodfellow J. Folate improves endothelial function in coronary artery disease: aneffect mediated by reduction of intracellular superoxide. Arterioscler Thromb VascBiol.2001;21(7):1196-1202.
    69. Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS,Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, ElsaesserRS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ,Kass DA. High-dose folic acid pretreatment blunts cardiac dysfunction duringischemia coupled to maintenance of high-energy phosphates and reducespostreperfusion injury. Circulation.2008;117(14):1810-1819.
    70. Tian R, Ingwall JS. How does folic acid cure heart attacks. Circulation.2008;117(14):1772-1774.
    71. Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T. Free radicalscavenging behavior of folic acid: evidence for possible antioxidant activity. FreeRadic Biol Med.2001;30(12):1390-1399.
    72. Solini A, Santini E, Ferrannini E. Effect of short-term folic acid supplementationon insulin sensitivity and inflammatory markers in overweight subjects. Int J Obes(Lond).2006;30(8):1197-1202.
    73. Wang G, Dai J, Mao J, Zeng X, Yang X, Wang X. Folic acid reverseshyper-responsiveness of LPS-induced chemokine secretion from monocytes inpatients with hyperhomocysteinemia. Atherosclerosis.2005;179(2):395-402.
    74. Chiarello PG, Penaforte FR, Japur CC, Souza CD, Vannucchi H, Troncon LE.Increased folate intake with no changes in serum homocysteine and decreasedlevels of C-reactive protein in patients with inflammatory bowel diseases. Dig DisSci.2009;54(3):627-633.
    75. Feng D, Zhou Y, Xia M, Ma J. Folic acid inhibits lipopolysaccharide-inducedinflammatory response in RAW264.7macrophages by suppressing MAPKs andNF-kappaB activation. Inflamm Res.2011;60(9):817-822.
    76. Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S. Folic acid andmelatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stressand inflammation in rats. Nutr Metab (Lond).2013;10(1):20.
    77. Juriloff DM, Harris MJ. Mouse models for neural tube closure defects. Hum MolGenet.2000;9(6):993-1000.
    78. Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate:case far from closed. Nat Rev Neurosci.2006;7(9):724-731.
    79. Nezic L, Skrbic R, Dobric S, Stojiljkovic MP, Satara SS, Milovanovic ZA,Stojakovic N. Effect of simvastatin on proinflammatory cytokines productionduring lipopolysaccharide-induced inflammation in rats. Gen Physiol Biophys.2009;28Spec No:119-126.
    80. Fox JT, Stover PJ. Folate-mediated one-carbon metabolism. Vitam Horm.2008;79:1-44.
    81. Stover PJ. One-carbon metabolism-genome interactions in folate-associatedpathologies. J Nutr.2009;139(12):2402-2405.
    82. West AA, Yan J, Perry CA, Jiang X, Malysheva OV, Caudill MA. Folate-statusresponse to a controlled folate intake in nonpregnant, pregnant, and lactatingwomen. Am J Clin Nutr.2012;96(4):789-800.
    83. Sherwood KL, Houghton LA, Tarasuk V, O'Connor DL. One-third of pregnant andlactating women may not be meeting their folate requirements from diet alonebased on mandated levels of folic acid fortification. J Nutr.2006;136(11):2820-2826.
    84. Fleming A. The role of folate in the prevention of neural tube defects: human andanimal studies. Nutr Rev.2001;59(8Pt2):S13-20; discussion S21-23.
    85. Folic acid for the prevention of neural tube defects: U.S. Preventive Services TaskForce recommendation statement. Ann Intern Med.2009;150(9):626-631.
    86. Beaudin AE, Abarinov EV, Noden DM, Perry CA, Chu S, Stabler SP, Allen RH,Stover PJ. Shmt1and de novo thymidylate biosynthesis underlie folate-responsiveneural tube defects in mice. Am J Clin Nutr.2011;93(4):789-798.
    87. Leung KY, De Castro SC, Cabreiro F, Gustavsson P, Copp AJ, Greene ND. Folatemetabolite profiling of different cell types and embryos suggests variation in folateone-carbon metabolism, including developmental changes in human embryonicbrain. Mol Cell Biochem.2013;378(1-2):229-236.
    88. Aghamohammadi V, Gargari BP, Aliasgharzadeh A. Effect of folic acidsupplementation on homocysteine, serum total antioxidant capacity, andmalondialdehyde in patients with type2diabetes mellitus. J Am Coll Nutr.2011;30(3):210-215.
    89. Lee SJ, Kang MH, Min H. Folic acid supplementation reduces oxidative stress andhepatic toxicity in rats treated chronically with ethanol. Nutr Res Pract.2011;5(6):520-526.
    90. Ibrahim W, Tousson E, El-Masry T, Arafa N, Akela M. The effect of folic acid asan antioxidant on the hypothalamic monoamines in experimentally inducedhypothyroid rat. Toxicol Ind Health.2012;28(3):253-261.
    91. Wentzel P, Eriksson UJ. A diabetes-like environment increases malformation rateand diminishes prostaglandin E(2) in rat embryos: reversal by administration ofvitamin E and folic acid. Birth Defects Res A Clin Mol Teratol.2005;73(7):506-511.
    92. Leazer TM, Barbee B, Ebron-McCoy M, Henry-Sam GA, Rogers JM. Role of thematernal acute phase response and tumor necrosis factor alpha in thedevelopmental toxicity of lipopolysaccharide in the CD-1mouse. Reprod Toxicol.2002;16(2):173-179.
    93. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role ofcytokines in mediating effects of prenatal infection on the fetus: implications forschizophrenia. Mol Psychiatry.2006;11(1):47-55.
    94. Arce RM, Barros SP, Wacker B, Peters B, Moss K, Offenbacher S. Increased TLR4expression in murine placentas after oral infection with periodontal pathogens.Placenta.2009;30(2):156-162.
    95. Layoun A, Huang H, Calve A, Santos MM. Toll-like receptor signal adaptorprotein MyD88is required for sustained endotoxin-induced acute hypoferremicresponse in mice. Am J Pathol.2012;180(6):2340-2350.
    96. Quilley J. Oxidative stress and inflammation in the endothelial dysfunction ofobesity: a role for nuclear factor kappa B. J Hypertens.2010;28(10):2010-2011.
    97. Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second trimesterfolate status and preterm birth. Am J Obstet Gynecol.2004;191(6):1851-1857.
    98. Tamura T, Goldenberg RL, Freeberg LE, Cliver SP, Cutter GR, Hoffman HJ.Maternal serum folate and zinc concentrations and their relationships to pregnancyoutcome. Am J Clin Nutr.1992;56(2):365-370.
    99. Czeizel AE, Puho EH, Langmar Z, Acs N, Banhidy F. Possible association of folicacid supplementation during pregnancy with reduction of preterm birth: apopulation-based study. Eur J Obstet Gynecol Reprod Biol.2010;148(2):135-140.
    100. Papadopoulou E, Stratakis N, Roumeliotaki T, Sarri K, Merlo DF, Kogevinas M,Chatzi L. The effect of high doses of folic acid and iron supplementation inearly-to-mid pregnancy on prematurity and fetal growth retardation: themother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr.2013;52(1):327-336.
    101. Fekete K, Berti C, Trovato M, Lohner S, Dullemeijer C, Souverein OW, Cetin I,Decsi T. Effect of folate intake on health outcomes in pregnancy: a systematicreview and meta-analysis on birth weight, placental weight and length ofgestation. Nutr J.2012;11:75.
    102. Gindler J, Li Z, Berry RJ, Zheng J, Correa A, Sun X, Wong L, Cheng L, EricksonJD, Wang Y, Tong Q. Folic acid supplements during pregnancy and risk ofmiscarriage. Lancet.2001;358(9284):796-800.
    103. Shaw GM, Carmichael SL, Nelson V, Selvin S, Schaffer DM. Occurrence of lowbirthweight and preterm delivery among California infants before and aftercompulsory food fortification with folic acid. Public Health Rep.2004;119(2):170-173.
    104. Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation duringpregnancy for maternal health and pregnancy outcomes. Cochrane Database SystRev.2013;3:CD006896.
    105. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD.Cytokines, prostaglandins and parturition--a review. Placenta.2003;24SupplA:S33-46.
    106. Mitchell MD, Dudley DJ, Edwin SS, Schiller SL. Interleukin-6stimulatesprostaglandin production by human amnion and decidual cells. Eur J Pharmacol.1991;192(1):189-191.
    107. Fang X, Wong S, Mitchell BF. Effects of LPS and IL-6on oxytocin receptor innon-pregnant and pregnant rat uterus. Am J Reprod Immunol.2000;44(2):65-72.
    108. Rizzo G, Capponi A, Rinaldo D, Tedeschi D, Arduini D, Romanini C. Interleukin-6concentrations in cervical secretions identify microbial invasion of the amnioticcavity in patients with preterm labor and intact membranes. Am J Obstet Gynecol.1996;175(4Pt1):812-817.
    109. Bogavac MA, Brkic S. Serum proinflammatory cytokine-interleukin-8as possibleinfection site marker in preterm deliveries. J Perinat Med.2009;37(6):707-708.
    110. Holst RM, Mattsby-Baltzer I, Wennerholm UB, Hagberg H, Jacobsson B.Interleukin-6and interleukin-8in cervical fluid in a population of Swedish womenin preterm labor: relationship to microbial invasion of the amniotic fluid,intra-amniotic inflammation, and preterm delivery. Acta Obstet Gynecol Scand.2005;84(6):551-557.
    111. Su EJ, Ernst L, Abdallah N, Chatterton R, Xin H, Monsivais D, Coon J, Bulun SE.Estrogen receptor-beta and fetoplacental endothelial prostanoid biosynthesis: a linkto clinically demonstrated fetal growth restriction. J Clin Endocrinol Metab.2011;96(10):E1558-1567.
    112. Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclinpathways and their adaptation during pregnancy and in the newborn. PharmacolRev.2012;64(3):540-582.
    113. Gharedaghi MH, Javadi-Paydar M, Yousefzadeh-Fard Y, Salehi-Sadaghiani M,Javadian P, Fakhraei N, Tavangar SM, Dehpour AR. Muscimol delayslipopolysaccharide-induced preterm delivery in mice: role of GABA(A) receptorsand nitric oxide. J Matern Fetal Neonatal Med.2013;26(1):36-43.
    114. Aisemberg J, Vercelli C, Billi S, Ribeiro ML, Ogando D, Meiss R, McCann SM,Rettori V, Franchi AM. Nitric oxide mediates prostaglandins' deleterious effect onlipopolysaccharide-triggered murine fetal resorption. Proc Natl Acad Sci U S A.2007;104(18):7534-7539.
    1. Hoffbrand AV, Weir DG. The history of folic acid. Br J Haematol.2001;113(3):579-589.
    2. Milman N. Intestinal absorption of folic acid-new physiologic&molecularaspects. Indian J Med Res.2012;136(5):725-728.
    3. Jeffery IB, O'Toole PW. Diet-microbiota interactions and their implications forhealthy living. Nutrients.2013;5(1):234-252.
    4. Ohrvik VE, Witthoft CM. Human folate bioavailability. Nutrients.2011;3(4):475-490.
    5. Dudeja PK, Kode A, Alnounou M, Tyagi S, Torania S, Subramanian VS, Said HM.Mechanism of folate transport across the human colonic basolateral membrane. AmJ Physiol Gastrointest Liver Physiol.2001;281(1):G54-60.
    6. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, ZhaoR, Akabas MH, Goldman ID. Identification of an intestinal folate transporter andthe molecular basis for hereditary folate malabsorption. Cell.2006;127(5):917-928.
    7. Lin Y, Dueker SR, Follett JR, Fadel JG, Arjomand A, Schneider PD, Miller JW,Green R, Buchholz BA, Vogel JS, Phair RD, Clifford AJ. Quantitation of in vivohuman folate metabolism. Am J Clin Nutr.2004;80(3):680-691.
    8. Gregory JF3rd, Quinlivan EP. In vivo kinetics of folate metabolism. Annu RevNutr.2002;22:199-220.
    9. Stover PJ, Field MS. Trafficking of intracellular folates. Adv Nutr.2011;2(4):325-331.
    10. Obeid R, Herrmann W. The emerging role of unmetabolized folic acid in humandiseases: myth or reality. Curr Drug Metab.2012;13(8):1184-1195.
    11. Zhao R, Min SH, Wang Y, Campanella E, Low PS, Goldman ID. A role for theproton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediatedendocytosis. J Biol Chem.2009;284(7):4267-4274.
    12. Dhillon V, Thomas P, Fenech M. Effect of common polymorphisms in folateuptake and metabolism genes on frequency of micronucleated lymphocytes in aSouth Australian cohort. Mutat Res.2009;665(1-2):1-6.
    13. der Linden IJ v, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folatemetabolism and neural-tube defect risk. Proc Nutr Soc.2006;65(2):204-215.
    14. Marosi K, Agota A, Vegh V, Joo JG, Langmar Z, Kriszbacher I, Nagy ZB.[The roleof homocysteine and methylenetetrahydrofolate reductase, methionine synthase,methionine synthase reductase polymorphisms in the development ofcardiovascular diseases and hypertension]. Orv Hetil.2012;153(12):445-453.
    15. West AA, Caudill MA. Genetic variation: impact on folate (and choline)bioefficacy. Int J Vitam Nutr Res.2010;80(4-5):319-329.
    16. Fox JT, Stover PJ. Folate-mediated one-carbon metabolism. Vitam Horm.2008;79:1-44.
    17. Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate:case far from closed. Nat Rev Neurosci.2006;7(9):724-731.
    18. Stover PJ. One-carbon metabolism-genome interactions in folate-associatedpathologies. J Nutr.2009;139(12):2402-2405.
    19. Dhur A, Galan P, Hercberg S. Folate status and the immune system. Prog FoodNutr Sci.1991;15(1-2):43-60.
    20. Feng D, Zhou Y, Xia M, Ma J. Folic acid inhibits lipopolysaccharide-inducedinflammatory response in RAW264.7macrophages by suppressing MAPKs andNF-kappaB activation. Inflamm Res.2011;60(9):817-822.
    21. Liang Y, Li Y, Li Z, Liu Z, Zhang Z, Chang S, Wu J. Mechanism of folatedeficiency-induced apoptosis in mouse embryonic stem cells: Cell cyclearrest/apoptosis in G1/G0mediated by microRNA-302a and tumor suppressor geneLats2. Int J Biochem Cell Biol.2012;44(11):1750-1760.
    22. Courtemanche C, Elson-Schwab I, Mashiyama ST, Kerry N, Ames BN. Folatedeficiency inhibits the proliferation of primary human CD8+T lymphocytes invitro. J Immunol.2004;173(5):3186-3192.
    23. Dunlop AL, Taylor RN, Tangpricha V, Fortunato S, Menon R. Maternal vitamin D,folate, and polyunsaturated fatty acid status and bacterial vaginosis duringpregnancy. Infect Dis Obstet Gynecol.2011;2011:216217.
    24. Munyaka PM, Tactacan G, Jing M, O K, House JD, Rodriguez-Lecompte JC.Immunomodulation in young laying hens by dietary folic acid and acute immuneresponses after challenge with Escherichia coli lipopolysaccharide. Poult Sci.2012;91(10):2454-2463.
    25. Solini A, Santini E, Ferrannini E. Effect of short-term folic acid supplementationon insulin sensitivity and inflammatory markers in overweight subjects. Int J Obes(Lond).2006;30(8):1197-1202.
    26. Chiarello PG, Penaforte FR, Japur CC, Souza CD, Vannucchi H, Troncon LE.Increased folate intake with no changes in serum homocysteine and decreasedlevels of C-reactive protein in patients with inflammatory bowel diseases. Dig DisSci.2009;54(3):627-633.
    27. Wang G, Dai J, Mao J, Zeng X, Yang X, Wang X. Folic acid reverseshyper-responsiveness of LPS-induced chemokine secretion from monocytes inpatients with hyperhomocysteinemia. Atherosclerosis.2005;179(2):395-402.
    28. Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T. Free radicalscavenging behavior of folic acid: evidence for possible antioxidant activity. FreeRadic Biol Med.2001;30(12):1390-1399.
    29. Nakano E, Higgins JA, Powers HJ. Folate protects against oxidative modificationof human LDL. Br J Nutr.2001;86(6):637-639.
    30. Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS,Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, ElsaesserRS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ,Kass DA. High-dose folic acid pretreatment blunts cardiac dysfunction duringischemia coupled to maintenance of high-energy phosphates and reducespostreperfusion injury. Circulation.2008;117(14):1810-1819.
    31. Tian R, Ingwall JS. How does folic acid cure heart attacks. Circulation.2008;117(14):1772-1774.
    32. Lee SJ, Kang MH, Min H. Folic acid supplementation reduces oxidative stress andhepatic toxicity in rats treated chronically with ethanol. Nutr Res Pract.2011;5(6):520-526.
    33. Ibrahim W, Tousson E, El-Masry T, Arafa N, Akela M. The effect of folic acid asan antioxidant on the hypothalamic monoamines in experimentally inducedhypothyroid rat. Toxicol Ind Health.2012;28(3):253-261.
    34. Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S. Folic acid andmelatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stressand inflammation in rats. Nutr Metab (Lond).2013;10(1):20.
    35. Doshi SN, McDowell IF, Moat SJ, Lang D, Newcombe RG, Kredan MB, Lewis MJ,Goodfellow J. Folate improves endothelial function in coronary artery disease: aneffect mediated by reduction of intracellular superoxide. Arterioscler Thromb VascBiol.2001;21(7):1196-1202.
    36. Aghamohammadi V, Gargari BP, Aliasgharzadeh A. Effect of folic acidsupplementation on homocysteine, serum total antioxidant capacity, andmalondialdehyde in patients with type2diabetes mellitus. J Am Coll Nutr.2011;30(3):210-215.
    37. Stroes ES, van FEE, Yo M, Martasek P, Boer P, Govers R, Rabelink TJ. Folic acidreverts dysfunction of endothelial nitric oxide synthase. Circ Res.2000;86(11):1129-1134.
    38. Tawakol A, Migrino RQ, Aziz KS, Waitkowska J, Holmvang G, Alpert NM, MullerJE, Fischman AJ, Gewirtz H. High-dose folic acid acutely improves coronaryvasodilator function in patients with coronary artery disease. J Am Coll Cardiol.2005;45(10):1580-1584.
    39. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr.2006;83(5):993-1016.
    40. Goh YI, Koren G. Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol.2008;28(1):3-13.
    41. Bruinse HW, der Berg H v, Haspels AA. Maternal serum folacin levels during andafter normal pregnancy. Eur J Obstet Gynecol Reprod Biol.1985;20(3):153-158.
    42. Higgins JR, Quinlivan EP, McPartlin J, Scott JM, Weir DG, Darling MR. Therelationship between increased folate catabolism and the increased requirement forfolate in pregnancy. BJOG.2000;107(9):1149-1154.
    43. McPartlin J, Halligan A, Scott JM, Darling M, Weir DG. Accelerated folatebreakdown in pregnancy. Lancet.1993;341(8838):148-149.
    44. Moscovitch LF, Cooper BA. Folate content of diets in pregnancy: comparison ofdiets collected at home and diets prepared from dietary records. Am J Clin Nutr.1973;26(7):707-714.
    45. Caudill MA, Cruz AC, Gregory JF3rd, Hutson AD, Bailey LB. Folate statusresponse to controlled folate intake in pregnant women. J Nutr.1997;127(12):2363-2370.
    46. West AA, Yan J, Perry CA, Jiang X, Malysheva OV, Caudill MA. Folate-statusresponse to a controlled folate intake in nonpregnant, pregnant, and lactatingwomen. Am J Clin Nutr.2012;96(4):789-800.
    47. Recommendations for the use of folic acid to reduce the number of cases of spinabifida and other neural tube defects. MMWR Recomm Rep.1992;41(RR-14):1-7.
    48. Greenberg JA, Bell SJ, Guan Y, Yu YH. Folic Acid supplementation and pregnancy:more than just neural tube defect prevention. Rev Obstet Gynecol.2011;4(2):52-59.
    49. Dietrich M, Brown CJ, Block G. The effect of folate fortification of cereal-grainproducts on blood folate status, dietary folate intake, and dietary folate sourcesamong adult non-supplement users in the United States. J Am Coll Nutr.2005;24(4):266-274.
    50. Bar-Oz B, Koren G, Nguyen P, Kapur BM. Folate fortification andsupplementation--are we there yet. Reprod Toxicol.2008;25(4):408-412.
    51. Piedrahita JA, Oetama B, Bennett GD, van WJ, Kamen BA, Richardson J, LaceySW, Anderson RG, Finnell RH. Mice lacking the folic acid-binding protein Folbp1are defective in early embryonic development. Nat Genet.1999;23(2):228-232.
    52. Henderson GI, Perez T, Schenker S, Mackins J, Antony AC. Maternal-to-fetaltransfer of5-methyltetrahydrofolate by the perfused human placental cotyledon:evidence for a concentrative role by placental folate receptors in fetal folatedelivery. J Lab Clin Med.1995;126(2):184-203.
    53. Schneider H, Miller RK. Receptor-mediated uptake and transport ofmacromolecules in the human placenta. Int J Dev Biol.2010;54(2-3):367-375.
    54. Smithells RW, Sheppard S, Schorah CJ. Vitamin dificiencies and neural tubedefects. Arch Dis Child.1976;51(12):944-950.
    55. Scholl TO, Hediger ML, Schall JI, Khoo CS, Fischer RL. Dietary and serum folate:their influence on the outcome of pregnancy. Am J Clin Nutr.1996;63(4):520-525.
    56. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP,Fielding DW. Apparent prevention of neural tube defects by periconceptionalvitamin supplementation. Arch Dis Child.1981;56(12):911-918.
    57. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP,Fielding DW. Possible prevention of neural-tube defects by periconceptionalvitamin supplementation. Lancet.1980;1(8164):339-340.
    58. Czeizel AE, Dudas I. Prevention of the first occurrence of neural-tube defects bypericonceptional vitamin supplementation. N Engl J Med.1992;327(26):1832-1835.
    59. Prevention of neural tube defects: results of the Medical Research Council VitaminStudy. MRC Vitamin Study Research Group. Lancet.1991;338(8760):131-137.
    60. Castillo-Lancellotti C, Tur JA, Uauy R. Impact of folic acid fortification of flouron neural tube defects: a systematic review. Public Health Nutr.2013;16(5):901-911.
    61. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. Impact of folic acidfortification of the US food supply on the occurrence of neural tube defects. JAMA.2001;285(23):2981-2986.
    62. Mosley BS, Cleves MA, Siega-Riz AM, Shaw GM, Canfield MA, Waller DK,Werler MM, Hobbs CA. Neural tube defects and maternal folate intake amongpregnancies conceived after folic acid fortification in the United States. Am JEpidemiol.2009;169(1):9-17.
    63. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Folic acid antagonistsduring pregnancy and the risk of birth defects. N Engl J Med.2000;343(22):1608-1614.
    64. Czeizel AE. Primary prevention of neural-tube defects and some other majorcongenital abnormalities: recommendations for the appropriate use of folic acidduring pregnancy. Paediatr Drugs.2000;2(6):437-449.
    65. Wehby GL, Goco N, Moretti-Ferreira D, Felix T, Richieri-Costa A, Padovani C,Queiros F, Guimaraes CV, Pereira R, Litavecz S, Hartwell T, Chakraborty H,Javois L, Murray JC. Oral cleft prevention program (OCPP). BMC Pediatr.2012;12:184.
    66. Gareskog M, Eriksson UJ, Wentzel P. Combined supplementation of folic acid andvitamin E diminishes diabetes-induced embryotoxicity in rats. Birth Defects ResA Clin Mol Teratol.2006;76(6):483-490.
    67. Dawson JE, Raymond AM, Winn LM. Folic acid and pantothenic acid protectionagainst valproic acid-induced neural tube defects in CD-1mice. Toxicol ApplPharmacol.2006;211(2):124-132.
    68. Wentzel P, Gareskog M, Eriksson UJ. Folic acid supplementation diminishesdiabetes-and glucose-induced dysmorphogenesis in rat embryos in vivo and invitro. Diabetes.2005;54(2):546-553.
    69. Shin JH, Shiota K. Folic acid supplementation of pregnant mice suppressesheat-induced neural tube defects in the offspring. J Nutr.1999;129(11):2070-2073.
    70. Hsieh CL, Wang HE, Tsai WJ, Peng CC, Peng RY. Multiple point actionmechanism of valproic acid-teratogenicity alleviated by folic acid, vitamin C, andN-acetylcysteine in chicken embryo model. Toxicology.2012;291(1-3):32-42.
    71. Oyama K, Sugimura Y, Murase T, Uchida A, Hayasaka S, Oiso Y, Murata Y. Folicacid prevents congenital malformations in the offspring of diabetic mice. Endocr J.2009;56(1):29-37.
    72. Yuan Q, Zhao S, Liu S, Zhang Y, Fu J, Wang F, Liu Q, Ling EA, Hao A. Folic acidsupplementation changes the fate of neural progenitors in mouse embryos ofhyperglycemic and diabetic pregnancy.LID-S0955-2863(12)00244-6[pii]LID-
    10.1016/j.jnutbio.2012.09.004[doi]. J Nutr Biochem.2012.
    73. Gelineau-van WJ, Starr L, Maddox J, Aleman F, Voss KA, Wilberding J, Riley RT.Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an invivo mouse model. Birth Defects Res A Clin Mol Teratol.2005;73(7):487-497.
    74. Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlyingfolate-responsive neural tube defects: a minireview. Birth Defects Res A Clin MolTeratol.2009;85(4):274-284.
    75. Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challengeof understanding, preventing, and treating neural tube defects. Science (80-).2013;339(6123):1222002.
    76. Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tubedefects: balancing genome synthesis and gene expression. Birth Defects Res CEmbryo Today.2007;81(3):183-203.
    77. Zhang HY, Luo GA, Liang QL, Wang Y, Yang HH, Wang YM, Zheng XY, SongXM, Chen G, Zhang T, Wu JX. Neural tube defects and disturbed maternal folate-and homocysteine-mediated one-carbon metabolism. Exp Neurol.2008;212(2):515-521.
    78. Dose-dependent effects of folic acid on blood concentrations of homocysteine: ameta-analysis of the randomized trials. Am J Clin Nutr.2005;82(4):806-812.
    79. Zhao W, Mosley BS, Cleves MA, Melnyk S, James SJ, Hobbs CA. Neural tubedefects and maternal biomarkers of folate, homocysteine, and glutathionemetabolism. Birth Defects Res A Clin Mol Teratol.2006;76(4):230-236.
    80. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with specialemphasis on diabetic embryopathy. Reprod Toxicol.2007;24(1):31-41.
    81. Cano MJ, Ayala A, Murillo ML, Carreras O. Protective effect of folic acid againstoxidative stress produced in21-day postpartum rats by maternal-ethanol chronicconsumption during pregnancy and lactation period. Free Radic Res.2001;34(1):1-8.
    82. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A,Vera GC, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimatesof preterm birth rates in the year2010with time trends since1990for selectedcountries: a systematic analysis and implications. Lancet.2012;379(9832):2162-2172.
    83. Martin RH, Harper TA, KELSO W. Serum folic acid in recurrent abortions. Lancet.1965;1(7387):670-672.
    84. George L, Mills JL, Johansson AL, Nordmark A, Olander B, Granath F,Cnattingius S. Plasma folate levels and risk of spontaneous abortion. JAMA.2002;288(15):1867-1873.
    85. Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second trimesterfolate status and preterm birth. Am J Obstet Gynecol.2004;191(6):1851-1857.
    86. Blot I, Papiernik E, Kaltwasser JP, Werner E, Tchernia G. Influence of routineadministration of folic acid and iron during pregnancy. Gynecol Obstet Invest.1981;12(6):294-304.
    87. Baumslag N, Edelstein T, Metz J. Reduction of incidence of prematurity by folicacid supplementation in pregnancy. Br Med J.1970;1(5687):16-17.
    88. Czeizel AE, Puho EH, Langmar Z, Acs N, Banhidy F. Possible association of folicacid supplementation during pregnancy with reduction of preterm birth: apopulation-based study. Eur J Obstet Gynecol Reprod Biol.2010;148(2):135-140.
    89. Bukowski R, Malone FD, Porter FT, Nyberg DA, Comstock CH, Hankins GD,Eddleman K, Gross SJ, Dugoff L, Craigo SD, Timor-Tritsch IE, Carr SR, WolfeHM, D'Alton ME. Preconceptional folate supplementation and the risk ofspontaneous preterm birth: a cohort study. PLoS Med.2009;6(5):e1000061.
    90. Gindler J, Li Z, Berry RJ, Zheng J, Correa A, Sun X, Wong L, Cheng L, EricksonJD, Wang Y, Tong Q. Folic acid supplements during pregnancy and risk ofmiscarriage. Lancet.2001;358(9284):796-800.
    91. Spina bifida and anencephaly before and after folic acid mandate--United States,1995-1996and1999-2000. MMWR Morb Mortal Wkly Rep.2004;53(17):362-365.
    92. Shaw GM, Carmichael SL, Nelson V, Selvin S, Schaffer DM. Occurrence of lowbirthweight and preterm delivery among California infants before and aftercompulsory food fortification with folic acid. Public Health Rep.2004;119(2):170-173.
    93. Wu X, Zhao L, Zhu H, He D, Tang W, Luo Y. Association between the MTHFRC677T polymorphism and recurrent pregnancy loss: a meta-analysis. Genet TestMol Biomarkers.2012;16(7):806-811.
    94. Sikora J, Magnucki J, Zietek J, Kobielska L, Partyka R, Kokocinska D, Bialas A.Homocysteine, folic acid and vitamin B12concentration in patients with recurrentmiscarriages. Neuro Endocrinol Lett.2007;28(4):507-512.
    95. Martin JD, Davis RE, Stenhouse N. Serum folate and vitamin B12levels inpregnancy with particular reference to uterine bleeding and bacteriuria. J ObstetGynaecol Br Commonw.1967;74(5):697-701.
    96. Simhan HN, Himes KP, Venkataramanan R, Bodnar LM. Maternal serum folatespecies in early pregnancy and lower genital tract inflammatory milieu. Am JObstet Gynecol.2011;205(1):61.e1-7.
    97. Christian P, Jiang T, Khatry SK, LeClerq SC, Shrestha SR, West KP Jr. Antenatalsupplementation with micronutrients and biochemical indicators of status andsubclinical infection in rural Nepal. Am J Clin Nutr.2006;83(4):788-794.
    98. Tamura T, Goldenberg RL, Freeberg LE, Cliver SP, Cutter GR, Hoffman HJ.Maternal serum folate and zinc concentrations and their relationships to pregnancyoutcome. Am J Clin Nutr.1992;56(2):365-370.
    99. van UEM, Steegers-Theunissen RP. Influence of maternal folate status on humanfetal growth parameters. Mol Nutr Food Res.2013;57(4):582-595.
    100. Timmermans S, Jaddoe VW, Hofman A, Steegers-Theunissen RP, Steegers EA.Periconception folic acid supplementation, fetal growth and the risks of low birthweight and preterm birth: the Generation R Study. Br J Nutr.2009;102(5):777-785.
    101. Papadopoulou E, Stratakis N, Roumeliotaki T, Sarri K, Merlo DF, Kogevinas M,Chatzi L. The effect of high doses of folic acid and iron supplementation inearly-to-mid pregnancy on prematurity and fetal growth retardation: themother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr.2013;52(1):327-336.
    102. Hogeveen M, Blom HJ, den Heijer M. Maternal homocysteine andsmall-for-gestational-age offspring: systematic review and meta-analysis. Am JClin Nutr.2012;95(1):130-136.
    103. Wickramasinghe SN. Diagnosis of megaloblastic anaemias. Blood Rev.2006;20(6):299-318.
    104. Premkumar M, Gupta N, Singh T, Velpandian T. Cobalamin and folic Acid statusin relation to the etiopathogenesis of pancytopenia in adults at a tertiary care centrein north India. Anemia.2012;2012:707402.
    105. Chandra J. Megaloblastic anemia: back in focus. Indian J Pediatr.2010;77(7):795-799.
    106. Whalley PJ, Scott DE, Pritchard JA. Maternal folate deficiency and pregnancywastage.3. Pregnancy-induced hypertension. Obstet Gynecol.1970;36(1):29-31.
    107. Powers RW, Majors AK, Kerchner LJ, Conrad KP. Renal handling ofhomocysteine during normal pregnancy and preeclampsia. J Soc Gynecol Investig.2004;11(1):45-50.
    108. Mignini LE, Latthe PM, Villar J, Kilby MD, Carroli G, Khan KS. Mapping thetheories of preeclampsia: the role of homocysteine. Obstet Gynecol.2005;105(2):411-425.
    109. Cotter AM, Molloy AM, Scott JM, Daly SF. Elevated plasma homocysteine inearly pregnancy: a risk factor for the development of nonsevere preeclampsia. AmJ Obstet Gynecol.2003;189(2):391-394; discussion394-396.
    110. Zeeman GG, Alexander JM, McIntire DD, Devaraj S, Leveno KJ. Homocysteineplasma concentration levels for the prediction of preeclampsia in women withchronic hypertension. Am J Obstet Gynecol.2003;189(2):574-576.
    111. Hietala R, Turpeinen U, Laatikainen T. Serum homocysteine at16weeks andsubsequent preeclampsia. Obstet Gynecol.2001;97(4):527-529.
    112. Hogg BB, Tamura T, Johnston KE, Dubard MB, Goldenberg RL. Second-trimesterplasma homocysteine levels and pregnancy-induced hypertension, preeclampsia,and intrauterine growth restriction. Am J Obstet Gynecol.2000;183(4):805-809.
    113. Laivuori H, Kaaja R, Turpeinen U, Viinikka L, Ylikorkala O. Plasma homocysteinelevels elevated and inversely related to insulin sensitivity in preeclampsia. ObstetGynecol.1999;93(4):489-493.
    114. Lopez-Quesada E, Vilaseca MA, Lailla JM. Plasma total homocysteine inuncomplicated pregnancy and in preeclampsia. Eur J Obstet Gynecol Reprod Biol.2003;108(1):45-49.
    115. Patrick TE, Powers RW, Daftary AR, Ness RB, Roberts JM. Homocysteine andfolic acid are inversely related in black women with preeclampsia. Hypertension.2004;43(6):1279-1282.
    116. Ray JG, Mamdani MM. Association between folic acid food fortification andhypertension or preeclampsia in pregnancy. Arch Intern Med.2002;162(15):1776-1777.
    117. Li Z, Ye R, Zhang L, Li H, Liu J, Ren A. Folic Acid supplementation during earlypregnancy and the risk of gestational hypertension and preeclampsia. Hypertension.2013;61(4):873-879.
    118. Recommendations for the use of folic acid to reduce the number of cases of spinabifida and other neural tube defects. MMWR Recomm Rep.1992;41(RR-14):1-7.
    119. Wald NJ, Law MR, Morris JK, Wald DS. Quantifying the effect of folic acid.Lancet.2001;358(9298):2069-2073.
    120. Czeizel AE, Timar L, Sarkozi A. Dose-dependent effect of folic acid on theprevention of orofacial clefts. Pediatrics.1999;104(6):e66.
    121. Wehby GL, Felix TM, Goco N, Richieri-Costa A, Chakraborty H, Souza J, PereiraR, Padovani C, Moretti-Ferreira D, Murray JC. High dosage folic acidsupplementation, oral cleft recurrence and fetal growth. Int J Environ Res PublicHealth.2013;10(2):590-605.
    122. Fekete K, Berti C, Cetin I, Hermoso M, Koletzko BV, Decsi T. Perinatal folatesupply: relevance in health outcome parameters. Matern Child Nutr.2010;6Suppl2:23-38.
    123. Pickell L, Brown K, Li D, Wang XL, Deng L, Wu Q, Selhub J, Luo L,Jerome-Majewska L, Rozen R. High intake of folic acid disrupts embryonicdevelopment in mice. Birth Defects Res A Clin Mol Teratol.2011;91(1):8-19.
    124. Kennedy D, Koren G. Identifying women who might benefit from higher doses offolic acid in pregnancy. Can Fam Physician.2012;58(4):394-397.
    125. Koren G, Goh YI, Klieger C. Folic acid: the right dose. Can Fam Physician.2008;54(11):1545-1547.
    126. Colapinto CK, O'Connor DL, Dubois L, Tremblay MS. Folic acid supplement useis the most significant predictor of folate concentrations in Canadian women ofchildbearing age. Appl Physiol Nutr Metab.2012;37(2):284-292.
    127. Tam C, McKenna K, Goh YI, Klieger-Grossman C, O'Connor DL, Einarson A,Koren G. Periconceptional folic acid supplementation: a new indication fortherapeutic drug monitoring. Ther Drug Monit.2009;31(3):319-326.
    128. Nguyen P, Tam C, O'Connor DL, Kapur B, Koren G. Steady state folateconcentrations achieved with5compared with1.1mg folic acid supplementationamong women of childbearing age. Am J Clin Nutr.2009;89(3):844-852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700