猪糖原合成酶(GS)与糖原合成酶激酶(GSK3)基因的分离克隆、表达分析及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在影响猪肌肉品质的诸多因素中,遗传因素是影响肉质的重要的方面。动物体内糖原的含量直接影响到肌肉的品质性状,比如屠宰后的肌肉pH值、肉色、系水力、肌肉嫩度等。由于骨骼肌的糖原代谢过程与肌肉的品质性状存在着密切的关系,所以对骨骼肌糖原合成和分解代谢过程的研究一直受到人们的关注,并且研究猪肌肉糖原代谢的过程有助于揭示猪肌肉品质性状形成的分子机理。因此本研究选取了一个重要的糖原代谢通路IGF1介导的P13K-AKT-GSK3β信号通路,对该通路中的重要基因进行了分离克隆,并且在体外分离培养的猪骨骼肌卫星细胞中研究insulin对这些基因的作用和调控机制。主要结果如下:
     1.分离克隆猪肌肉类型糖原合成酶(GYS1)和肝脏类型糖原合成酶(GYS1)基因,猪GYS1和GYS2在中间具有一个同源性较高的催化功能域,而其C-端和N-端则同源性较低,存在大量的可以调节其活性的磷酸化位点。
     2.猪GYS1在成年各个组织都表达,在肌肉和心脏组织表达量最高。GYS2则在肝脏高表达,在皮下脂肪组织微弱表达,其他组织不表达。免疫组化检测发现GYS1在骨骼肌的肌肉纤维膜中表达,而GYS2则主要在肝细胞的胞质中表达。
     3.分别选取了GYSl基因的启动子中的一个SNP位点1432(T/C)和第五外显子中的一个SNP位点1152(C/T),利用限制性片段长度多态性的方法进行了基因分型。两个位点分别与屠宰后45分钟背最长肌pH值,股二头肌pH值和半膜肌pH值三个性状存在显著或者极显著相关。
     4.分离克隆猪GSK3α和GSK3β基因,猪GSK3α和GSK3β蛋白都包含一个丝氨酸/苏氨酸蛋白激酶结构域,并且在猪GSK3α蛋白的N端有一个富含甘氨酸的序列。
     5.GSK3β基因的不同转录本的鉴定。我们分别在5'UTR和3'UTR各设计一条引物在猪不同组织的混合cDNA库中进行扩增,然后随机挑选32个阳性克隆子进行测序。发现猪GSK3β基因存在5个转录本,分别命名为GSK3β1、GSK3β2、GSK3β3、GSK3β4和GSK3β5。
     6.通过定量PCR,.对猪GSK3β的五个转录本在大白猪成年和胚胎期的不同组织中的表达进行了定量分析。
     7.将猪GSK3β基因不同转录本的编码区构建到绿色荧光蛋白融合表达载体pEGFP-N1中并转染入猪肾细胞系PK-15。猪GSK3β1-GFP、GSK3β2-GFP和GSK3β5-GFP融合蛋白主要分布于细胞质中,而GSK3β4-GFP融合蛋白主要分布于细胞核中。
     8.猪骨骼肌卫星细胞的分离培养及其鉴定。采用qRT-PCR方法检测肌卫星细胞特异表达的标记基因pax7及卫星细胞分化过程中表达的成肌调控因子myogenin。采用肌卫星细胞特异表达的标志蛋白desmin的抗体进行免疫细胞化学染色,结果表明,本研究分离得到的是猪骨骼肌卫星细胞
     9.在分化的猪骨骼肌卫星细胞中添加外源胰岛素,观察猪GSK3β基因不同转录本的表达变化规律。
     10. GYS1基因在猪骨骼肌卫星细胞开始分化后,表达都呈现上调,并且在分化72 h时基因的表达量最高,添加外源胰岛素不能改变mRNA水平的表达量。
     11.在分化的猪骨骼肌卫星细胞中添加外源胰岛素,发现可以改变GSK3β和GS的磷酸化水平,并且具有时间依赖性。
     12.利用基因组步移的方法获得了猪GYSl和GYS2基因启动子区域,这两个基因的启动子区域发现多种潜在的转录因子结合位点,包括PPARs、HNF4α、NF-kappaB和CREB。
     13.利用insulin对转染pGYS1-175/+60,pGYS1-513/+60和pGYS1-1651/+60后的猪肾细胞(PK-15)进行处理,不同启动子的活性有显著下降。
     14.将GYS1启动子pGYS1-175/+60和不同GSK3β的蛋白表达形式的超表达载体pcDNA3.1+-GSK3β1,GSK3β2,GSK3p3和GSK3β5进行共转染。超表达3SK3P5可以使CYS1启动子的活性升高,但是没有达到显著水平。超表达GSK3β1,GSK3β2和3SK3β3可以使GYS1基因启动子的活性显著下降。
     15.采用定量PCR的方法对本实验室利用基因芯片在大白猪和梅山猪中筛选出的骨骼肌发育不同时期和品种间差异表达基因(AMPD1和ALP)进行验证。并分离克隆猪AMPD1和ALP基因,分析其在骨骼肌不同发育阶段和不同肌纤维类型的表达模式。
Meat quality is controlled by many factors and genetic is the mainly factor influencing on pork quality. The glycogen content in muscle affects the meat quality traits of pigs that include ultimate pH、color measures、tenderness and cooking loss.The glycogen metablism has a relationship with meat quality, So many researchers focus on the glycogen metabolism. It will be useful for further investigation on the molecule mechanism of the pork quality. In this study, we focus on the important glycogen metabolism signalling transduction pathway (IGF1-PI3K-AKT-GSK3β).The important genes in this pathway were obtained. Moreover, their potential involvement in the mechanism of action of insulin is discussed in porcine satellite cells.The main results are as follows:
     1.The full-length of coding sequence of porcine GYS1 and GYS2 genes were cloned. Porcine GYS1 and GYS2 showed the highest homology toward their catalytic domains in the central region. The main structural differences between GYS1 and GYS2 isoforms lie in the N and C-terminal regions, which contain the known phosphorylation sites.
     2.GYS1 was detected in all eleven tissues, and GYS2 was only detectable by RT-PCR in liver and fat. Fibres showing granular cytoplasmic accumulations of GYS1 are seen in porcine muscle, and porcine liver sections showed strong positive staining within the hepatocyte cytoplasm.
     3.Association analyses revealed that both the GYS1 Hin6I and MvaI polymorphisms had significant associations (p<0.05) with pH of M. longissimus dorsi (pHLD), pH of M.biceps femoris (pHBF) and pH of M. semipinalis capitis (pHSC) at post slaughter 45 minutes.
     4. The full-length of coding sequence of porcine GSK3αand GSK3βgenes were cloned. The difference in size is due to a glycine-rich extension at the N-terminus of GSK-3α. Although highly homologous within their kinase domains (98% identity), the two gene products share only 36% identity in the C-terminal residues.
     5.During the cloning of porcine GSK3β, sequencing of 32 clones from different tissues cDNA pool revealed five forms of GSK3βmRNA. We named GSK3β1,GSK3β2, GSK3β3,GSK3β4,GSK3β5 respectively.
     6.The expression level of different GSK3βisoforms in different embryo and adult tissues were detected by qRT-PCR.
     7.The cellular locations of each GSK3βisoform were determined by fluorescence and confocal analysis of PK15 cells transiently transfected with different GSK3β-GFP vectors respectively. GSK3β1-GFP、GSK3β2-GFP and GSK3β5-GFP were all found to localize in cytoplasm, however, GSK3β4-GFP displayed a nuclei distribution.
     8.Porcine myogenic satellite cell culture and identification. The pax7 and myogenin expression profile was used to for monitoring the capacity of satellite cell progeny to proliferate and differentiate.
     9.The effect of insulin on the expression of different porcine GSK3βtranstripts.
     10. The expression level of porcine GYS1 is up-regulated in the porcine satellite cells from proliferation to differentiation, but can not be induced significantly during differentiation by insulin.
     11.Insulin promotes phosphorylation of GSK3βand dephosphorylation of GS in differentiated porcine satellite cells.
     12.The promoter regions of porcine GYS1 and GYS2 genes were obtained by genomics walking. The promoter of porcine GYS1 contained several putative transcription factor binding sites (PPARs, HNF4a, NF-kappaB and CREB).
     13.Treatment with insulin resulted in a dramatic reduction in reporter gene activity of the deletion fragment of GYS1 promoter.
     14. The overexpression of GSK3P5 isoforms increases the activity of pGYS1-175/+60, whereas GSK3β1,GSK3β2 and GSK3β4 induce the activity of pGYS1-175/+60.
     15.To assess the validity of the microarray approach to identify differentially expressed genes (AMPD1 and ALP),qRT-PCR was performed. We also cloned and characterized (AMPD1 and ALP) from porcine muscle. Moreover, we analyze the expression patterns of them during skeletal muscle development and in four different muscles contained different muscle fibre types.
引文
1.陈润生,张伟力,经荣斌.猪肉品质研究三十年回眸.猪业科学,2007,7:90-94
    2.何波,郑嵘,熊远著,胡春艳.新生猪骨骼肌卫星细胞的培养鉴定及生物学特性.畜牧兽医学报,2006,37(6):555-559
    3.李梦云,陈代文,张克英.肌糖原含量与猪生产性能、胴体品质及肉质性状间的关系.营养与饲料,2008,44(1):25-29
    4.罗桂芬,文旭辉,杨公社.猪肌卫星细胞的分离培养及鉴定.细胞与分子免疫学杂志,2006,22(6):823-825
    5.熊远著,邓昌彦.种猪测定原理与方法.北京:中国农业出版社,1999:57-118
    6.周光宏等.肉品学,北京:中国农业科技出版社1999,
    7.Andersen O, Ostbye T K, Gabestad I, Nielsen C, Bardal T, Galloway T F. Molecular characterization of a PDZ-LIM protein in Atlantic salmon (Salmo salar):a fish ortholog of the alpha-actinin-associated LIM-protein (ALP). J Muscle Res Cell Motil,2004,25:61-68.
    8.Andersson L. Genetic dissection of phenotypic diversity in farm animals.Nat Rev Genet,2001,2:130-138.
    9.Araki E, Lipes M A, Patti ME, Bruning J C, Haag B, Johnson R S,Kahn C R. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature,1994,372:186-190.
    10. Arino, J. and Guinovart, J.J. Phosphorylation and inactivation of rat hepatocyte glycogen synthase by phorbol esters and mezerein. Biochem Biophys Res Commun, 1986,134:113-119.
    11.Arino J, Mor A, Bosch F, Baanante I V, Guinovart J J. Hormonal effects on the phosphorylation of glycogen synthase in rat hepatocytes.FEBS Lett,1984,170: 310-314.
    12.Bai G.,Zhang Z J, Werner R, Nuttall F Q, Tan A W,Lee E Y. The primary structure of rat liver glycogen synthase deduced by cDNA cloning. Absence of phosphorylation sites 1a and 1b.J Biol Chem,1990,265:7843-7848.
    13.Bausch-Jurken M T, Mahnke-Zizelman D K, Morisaki T, Sabina R L. Molecular cloning of AMP deaminase isoform L. Sequence and bacterial expression of human AMPD2 cDNA. J Biol Chem,1992,267:22407-22413.
    14. Bijur G N, Jope R S.Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. J Biol Chem,2001,276:37436-37442.
    15.Briskey E J. Etiological Status and Associated Studies of Pale, Soft, Exudative Porcine Musculature. Adv Food Res,1964,13:89-178.
    16.Browner M F, Nakano K, Bang A G, Fletterick R J. Human muscle glycogen synthase cDNA sequence:a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci USA,1989,86:1443-1447.
    17.Butler A A, LeRoith D.Minireview:tissue-specific versus generalized gene targeting of the igfl and igflr genes and their roles in insulin-like growth factor physiology. Endocrinology,2001,142:1685-1688.
    18.Cagnazzo M, te Pas M F, Priem J, de Wit A A, Pool M H, Davoli R, Russo V. Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics.J Anim Sci,2006,84:1-10.
    19.Clop A, Ovilo C, Perez-Enciso M, Cercos A, Tomas A, Fernandez A, Coll A, Folch J M, Barragan C, Diaz I, Oliver MA, Varona L, Silio L, Sanchez A, Noguera J L. Detection of QTL affecting fatty acid composition in the pig.Mamm Genome,2003, 14:650-656.
    20. Cohen P, Frame S.The renaissance of GSK3.Nat Rev Mol Cell Biol,2001,2: 769-776.
    21.Craparo A, Freund R, Gustafson T A.14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem,1997,272:11663-11669.
    22.Crook E D, McClain D A. Regulation of glycogen synthase and protein phosphatase-1 by hexosamines.Diabetes,1996,45:322-327.
    23.Cross D A, Alessi D R, Cohen P, Andjelkovich M, Hemmings B A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature,1995, 378:785-789.
    24. Cross D A, Alessi D R, Vandenheede J R, McDowell H E, Hundal H S, Cohen P. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J.1994,303:21-26.
    25.de Koning DJ, Janss L L, Rattink A P, van Oers P A, de Vries B J, Groenen M A, van der Poel J J, de Groot P N, Brascamp E W, van Arendonk J A. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics,1999,152:1679-1690.
    26. Diehl J A, Cheng M, Roussel M F. Sherr C J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev,1998,12: 3499-3511.
    27.Dominguez I, Itoh K, Sokol S Y.Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci USA,1995,92:8498-8502.
    28.Doumit M E, Merkel R A. Conditions for isolation and culture of porcine myogenic satellite cells.Tissue Cell,1992,24:253-262.
    29.Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy A L, Normandin D, Cheng A, Himms-Hagen J, Chan C C, Ramachandran C, Gresser M J, Tremblay M L, Kennedy B P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science,1999,283:1544-1548.
    30.Embi N, Rylatt D B, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem,1980,107:519-527.
    31.Fantin V R, Wang Q, Lienhard G E, Keller S R. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction,and glucose homeostasis. Am J Physiol Endocrinol Metab,2000,278:E127-133.
    32.Fontanesi L, Davoli R, Nanni Costa L, Scotti E, Russo V. Study of candidate genes for glycolytic potential of porcine skeletal muscle:identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs. Cytogenet Genome Res,2003,102:145-151.
    33.Frame S,Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochemical Journal.2001,359:1-16.
    34.Franca-Koh J, Yeo M, Fraser E, Young N, Dale T C.The regulation of glycogen synthase kinase-3 nuclear export by Frat/GBP. J Biol Chem,2002,277: 43844-43848.
    35.Fujii J, Otsu K, Zorzato F, de Leon S,Khanna V K, Weiler J E, O'Brien P J, MacLennan D H.Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science,1991,253:448-451.
    36.Gao Y, Zhang R, Hu X X, Li N.Application of genomic technologies to the improvement of meat quality of farm animals.Meat Sci,2007,77:36-45.
    37.Hanashiro I, Roach P J.Mutations of muscle glycogen synthase that disable activation by glucose 6-phosphate. Arch Biochem and Biophys,2002,397:286-292.
    38.Hancock C R, Brault J J, Terjung R L. Protecting the cellular energy state during contractions:role of AMP deaminase. J Physiol Pharmacol,2006,57, Suppl 10: 17-29.
    39.Henckel P, Karlsson A, Oksbjerg N, et al.Control of postmortem pH decrease in pig muscles:experimental design and testing of animal models.Meat Sci,2000,55:131-138.
    40. Hoeflich K P, Luo J, Rubie E A, Tsao M S, Jin O, Woodgett J R. Requirement for glycogen synthase kinase-3beta in.cell survival and NF-kappaB activation. Nature, 2000,406:86-90.
    41.Hotamisligil G S, Peraldi P, Budavari A, Ellis R, White M F, Spiegelman, B M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science,1996,271:665-668.
    42.Immonen K, Puolanne E. Variation in residual glycogenglucose concentration at ultimate pH values below 5.75.Meat Sci,2000,55:279-283.
    43.Jeon J T, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L,Andersson K,Hansson I,Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet,1999,21:157-158.
    44.Jope R S,Johnson G V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci,2004,29:95-102.
    45.Kadotani A, Fujimura M, Nakamura T, Ohyama S,Harada N, Maruki H, Tamai Y, Kanatani A, Eiki J, Nagata Y. Metabolic impact of overexpression of liver glycogen synthase with serine-to-alanine substitutions in rat primary hepatocytes.Arch Biochem Biophys,2007,466:283-289.
    46.Kaslow H R, Lesikar D D.Isozymes of glycogen synthase. FEBS Lett,1984, 172:294-298.
    47.Kaslow H R, Lesikar D D, Antwi D, Tan A W. L-type glycogen synthase. Tissue distribution and electrophoretic mobility. J Biol Chem,1985,260:9953-9956.
    48.Kim J K, Kim Y J, Fillmore J J, Chen Y, Moore I, Lee J, Yuan M, Li Z W, Karin M, Perret P, Shoelson S E, Shulman G I. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest,2001,108:437-446.
    49.Klaavuniemi T, Kelloniemi A, Ylanne J.The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line. J Biol Chem,2004,279:26402-26410.
    50. Klaavuniemi T, Ylanne J.Zasp/Cypher internal ZM-motif containing fragments are sufficient to co-localize with alpha-actinin-Analysis of patient mutations.Exp Cell Res.2006,312:1299-1311.
    51.Larzul C, Lefaucheur L, Ecolan P, Gogue J, Talmant A, Sellier P, LeRoy P, Monin G. Phenotypic and genetic parameters for longissimus muscle fiber Characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J Anim Sci. 1997,75:3126-3137.
    52.Le Roy P, Naveau J, Elsen J M, Sellier P. Evidence for a new major gene influencing meat quality in pigs. Genet Res,1990,55:33-40.
    53.Leheska J M, Wulf D M, Clapper J A, Thaler R C, Maddock R J. Effects of high-protein/low-carbohydrate swine diets during the final finishing phase on pork muscle quality. J Anim Sci,2002a,80:137-142.
    54. Leheska J M, Wulf D M, Maddock R J.Effects of fasting and transportation on pork quality development and extent of postmortem metabolism. J Anim Sci.2002b,80: 3194-3202.
    55.Liang M H, Chuang, D M.Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. J Biol Chem,2007,282:3904-3917.
    56.Lietzke S E, Bose S,Cronin T, Klarlund J, Chawla A, Czech M P, Lambright D G. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell,2000,6:385-394.
    57.Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001,25:402-408.
    58.Lorenzen-Schmidt I, McCulloch A D, Omens J H.Deficiency of actinin-associated LIM protein alters regional right ventricular function and hypertrophic remodeling. Ann Biomed Eng,2005,33:888-96.
    59.Lorenzen-Schmidt I,Pashmforoush M,Chien K R,McCulloch A D,Omens J H. Influence of actinin-associated LIM protein (ALP) on ventricular function in mice. FASEB Journal,2000,14:A158-A158.
    60. MacAulay K, Blair A S,Hajduch E, Terashima T,Baba O, Sutherland C, Hundal H S. Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem,2005,280,9509-9518.
    61.Manchester J, Skurat A V, Roach P, Hauschka S D, Lawrence J C.Increased glycogen accumulation in transgenic mice overexpressing glycogen synthase in skeletal muscle. Proc Natl Acad Sci USA,1996,93:10707-10711.
    62.Mccue M E, Valberg S J, Miller M B, Wade C, DiMauro S,Akman H O, Mickelson J R. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics,2008,91:458-466.
    63.Meares G P, Jope R S.Resolution of the nuclear localization mechanism of glycogen synthase kinase-3:functional effects in apoptosis. J Biol Chem,2007,282: 16989-17001.
    64. Milan D, Jeon J T, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S,Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy P L, Chardon P,Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science,2000,288:1248-1251.
    65.Milan D, Woloszyn N, Yerle M, Le Roy P, Bonnet M, Riquet J, Lahbib-Mansais Y, Caritez J C, Robic A, Sellier P, Elsen J M, Gellin J.Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15.Mamm Genome,1996,7:47-51.
    66.Mukai F, Ishiguro K, Sano Y, Fujita S C. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3beta. J Neurochem,2002,81:1073-1083.
    67.Myers M G, Backer J M, Sun X J, Shoelson S,Hu P, Schlessinger J, Yoakim M, Schaffhausen B,White, M F. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.Proc Natl Acad Sci USA,1992,89: 10350-10354.
    68.Nakae J, Park B C, Accili D.Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem,1999,274:15982-15985.
    69. Newgard C B, Brady M J, O'Doherty R M, Saltiel A R. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1.Diabetes, 2000,49:1967-1977.
    70. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R,Karim L, Kvasz A, Leroy P, Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs.Nat Genet,1999,21:155-156.
    71.Ogasawara N, Goto H, Yamada Y. AMP deaminase isozymes in rabbit red and white muscles and heart. Comp Biochem Physiol B,1983,76:471-473.
    72.Ortenblad N, Young J F, Oksbjerg N, Nielsen J H, Lambert I H. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells.Am J Physiol Cell Physiol,2003,284:C1362-1373.
    73.Pashmforoush M, Pomies P, Peterson K L, Kubalak S,Ross J R, Hefti A, Aebi U, Beckerle M C,Chien K R. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med,2001,7:591-597.
    74.Patti M E, Kahn C R. The insulin receptor--a critical link in glucose homeostasis and insulin action. J Basic Clin Physiol Pharmacol,1998,9:89-109.
    75.Pederson B A, Chen H Y, Schroeder J M, Shou W N, DePaoli-Roach A A, a Roach, P J. Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol, 2004,24:7179-7187.
    76.Pederson B A,Schroeder J M,Parker G E,Smith M W,DePaoli-Roach A A,Roach P J.Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes,2005,54: 3466-3473.
    77.Pessin J E, Saltiel A R. Signaling pathways in insulin action:molecular targets of insulin resistance. J Clin Invest,2000,106:165-169.
    78.Pomies P, Macalma T, Beckerle M C.Purification and characterization of an alpha-actinin-binding PDZ-LIM protein that is up-regulated during muscle differentiation. J Biol Chem,1999,274:29242-29250.
    79.Pomies P, Pashmforoush M, Vegezzi C, Chien K R, Auffray C, Beckerle M C. The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol Biol Cell,2007,18:1723-1733.
    80.Pons S,Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher T L, Myers M G,Sun X J, White M F. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol,1995,15:4453-4465.
    81.Rehfeldt C.Consequences of birth weight for postnatal growth performance. J Anim Sci,2005,83:91-91.
    82.Rehfeldt C, Fiedler I, Dietl G, Ender K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection.:Livest Prod Sci 2000,66:177-188.
    83.Roach P J.Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J,1990,4:2961-2968.
    84. Rommel C, Bodine S C, Clarke B A, Rossman R, Nunez L, Stitt T N, Yancopoulos G D, Glass D J.Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways.Nat Cell Biol,2001,3: 1009-1013.
    85.Ros S,Garcia-Rocha M, Dominguez J, Ferrer J C, Guinovart J J. Control of Liver Glycogen Synthase Activity and Intracellular Distribution by Phosphorylation. J Biol Chem,2009,284:6370-6378.
    86.Rosenvold K, Andersen H J.Factors of significance, for pork quality-a review. Meat Sci,2003,64:219-237.
    87.Rosenvold K, Essen-Gustavsson B, Andersen H J.Dietary manipulation of pro-and macroglycogen in porcine skeletal muscle. J Anim Sci,2003,81:130-134.
    88.Ryu Y C, Kim B C..The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci,2005,71:351-357.
    89.Sabina R L, Marquetant R, Desai N M, Kaletha K, Holmes EW. Cloning and sequence of rat myoadenylate deaminase cDNA. Evidence for tissue-specific and developmental regulation. J Biol Chem,1987,262:12397-12400.
    90. Sabina R L, Morisaki T, Clarke P, Eddy R, Shows T B,Morton C C, Holmes E W. Characterization of the human and rat myoadenylate deaminase genes.J Biol Chem, 1990,265:9423-9433.
    91.Saltiel A R, Kahn C R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature,2001,414:799-806.
    92.Schaffer B,Wiedau-Pazos M,Geschwind D H. Gene structure and alternative splicing of glycogen synthase kinase 3 beta (GSK-3beta) in neural and non-neural tissues.Gene,2003,302:73-81.
    93.Skurat A V, Roach P J. Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem,1995,270:12491-12497.
    94.Skurat A V, Roach P J.Multiple mechanisms for the phosphorylation of C-terminal regulatory sites in rabbit muscle glycogen synthase expressed in COS cells.Biochem J,1996,313 (Pt 1):45-50.
    95.Stambolic V, Woodgett J R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J,1994,303 (Pt 3):701-4.
    96.Stratil A, Knoll A, Moser G, Kopecny M, Geldermann H.The porcine adenosine monophosphate deaminase 1 (AMPD1) gene maps to chromosome 4. Anim Genet, 2000,31:147-148.
    97.Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S.Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1.Nature,1994,372:182-186.
    98.Van Laere A S,Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S,Buys N, Tally M, Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature,2003,425:832-836.
    99.Walling G A, Visscher P M, Andersson L, Rothschild-M F, Wang L, Moser G, Groenen M A, Bidanel J P, Cepica S,Archibald A L, Geldermann H, de Koning D J, Milan D, Haley C S.Combined analyses of data from quantitative trait loci mapping studies. Chromosome 4 effects on porcine growth and fatness.Genetics,2000,155: 1369-1378.
    100.White B R, Lan Y H, McKeith F K, Novakofski J, Wheeler M B, McLaren D G. Growth and body composition of Meishan and Yorkshire barrows and gilts.J Anim Sci,1995,73:738-749.
    101.White M F. The IRS-signalling system:a network of docking proteins that mediate insulin action. Mol Cell Biochem,1998,182:3-11.
    102.Wigmore P M, Stickland N C.Muscle development in large and small pig fetuses.J Anat,1983,137(Pt 2):235-245.
    103.Withers D J, Gutierrez J S,Towery H, Burks D J, Ren J M, Previs S,Zhang Y, Bernal D, Pons S,Shulman G I, Bonner-Weir S,White M F. Disruption of IRS-2 causes type 2 diabetes in mice. Nature,1998,391:900-904.
    104.Wood, J.D.and Enser, M.Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Br J Nutr,1997,78:S49-60.
    105.Woodgett J R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 1990,9:2431-2438.
    106.Woodgett J R. cDNA cloning and properties of glycogen synthase kinase-3.Methods Enzymol,1991,200:564-577.
    107.Woodgett J R, Cohen P. Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5).Biochim Biophys Acta,1984,788:339-47.
    108.Xia H,Winokur S T, Kuo W L, Altherr M R,Bredt D S.Actinin-associated LIM protein:identification of a domain interaction between PDZ and spectrin-like repeat motifs.J Cell Biol,1997,139:507-515.
    109.Yuan M, Konstantopoulos N, Lee J, Hansen L, Li Z W, Karin M, Shoelson S E. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science,2001,293:1673-1677.
    110.Zhang F, Phiel C J, Spece L, Gurvich N, Klein P S.Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3)in response to lithium. Evidence for autoregulation of GSK-3.J Biol Chem,2003,278:33067-33077.
    111.Zhou B P, Deng J, Xia W, Xu J, Li Y M, Gunduz M, Hung M C. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol,2004,6:931-940.
    112.Zuo B, Xiong Y Z, Deng C Y, Su YH, Wang J, Lei M G,Li F E, Jiang S W, Zheng R. Polymorphism, linkage mapping and expression pattern of the porcine skeletal muscle glycogen synthase (GYS1) gene. Anim Genet,2005,36:254-257.
    113.Zuo B, Yang H, Lei M G,Li F E, Deng C Y, Jiang S W, Xiong Y Z. Association of the polymorphism in GYS1 and ACOX1 genes with meat quality traits in-pigs. Animal,2007,1:1243-1248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700