猪骨骼肌肌纤维类型分布及转化的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究共设3个试验,旨在研究猪骨骼肌肌纤维类型分布及转化的分子机理。
     1.品种、体重及营养对猪肌纤维类型分布与转化的影响:选用荣昌猪和杜×长×大(DLY)杂交猪为试验动物,测定10~120kg体重时背最长肌中肌纤维直径和密度及I、2a、2x和2b 4种MyHC的基因表达,以探讨猪背最长肌纤维生长及类型的发育性变化,并分析品种及营养影响特点。结果表明:(1)背最长肌纤维直径均随体重增加而加粗,其中在10~35 kg阶段的增加幅度最大(>50%);而肌纤维密度则随体重增加逐渐下降,尤其是在10~35 kg阶段下降幅度超过了1倍多,至80 kg后变化不大。肌纤维密度与直径存在显著负相关;(2)从10~20 kg,2个品种的背最长肌肌纤维类型的百分组成发生显著改变,MyHC I和2x型纤维比例显著降低,而2b型纤维比例显著提高;(3)从20~120 kg,背最长肌肌纤维的变化规律因品种和纤维类型而异,除MyHC2b外,2个品种的MynC I、2a和2x型肌纤维的发育规律存在一定差异;(4)背最长肌纤维大小和类型的百分组成在10~50kg阶段未见品种间显著差异,但在80 kg,荣昌猪的肌纤维大小和MynC 2b型纤维比例显著低于DLY,而2a型纤维比例则正好相反:(5)饲粮营养水平对2个品种猪背最长肌纤维直径、密度及类型的百分组成均无显著影响。以上结果提示,2个品种的背最长肌纤维类型的发育性规律及组成存在差异,且纤维组成差异主要表现在80kg,荣昌猪的MyHC 2b型纤维比例显著低于DLY猪,可能与其优良肉质相关。
     2.品种与体重对猪肌纤维生长相关功能基因表达的影响:选用荣昌猪和DLY杂交猪为试验动物,测定10~120 kg体重时背最长肌中与肌纤维生长相关功能基因MyoD、CaN和PGC-1的表达,以探讨猪背最长肌中这些相关功能基因的发育性变化,并分析品种特点。结果表明:(1)荣昌猪背最长肌MyoD mRNA水平先随体重增加显著增加,至20 kg达最高,之后均有不同程度下降;而DLY猪在10~120 kg阶段未见显著变化。而且,20 kg时荣昌猪的背最长肌MyoD mRNA水平显著高于DLY猪;(2)荣昌猪的背最长肌CaN mRNA水平在前80 kg未见显著变化,之后显著降低;DLY猪在50 kg前也未见显著变化,但50 kg后显著降低;(3)荣昌猪的背最长肌PGC-1 mRNA在80 kg前保持在较高水平,至100 kg显著降低,显著低于80 kg前;而DLY猪在20 kg前保持在较高水平,而后显著降低。而且,50和80 kg时荣昌猪的PGC-1 mRNA水平显著高于DLY猪。以上结果提示,猪肌纤维生长相关功能基因表达的发育性变化因品种和指标而异,MyoD、CaN和PGC-1可能在MyHC基因表达和肌纤维类型转化中发挥重要作用,但具体机制仍需进一步研究。
     3.共轭亚油酸对体外培养的猪肌纤维类型分布与转化的影响:试验以培养的原代猪骨骼肌卫星细胞为材料,添加不同水平CLA(0、50、100、150、200μg/mL),通过观测处理后4、8和12 d的骨骼肌细胞中I、2a、2b和2x 4种MynC的基因表达,研究CLA对骨骼肌细胞纤维类型分布与转化的影响及随时间的变化规律。结果表明:(1)肌纤维类型的分布随培养时间的延长发生显著变化。D8与D4相比,MyHC 2x型肌纤维比例未发生显著变化,但MyHC I和2a型肌纤维比例显著下降,而MyHC 2b型肌纤维比例显著上升。在D12,除MyHC 2b型肌纤维比例显著上升外,其余3种类型的肌纤维比例均显著下降。(2)添加50μg/mL CLA对D 4~12的4种类型肌纤维的百分组成没有显著影响。(3)添加100μg/mL CLA对肌纤维类型百分组成的影响主要体现在D12,显著提高MyHC I和2a型肌纤维比例,而显著降低MyHC 2x和2b型肌纤维比例。(4)添加150~200μg/ml CLA则可显著影响D4~12的4种肌纤维类型的百分组成,显著提高MyHC I和2a型肌纤维比例,而显著降低MyHC 2b型肌纤维比例。以上结果提示,添加CLA可使肌纤维类型的组成发生变化,且该作用与添加水平和处理时间密切相关。CLA对肌纤维类型组成的影响主要表现为提高MyHC I和2a型肌纤维的比例,而降低MyHC 2b和2x型肌纤维的比例,这在一定程度上解释CLA提高猪肉品质的原因。
Three experiments for this thesis were conducted to study the molecular mechanism of myofiber type distribution and transformation in skeletal muscle of pigs.
     1.Effects of breed,body weight,and nutrition on myofiber type distribution and transformation in pigs:This experiment was conducted to study the developmental changes of fiber size and myofiber types in longissimus dorsi(LD) muscle of Rongchang and Duroc×Landrace×Yorkshire(DLY) pigs under different dietary nutritioal condition by determining fiber diameter,density,and the ratios of mRNA abundance of four isoforms of myosin heavy chain(MyHC I,2a,2b and 2x) with semi-quantitative RT-PCR.The results showed that:(1) Fiber diameter increased with BW,especially from 10 kg to 35 kg BW,it increased by more than 50%.Fiber density decreased with BW.It decreased by more than 100%from 10 kg to 35 kg BW,and aider 80 kg BW,no significant change was observed.Fiber density had a significant negative correlation with fiber diameter.(2) From 10 kg to 20 kg BW,the composition of myofiber types in LD muscle of both breeds changed dramatically with significant decrease of MyHCⅠand 2x fibers but ramarkabl increase of MyHC 2a fiber.(3) From 20 kg to 120 kg BW,the developmental changes of myofibers in LD muscle varied with breed and myofiber type.Except MyHC 2b fiber,the developmental patterns of the other three myofiber types were different between the two breeds(4)There was no difference in fiber size and the proportion of four myofiber types in LD muscle during 10~50 kg BW between the two breeds,but at 80 kg BW,Rongchang pigs showed significantly smaller fiber size,lower proportion of MyHC 2b fiber and higher ratio of MyHC 2a fiber compared with DLY pigs.(5) Dietary nutitional levels had no effect on fiber diameter,density,and the composition of myofiber types in LD muscle of both breeds.The results suggested that the developmental changes and composition of myofiber types in LD muscle varied with pig breed.The breed difference of the composition appeared at 80 kg,and RC pigs showed significantly lower proportion of MyHC 2b fiber, which might explain for their better meat quality.
     2.Effects of breed,and body weight on some gene expressions related to fiber growth in pigs:The second experiment was conducted to study the developmental changes of MyoD,CaN and PGC-1 mRNA in LD muscle of Rongchang and DLY pigs. The results showed that:(1) MyoD mRNA levels in LD muscle of Rongchang pigs increased with BW,reaching the highest at 20 kg BW,and then decreased.However,in DLY pigs,there were no significant changes in MyoD mRNA levels during the period of 10~120 kg BW.At 20 kg BW,MyoD mRNA level in Rongchang pigs was markedly higher than that in DLY pigs.(2) There was no difference in CaN mRNA of LD muscle in Rongchang pigs untill 80 kg BW,and then dramatical decrease.While in DLY pigs,no significant changes were observed before 50 kg BW,and there was then marked decrease. (3) PGC-1 mRNA levels in LD muscle of Rongchang pigs were kept relatively high before 80 kg BW,following by a marked decline.However,in DLY pigs,PGC-1 mRNA levels were kept relatively high before 20 kg BW,and then decreased significantly.Rongchang pigs showed higher levels of PGC-1 mRNA at 50 kg and 80 kg BW compared to DLY pigs. These results suggested that developmental patterns of these gene expressions observed in this experiment varied with breed and parameter.MyoD,CaN and PGC-1 might play an important role in the expression of MyHC genes and the transformation of muscle fiber types,but the mechanisms need further studies.
     3.Effects of conjugated linoleic acids(CLA) on the distribution and transformation of myofiber types of pigs in vitro:The third experiment was conducted in vitro to study the effects of different CLA levels(0,50,100,150,200μg/mL) on the distribution and transformation of myofiber types in skeletal muscle cells of pigs after 4,8 and 12 d of culture time by determining the ratios of mRNA abundance of four isoforms of myosin heavy chain(MyHC I,2a,2b and 2x) with semi-quantitative RT-PCR.The results showed that:(1) The distribution of myofiber types in skeletal muscle cells changed markedly with culture time.On d 8, MyHC I and 2a fibers decreased clearly,while MyHC 2b fibers increased dramatically. On d 12,MyHC 2b fiber was increased markedly,hut the other three types of muscle fibers were decreased significantly.(2) 50μg/mL CLA had no effect on the composition of myofiber types from d 4 to d 12.(3) The effects of 100μg/mL CLA on the composition of myofiber types appeared mainly on d 12,with an up-regulation of MyHC I and 2a fibers, and a down-regulation of MyHC 2x and 2b fibers.(4) The compositions of myofiber types from d 4 to d 12 were significantly changed by 150~200μg/mL CLA with increase of the proportions of MyHC I and 2a fibers and decrease of the ratio of MyHC 2b fiber.These results suggested that the compositions of myofiber types in skeletal muscle cells were influenced by the addition of CLA,which depended on the CLA dose and culture time.The effects of CLA on the composition of myofiber mainly were represented by increasing proportions of MyHC I and 2a fibers and decreasing the ratios of MyH 2b and 2x fibers, which could explain partially why CLA improved pork quality.
引文
[1]Webb A J.Objectives and strategies in pig improvement:an applied perspective.Pig News and Information,1999,20(2):909-912.
    [2]Picard B,Lefaucheur L,Berri C,et al.Muscle fibre ontogenesis in farm animal species.Reprod Nutr Dev,2002,42:415-431.
    [3]Davoli R,Fontanesi L,Zambonelli D P,et al.Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig.Anim Genet,2002,33(1):3-18.
    [4]Weiss A,Leinwand L A.The mammalian myosin heavy chain gene family.Annu Rev Cell Dev Biol,1996,12:417-439.
    [5]Chikuni K,Tanabe R,Muroya S,et al.Differences in molecular structure among the porcine myosin heavy chain-2a,-2x,and -2b isoforms.Meat Sci,2001,57(3):311-317.
    [6]Lefaucheur L,Ecolan P,Plantard L,et al.New insights into muscle fiber types in the pig.J Histochem Cytochem,2002,50:719-730.
    [7]Schiaffino S,Reggiani C.Molecular diversity of myofibrillar proteins:Gene regulation and functional significance.Physiol Rev,1996,76:371-423.
    [8]Pette D,Staron R S.Myosin isoforms,muscle fiber types,and transitions.Microsc Res Tech,2000,50:500-509.
    [9]Stickland N C,Demirtas B,Clelland A K,et al.Genetic and nutritional influence on muscle growth in farm animals.Comp Biochem Physiol,2000,126:141.
    [10]Stockdale F E.Myogenic cell lineages.Dev Biol,1992,1 54:284-298.
    [11]Wigmore P M C,Stickland N C.Muscle development in large and small pig fetuses.J Anat,1983a,137:235-245.
    [12]Stickland N C,Handel S E.The numbers and types of muscle fibres in large and small breeds of pigs.J Anat,1986,147:181-189.
    [13]Dubowitz V.A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle.Histo Cell Bio,1960:105-117.
    [14]Engel W K.The essentiality of histo- and cytochemical studies in the investigation of neuromuscular disease.Neurology,1962,12:778-784.
    [15]Brooke M H,Kaiser K K.Muscle fiber types:how many and what kind? Arch Neurol,1970,23(4):369-379.
    [16] Barnard R J, Edgerton V R, Furukawa T, et al.Histochemical, biochemical and contractile properties of red, white and intermediate fibres. Am J Physiol, 1971, 220:410-414.
    
    [17] Peter J B, Barnard R J, Edgerton V R, et al. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, 1972,11:2627-2633.
    
    [18] Ashmore C R, Doerr L. Comparative aspects of muscle fiber types in different species. Exp Neurol, 1971, 31(3): 408-418.
    
    [19] Hamalainen N, Pette D. Patterns of myosin isoforms in mammalian skeletal muscle fibres. Microsc Res Tech, 1995,30: 381-389.
    
    [20] Pellegrino M A, Canepari M, Rossi R, et al. Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J Physiol, 2003, 546: 677-689.
    
    [21] Eggert J M, Depreux F F S, Schinckel A P, et al. Myosin heavy chain isoforms account for variation in pork quality. Meat Sci, 2002, 61: 117-126.
    
    [22] Bottinelli R, Canepari M, Reggiani C, et al. Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. J Physiol, 1994,481:663-675.
    
    [23] Conjard A, Peuker H, Pette D. Energy state and myosin heavy chain isoforms in single fibers of normal and transforming rabbit muscles. Pflügers Arch Eur J Physiol, 1998,436:962-969.
    
    [24] Pette D, Staron R S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol, 1990,116:1-76.
    
    [25] Lefaucheur L, Milan D, Ecolan P, et al. Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs. J Anim Sci, 2004, 82:1931-1941.
    
    [26] Schiaffino S, Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol, 1994, 77:493-501.
    
    [27] Chang K C, Fernandes K, Goldspink G. In vivo expression and molecular characterization of the porcine slow-myosin heavy chain. J Cell Sci, 1993, 106:331-341.
    
    [28] Chang K C, Fernandes K, Dauncey M J. Molecular characterization of a developmentally regulated porcine skeletal myosin heavy chain gene and its 5' regulatory region. J Cell Sci, 1995,108 :1779-89.
    
    [29] Chang K C, Fernandes K. Developmental expression and 5' end cDNA cloning of the porcine 2x and 2b myosin heavy chain genes. DNA Cell Biol, 1997, 16:1429-1437.
    [30]Henckel P,Oksbjerg N,Erlandsen E,et al.Histo- and biochemical characteristics of the longissimus dorsi muscle in pigs and their relationship to performance and meat quality.Meat Sci,1997,47:311-321.
    [31]Larzul C,Lefaucheur L,Ecolan P,et al.Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth,carcass,and meat quality traits in Large White pigs.J Anim Sci,1997,75:3126-3137.
    [32]Essen-Gustavsson B,Fielkner-Modig S.Skeletal muscle characteristics in muscles of Pigs in relation to sensory properties of meat.Meat Sci,1985,13:33-45.
    [33]杨晓静,赵茹茜,陈杰,等.猪背最长肌肌纤维类型的发育性变化及其品种和性别特点.中国兽医学报,2005,25(1):89-94.
    [34]Karlsson A H,Ronald E K,Xavier F.Skeletal muscle fibres as factors for pork quality.Livestock Production Seience,1999,60:255-269.
    [35]Weiler U,Appell H J,Kremser M,et al.Consequences of selection on muscle composition.A comparative study on Gracilis muscle in wild and domestic pigs.Anat Histol Embryol,1995,24:77-80.
    [36]Sosnicki A.Association of micrometric traits on meat quality,fattening and slaughter traits in the pig.J Anim Sci,1987,64:1412-1418.
    [37]Ender K.Future demands on meat quality.Proc.2nd Dummerstorf Muscle Workshop Muscle Growth and Meat Quality,Rostock.Germany,1995:58.
    [38]Brocks L,Klont R E,Buist W,et al.The effects of selection of pigs on growth rate vs.leanness on histochemical characteristics of different muscles.J Anim Sci,2000,78:1247-1254.
    [39]Horak V.Fibre type differentiation during postnatal development of miniature pig skeletal muscles.Reprod Nutr Dev,1995,35:725-736.
    [40]Ruusunen M.Muscle histochemical properties of different pig breeds in relation to meat quality.Helsinki(Finland).Thesis,EKT-series 968,University of Helsinki,1994.
    [41]Luiting P,Knap P W,Rauw W M,et al.Physiological consequences of selection for growth.In:Proc.48th Ann.Mtg.of the EAAP,Vienna,Austria.1997:40.
    [42]Hunt C M,Highfill G A,Dikeman M E,et al.Sex and compudose(?) implantation effects on porcine longissimus and semimembranosus fibre types.In:Proc.34th Int.Congr.Of Meat Sci.and Tech.Brisbane Australia,1988:62.
    [43]Solomon M B,Campbell R G,Steele N C.Effect of sex and exogenous porcine somatotropin on longissimus muscle fiber characteristics of growing pigs.J Anim sci,1990, 68:1176-1181.
    
    [44] Karlsson A, Enfalt A C, B Essen-Gustavsson, et al. Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs. J Anim Sci, 1993, 71:930-938.
    
    [45] Miller L R, Garwood V A, Judge M D. Factors affecting porcine muscle fiber type, diameter and number. J Anim Sci, 1975,41:66.
    
    [46] Prtersen J S, Henekel P, Oksbjerg N, et al. Adaptions in muscle fibre characteristics induced by physical activity in pigs. Anim Sci, 1998, 66:733.
    
    [47] Larsson L, Ansved T. Effects of ageing on the motor unit. Prog Neurobiol, 1995, 45: 397-458.
    
    [48] Lefaucheur L. Myofiber typing and pig meat production. Solv Vet Res, 2001,38(1):5-33.
    
    [49] Suzuki A, Kojima N, Ikeuehi Y. Carcass composition and meat quality of Chinese purebed and European × Chinese crossbred pigs. Meat Sci, 1991,29:31-38.
    
    [50] Davies A S. Postnatal changes in the histochemical fibre types of porcine skeletal muscle. J Anat, 1972, 113(pt2):213-240.
    
    [51] Oksbjerg N, Henckel P, Rolph T. Effects of salbutajrnol,a b-adrenergic agonist, on muscles of growing pigs fed 2 different levels of dietary protein. 1.Muscle fibre properties and muscle protein aceretion. Acta Agric Scand, Sect A, Anim Sci, 1994, 44(1):12-22.
    
    [52] Chang K C, Costaa N D, Blackleya R, et al. Relationships of myosin heavy chain fibers types to meat quality traits in traditional and modern pigs. Meat Science, 2003, 64:93-103.
    
    [53] Ono Y, Solomon M B, Evock-Clover C M, et al. Effects of porcine somatotropin administration on porcine muscles located within different regions of the body. J Anim Sci, 1995, 73: 2282-2288.
    
    [54] Beermann D H, Fishell V K, Roneker K, et al. Dose-response relationships between porcine somatotropin, muscle composition, muscle fiber characteristics and pork quality. J Anim Sci, 1990, 68:2690-2697.
    
    [55] Brandstetter A M, Picard B, Geay Y. Regional variations of muscle fibre characteristics in semitendinosus of growing cattle. Journal of Muscle research and cell motility, 1997, 18:57-62.
    
    [56] Fahey A J, Brameld J M, Parr T, et al. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J Anim Sci, 2005, 83(11):2564-2571.
    
    [57] Handel S E, Stickland N C. Muscle cellularity and birth weight. Anim Prod, 1987, 44:311-317.
    
    [58] Wigmore P M C, Stickland N C. DNA, RNA and protein in skeletal muscle of large and small fetuses. Growth, 1983b, 47: 67-76.
    
    [59] Glore S R, Layman D K. Cellular development of skeletal muscle during early periods of nutritional restriction and subsequent rehabilitation. Pediatr Res, 1983, 17: 602-605.
    
    [60] Dwyer C M, Madgwick A J A, Ward S S,et al. Effect of maternal undernutrition in early gestation on the development of fetal myofibres in the guinea-pig. Reprod Fertil Dev, 1995, 7: 1285-1292.
    
    [61] Dwyer C M, Stickland N C. The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig. J Dev Physiol, 1992a, 18: 303-313.
    
    [62] Robinson D W. The cellular response of porcine skeletal muscle to prenatal and neonatal nutritional stress. Growth, 1969, 33:231-240.
    
    [63] Pond W G, Mersmann H J, Yen J T. Severe feed restriction of pregnant swine and rats: Effect on postweaning growth and body composition of progeny. J Nutr, 1985, 115:179-189.
    
    [64] Dwyer C M, Stickland N C, Fletcher J M. The influence of maternal nutrition on muscle fibre number development in the porcine fetus and on subsequent postnatal growth. J Anim Sci, 1994, 72: 911-917.
    
    [65] Bee G. Effect of early gestation feeding,birth weight,and gender of progeny on muscle fiber characteristics of pigs at slaughter. J Anim Sci, 2004, 82(3):826-836.
    
    [66] Dwyer C M, Stickland N C. Does the anatomical location of a muscle affect the influence of undernutrition on muscle fibre number? J Anat, 1992b, 181: 373-376.
    
    [67] Dwyer, C M, Madgwick, Crook A R, et al. The effect of maternal undernutrition on the growth and development of the guinea pig placenta. J Dev Physiol, 1992, 18: 295-302.
    
    [68] Rehfeldt C, Stickland N C, Fiedler I, et al. Environmental and genetic factors as sources of variation in skeletal muscle fibre number. Basic Appl Myol, 1999, 9(5): 235-253.
    
    [69] Goldspink G, Ward P S. Changes in rodent muscle fibre types during post-natal growth, undernutrition and exercise. J Physiol, 1979, 296:453-469.
    [70] Lefaucheur L, Ecolan P, Barzic Y, et al. Early postnatal food intake alters myofiber maturation in pig skeletal muscle. J Nutr, 2003, 133: 140-147.
    
    [71] Hegarty P V J, Kim K O. Changes in skeletal muscle cellularity in starved and refed young rats. Br J Nutr, 1980,44:123-127.
    
    [72] Hegarty P V J, Kim K O. Effect of starvation on tissues from the young of four species with emphasis on the number and diameter of skeletal muscle fibers. Pediatr Res, 1981, 15: 128-132.
    
    [73] Layman D K, Swan P B, Hegarty P V. The effect of acute dietary restriction on muscle fibre number in weanling rats. Br J Nutr, 1981,45: 475-481.
    
    [74] Ihemelandu E C. Fibre number and sizes of mouse soleus muscle in early postnatal protein malnutrition. Acta Anat, 1985,121: 89-93.
    
    [75] Bedi K S, Birzgalis A R, Mahon M, et al. Early life undernutrition in rats. 1. Quantitative histology of skeletal muscles from underfed young and refed adult animals. BrJ Nutr, 1982,47:417-431.
    
    [76] Harrison A P, Rowlerson A M, Dauncey M J. Selective regulation of myofiber differentiation by energy status during postnatal development. Am J Physiol, 1996, 270:R667-674.
    
    [77] Lyons G E, Kelly A M, Rubinstein N A. Testosterone-induced changes in contractile protein isoforms in the sexually dimorphic temporalis muscle of the guinea pig. J Biol Chem, 1986, 261:13278-13284.
    
    [78] English A W, Eason J, Schwartz G, et al. Sexual dimorphism in the rabbit masseter muscle: myosin heavy chain composition of neuromuscular compartments. Cells Tissues Organs, 1999, 164:179-191.
    
    [79] Joubert Y, Tobin C, Lebart M C. Testosterone-induced masculinization of the rat levator ani muscle during puberty. Dev Biol, 1994,162:104-110.
    
    [80] Staron R S, Hagerman F C, Hikida R S, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem, 2000, 48:623-629.
    
    [81] Aroniadou-Anderjaska V, Lemon P W R, Gilloteaux J. Effects of exogenous growth hormone on skeletal muscle of young female rats. Tissue Cell, 1996, 28(6):719-724.
    
    [82] Solomon M B, CaPema T J, Mroz R J, et al. Influence of dietary protein and recombinant porcine somatotropin administration in young pigs:III. Muscle fiber morphology and shear foree. J Anim Sci, 1994, 72:615-621.
    [83]Essen-Gustavsson B,Lindholm A.Fibre types and metabolic characteristics in muscle of wild boars,normal and halothane sensitive Swedish landrace pigs.Com Biochem Physiol,1984,78:67-71.
    [84]Depreux F F S,Grant A L,Gerrard D E.Influence of halothane genotype and body- weight on myosin heavy chain composition in pig muscle as related to meat quality.Livestock Production Science,2002,73:265-73.
    [85]Marinova P L,Lefaucheur X,Fernandez,et al.Relationship between metabolism and glycogen content in skeletal muscle fibers of large white and Hampshire crossbred pigs.J Muscle Foods,1992,3:91-97.
    [86]Lebret B,Roy P L,Monin G,et al.Influence of the three RN genotype on chemical composition,enzyme activities,and myofiber characteristics of porcine skeletal muscle.J Anim Sci,1999,77:1482-1489.
    [87]Lefaucheur L,Gerrard D.Muscle fiber plasticity in farm aninmls.J Anim Sci,1999,77:118-126.
    [88]Petersen J S,Henckel P,Marubo H.Muscle metabolism,post mortem pH decline and meat quality in pigs subjected to regular physical training and spontaneous activity.Meat Sci,1997,46:259-275.
    [89]刘丑生,赵兴波,李宁,等.动物肌肉生长发育调控的功能基因研究进展.中国畜牧杂志,2003,39(5):48-49.
    [90]Molkentin J D,Olson E N.Combinatorial control of muscle development by bascie helix-loop-helix and MADs-box transcription factor.Proc Natl Acad Sci,1996,93:9366-9373.
    [91]Te Pas M F W,Visscher A H.Genetic regulation of meat production by embryonic muscle formation - a review.Journal of Anlmal Breeding and Genetics,1994,111:404-412.
    [92]杨晓静.猪骨骼肌生长及肌纤维类型分布的分子机理研究.[博士学位论文].南京,南京农业大学,2004.
    [93]Lattanzi L,Salvatori G,Coletta M,et al.High efficiency myogenin conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer.An alternative strategy for ex vivo gene therapy of primary myopathies.J Clin Invest,1998,101(10):2119-2128.
    [94]Kocaefe Y C,Israeli D,Ozguc M,et al.Myogenic program induction in mature fat tissue(with MyoD expression).Exp Cell Res,2005,308(2):300-308.
    [95] Jin X, Lee J S, Kwak S, et al. Myogenic differentiation of p53- and Rb-deficient immortalized and transformed bovine fibroblasts in response to MyoD . Mol cells, 2006, 21(2):206-212.
    
    [96] Puigserver P, Wu Z, Park C W, et al. A cold inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6):829-839.
    
    [97] Esterbaue H, Oberkofler H, Krempler F, et al. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics, 1999, 62:98-102.
    
    [98] Puigserver P, Adelmant G, Wu Z, et al. Activation of PPAR gamma coactivator-1 through transcription factor docking. Seience, 1999, 286:1368-1371.
    
    [99] Donovan J, Tarr P, Spiegelman B M. Peroxisome proliferators activated receptor gamma coactivator 1 beta, a novel PGC-1 related transcription coactivator associated with host cell factor. J Biol Chem, 2002, 277:1645-1648.
    
    [100] Yoon J C, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 2001,413(6852):131-138.
    
    [101] Puserver P, Spiegeman B W. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcptional coactivator and metalbolism regulator. Endocr, 2003, 24:78-90.
    
    [102] Uldry M, Yang W, St-Pierre J, et al. Spiegelman B. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat diffentioation. Cell Metabolism, 2006, 3:333-341.
    
    [103] Wu Z, Puigserver P, Andersson U. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98:115-124.
    
    [104] Lin J, Wu H, Tarr P,et al. Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibre. Nature, 2002,418:797-801.
    
    [105] Klee C B, Crouch T H, Krinks M H. Calcineurin: a calcium- and calmodulin- binding protein of the nervous system. Proc Natl Acad Sci U S A, 1979, 76: 6270-6273.
    
    [106] Rao A, Luo C, Hogan P G. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol, 1997,15: 707-747.
    
    [107] Dolmetsch R E, Xu K, Lewis R S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature, 1998, 392:933-936.
    
    [108] Chin E R, Olson E N, Richardson J A, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev, 1998, 12: 2499-2509.
    
    [109] Michell R N, Dunn S E, Chin E R. Calcineurin and skeletal muscle growth. Proceedings of the Nutrition Society, 2004, 63:341-349.
    
    [110] Dunn S E, Burns J L, Michel R N. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem, 1999, 274: 21908-21912.
    
    [111] Dunn S E, Chin E R, Michel R N. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol, 2000,151: 663-672.
    
    [112] Dunn S E, Simard A R, Bassel-Duby R, et al. Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. J Biol Chem, 2001,276: 45243-45254.
    
    [113] Talmadge R J, Otis J S, Rittler M R, et al. Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biology, 2004, 5:28-39.
    
    [114] Chin E R, Allen D G. Changes in intracellular free Ca~(2+) concentration during constant 10Hz stimulation of mouse single skeletal muscles fibers. Physiologist, 1996, 39:A-75.
    
    [115] Westerblad H, Allen D G. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. Gen Physiol, 1991,98:615-635.
    
    [116] Levitt L K, O'Mahoney J V, Brennan K J, et al. The human troponin I slow promoter directs slow fiber-specific expression in transgenic mice. DNA Cell Biol, 1995,14: 599-607.
    
    [117] Garry D J, Bassel-Duby R S, Richardson J A, et al. Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Dev Genet, 1996, 19: 146-156.
    
    [118] Yamashita K, Yoshioka T. Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. J Muscle Res Cell Motil, 1991,12: 37-44.
    
    [119]Liu Y, Cseresnyes Z, Randall W R, et al. Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. Cell Biol, 2001, 155:27-39.
    
    [120] Swoap S J, Hunter R B, Stevenson E J, et al. The calcineurin-NFAT Pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol, 2000, 279:C915-924.
    
    [121] Calvo S, VenePally P, Cheng J, et al. Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol Cell Biol, 1999, 19:515-525.
    
    [122] Chakkalakal J V, Stocksley M A, Harrison M, et al. Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling.Proc Natl Acad Sci U S A,2003,100:7791-7796.
    [123]Lee H H C,Choi R C Y,Ting A K L,et al.Transcriptional regulation of acetylcholinesterase-associated collagen ColQ:differential expression in fast and slow twitch muscle fibers is driven by distinct promoters.Biol Chem,2004,279:27098-27107.
    [124]李凤娜,尹靖东.猪肉品质调控的研究.饲料研究,2006,8:30-33.
    [125]Serra X,Gil F,Perez-Eneiso,et al.A comparison of carcass,meat quality and histochemical characteristics of Iberian and landrace pigs.Livestock Production Science,1998,56:215-223.
    [126]Leseigneur-Meynier A,Gandemer G.Lipid composition of pork muscle in relation to the metabolic type of the fibres.Meat Sci,1991,19:229-41.
    [127]Gil M,Oliver M,Gispert M,et al.The relationship between pig genetics,myosin heavy chain I,biochenmical traits and quality of M longissimus thoracis.Meat Sci,2003,65:1063-1070.
    [128]Seideman S C,Crouse J D,Cross H R.The effect of sex condition and growth implants on bovine muscle fiber charaeteristics.Meat Sci,1986,17:79-95.
    [129]Essen-Gustavsson B,Karlsson A,Lundstrom K,et al.Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality.Meat Sci,1994,38:269-77.
    [130]Valin C,Touraille C,Vigneron P,et al.Prediction of lamb meat quality traits based on muscle biopsy fibre typing.Meat Sci,1982,6:257-263.
    [131]Maltin C A,Sinclair K D,Warriss P D,et al.The effeets of age at slaughter,genotype and finishing system on the biochemical properties,mucle fibre type characteristics and eating quality of bull beef from suekled calves.Anim Sci,1998,66:341-348.
    [132]Maltin C A,Warkup C C,Matthews K R,et al.Pig muscle fibre characteristics as a source of variation in eating quality.Meat Sci,1997,47:237-248.
    [133]沈元新,徐继初.金华猪及其杂种肌肉组织学特性与肉质的关系.浙江农业大学学报,1984,10(3):265-272.
    [134]王亚鸣,刘龙芳.江西玉山猪肌肉组织学特征与肉质的关系.江西农业大学学报,1994,16(3):284-287.
    [135]王楚端,陈清明.长白猪、北京黑猪及民猪肌肉组织学特性研究.中国畜 牧杂志,1996,32(4):33-34.
    [136]Seideman S C.Methods of expressing collagen characteristics and their relationship to meat tenderness and muscle fiber types.J Food Sci,1986,51:273-276.
    [137]Ouali A,Talmant A.Caipains and calpastatin distribution in bovine,porcine and ovine skeletal muscles.Meat Sci,1990,28:331-48.
    [138]Cena P,Jaime I,Beltran J,et al.Postmortem shortening of lamb logissimus oxidative and glycolytic fibers.J of Muscle Foods,1992,3:253-260.
    [139]Offer G.Modelling of the formation of Pale,soft and exudative meat:effect of chilling regime and rate and extent of glycolysis.Meat Sci,1991,157:30-35.
    [140]Hood D E.Factors affecting the rate of metmyoglobin accumulation in pre-packaged beef.Meat Sci,1980,4:247-265.
    [141]Immonen K,Ruusunen M,Hissa K,et al.Bovine muscle glycogen concentration in relation to finishing diet,slaughter and uitimate pH.Meat Sci,2000,55:25-31.
    [142]Mauro A.Satellite cell of skeletal muscle fibers.J Biophys Biochem Cytol,1961,9:493-498.
    [143]Bischoff R.The satellite cell and muscle regeneration.Myology,1994,97-118.
    [144]Schultz E,McCormick K M.Skeletal muscle satellite cells.Rev Physiol Biochem Pharmacol,1994,123:213-257.
    [145]Bischoff R.Enzymatic liberation of myogenic cells from adult rat muscle.Anat Rec,1974,180(4):645-61.
    [146]魏宽海,裴国献,史宇恒,等.骨骼肌卫星细胞的培养鉴定及生物学特性.中国危重病急救医学,2002,14(2):104-106.
    [147]Cardasis C A,Cooper G W.An analysis of nuclear numbers in individual muscle fibers during differentiation and growth:a satellite cell-muscle fiber growth unit.J Exp Zool,1975,191(3):347-358.
    [148]Bischoff R,Heintz C.Enhancement of skeletal muscle regeneration.Dev Dyn,1994,201(1):41-54.
    [149]Dorfman J,Duong M,Zibaitis A,et al.Myocardial tissue engineering with autologous myoblast implantation.J Thorac Cardiovasc Surg,1998,116(5):744-751.
    [150]邵素霞,张雷,赵春芳,等.新生大鼠骨骼肌卫星细胞的原代培养及标记方法.基础医学与临床,2004,24(1):79-82
    [151]Doumit M,Merkel R.Conditions for isolation and culture of porcine myogenic satellite cells.Tissue Cell,1992,24(2):253-262.
    [152]周菲,秦永文,荆清,等.成年大鼠成肌细胞的原代培养.中华老年心脑血管病杂志,2001,3(1):344-346
    [153]Bonavaud S,Agbulut O,D'Honneur G,et al.Preparation of isolated human muscle fibers:a technical report.In Vitro Cell Dev Biol Anim,2002,38(2):66-72.
    [154]黄汉伟,徐建光,顾玉东,等.人体肌卫星细胞培养的实验研究.中国修复重建外科杂志,2001,15(5):265-268.
    [155]王训,张成,刘焯霖,等.小鼠成肌细胞的培养纯化和鉴定方法.中山医科大学学报,2000,z1:6-9.
    [156]Cooper R N,Thiesson D,Furling D,et al.Extended amplification in vitro and replicative senescence:key factors implicated in the success of human myoblast transplantation.Hum Gene Ther,2003,14(12):1169-1179.
    [157]Melo F,Carey D J,Brandan E.Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression.J Cell Biochem,1996,62(2):227-239.
    [158]Gullberg D,Sjoberg G,Velling T,et al.Analysis of fibronectin and vitronectin receptors on human fetal skeletal muscle cells upon differentiation.Exp Cell Res,1995,220(1):112-123.
    [159]张臻,钟竑,卫洪超,等.骨骼肌卫星细胞的分离和培养.动物医学进展,1999,20(4):8-10.
    [160]Sheehan S M,Allen R E.Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor.J Cell Physiol,1999,181(3):499-506.
    [161]Zeng C,Pesall J E,Gilkerson K K,et al.The effect of hepatocyte growth factor on turkey satellite cell proliferation and differentiation.Poult Sci,2002,81(8):1191-1198.
    [162]徐蓬,顾晓明.EGF、TGF-β及胰岛素对兔骨骼肌卫星细胞增殖的影响.中华口腔医学杂志,2000,35(4):289-291.
    [163]Pesall J E,McFarland D C,McMurtry J P,et al.The effect of insulin-like growth factor analogs on turkey satellite cell and embryonic myoblast proliferation.Poult Sci,2001,80(7):944-948.
    [164]Zhao R Q,Yang x J,Xu Q F,et al.Expression of GHR and PGC-lalpha in association with changes of MyHC isoform types in longissimus muscle of Erhualian and large white pigs Sus scrofa during postnatal growth.Anim Sci,2004,79:203-211.
    [165]Tanabe R,Muroya S,Chikuni K.Expression of myosin haevy chain isoforms in porcine muscles determined by multiplex PCR.J Food Sci,1998,64:222-225.
    [166]Rehfeldt C,Fiedler I,Weikard R,et al.It is possible to increase skeletal muscle fibre number in utero.Biosci Rep,1993,13:213-220.
    [167]吴德,杨凤,周安国,等.不同比例梅山猪血缘生长肥育猪肉质及肌纤维组织学特性研究.四川农业大学学报,2001,19(3):252-255.
    [168]Hughes S M,Taylor J M,Tapscott S J,et al.Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by intervation and hormones.Dvelopment,1993,118:1137-1147.
    [169]Willoughby D S,Nelson M.Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise.Medicine and Science in Sports and Exercise,2002,34(8):1262-1269.
    [170]Meadus W J,MacInnis R,Dugan M E.Prolonged dietary treatment with conjugated linoleic acid stimulates porcine muscle peroxisome proliferator activated receptor gamma and glutamine-fructose aminotransferase gene expression in vivo.J Mol Endocrinol,2002,28(2):79-86.
    [171]章静波,徐存拴,等译.动物细胞培养基本技术指南(第四版).原著:[英]R.I.弗雷谢尼.北京,科学出版社,2004.
    [172]何波.猪骨骼肌卫星细胞的培养、鉴定及猪MEF2B和MEF2C基因的初步研究.[硕士学位论文].武汉,华中农业大学,2006.
    [173]Pailza M W.Conjugated linoleic acid,a newly recognized nutrient.Chemtistry and Industry,1997,12:464-466.
    [174]Dugan M E R,Aalhus J L,Jeremiah L E,et al.The effects of feeding conjugated linoleic acid on subsequent pork quality.Can J Anim Sci,1999,79:45-51.
    [175]Thiel-Cooper R L,Pamsh F C,Sparks J C,et al.Conjugated linoleic acid changes swine performance and carcass.J Anim Sci,2001,79(7):1821-1828.
    [176]Eggert J M,Belury M A,Kempa-Steczko A,et al.Effects of conjugated linoleic acid on the belly firmness and fatty acid composition of genetically lean pigs.J Anim Sci,2001,79(11):2866-2872.
    [177]Dugan M E R,Aalhus J L,Schaefer A L,et al.The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs.Can J Anim Sci,1997,77:723-725.
    [178]Pariza M W,Park Y,Cook M E.The biologically active isomers of conjugated linoleic acid. Prog Lipid Res, 2001,40(4): 283-298.
    
    [179] Gherardi E, Sandin S, Petoukhov M V, et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A, 2006, 103: 4046-51.
    
    [180] McKinnon H, Gherardi E, Reidy M, et al. Hepatocyte growth factor/scatter factor and MET are involved in arterial repair and atherogenesis. Am J Pathol, 2006, 168: 340-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700