体外诱导小鼠肌源干细胞向类雪旺细胞分化的条件和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】周围神经损伤是常见的外科疾病,临床医生和科学工作者长期致力于提高外科技术和手术方法以促进周围神经损伤的修复,取得了一定效果,但其术后功能恢复仍不满意。自体神经移植会造成供区感觉、运动功能障碍,且可供移植的神经极其有限;供体神经多细小,与缺损的神经常难以匹配;异体神经移植又面临免疫排斥问题。组织工程学的发展为此提供了一种新的解决途径,其中雪旺细胞是周围神经组织工程中研究较多并且有效的种子细胞,在神经再生中发挥重要的作用。移植的雪旺细胞可在周围神经内存活、增殖、迁移和分化,并分泌多种神经营养因子、细胞黏附分子和细胞外基质,促进轴突的再生和髓鞘形成,从而促进周围神经的修复。但是作为种子细胞,雪旺细胞的分化能力较低,是一种终末期细胞,来源有限,并且存在移植排斥问题,所以需要一种更为年轻化的细胞,通过其诱导分化成为雪旺细胞。已报道成功诱导分化为雪旺细胞的干细胞包括:骨髓间充质千细胞、脂肪源性干细胞、神经干细胞、皮肤源性祖细胞等。但关于肌源干细胞诱导分化为雪旺细胞的研究却鲜有报道。肌源干细胞是新近发现的干细胞,具有较好的自我更新和多分化潜能,可以分化成肌肉细胞、造血细胞、成骨细胞、软骨细胞、内皮细胞、脂肪细胞、肝细胞和神经细胞等。如果能成功诱导肌源干细胞分化为雪旺细胞,将具有组织来源多,获取较容易,对机体损伤相对较小,具有免疫优越性,较容易获取和扩增等优点,能为临床治疗周围神经损伤提供一种新的思路和选择。本课题在应用雪旺细胞条件培养液诱导小鼠肌源干细胞分化为类雪旺细胞的基础上,进一步研究其诱导机制。雪旺细胞能分泌多种神经营养因子,并且与其有密切的相互作用,在周围神经再生中发挥重要作用。因此我们确定以神经营养因子作为研究因素,在成功分离、培养小鼠肌源干细胞,以雪旺细胞条件培养液诱导其分化为类雪旺细胞的基础上,进一步以神经营养因子作为诱导因素,用其体外诱导小鼠肌源干细胞,观察诱导效果,从而进一步明确神经营养因子在小鼠肌源干细胞的诱导和分化中的作用。
     【目的】(1)掌握小鼠肌源干细胞的分离、纯化、培养及鉴定技术。尤其是利用显微镜和显微手术器械分离获取较纯净的肌肉组织,提高分离纯度,减少组织损伤;摸索并掌握差速贴壁法的贴壁时间,从而提高培养效率;(2)获取小鼠雪旺细胞条件培养液并以其诱导小鼠肌源干细胞,确定其诱导效果;(3)对小鼠雪旺细胞条件培养液中的神经营养因子成分有选择的进行检测,挑选表达较高的神经营养因子作为诱导条件进行研究;(4)神经营养因子诱导小鼠肌源干细胞,观察细胞形态学变化并检测其特异性标记物的表达以确定诱导效果,从而进一步明确小鼠肌源干细胞诱导分化为类雪旺细胞的机制,为肌源干细胞诱导为类雪旺细胞并治疗周围神经损伤提供实验室基础。
     【方法】(1)显微镜下获取较纯净的新生小鼠骨骼肌肌组织,应用酶消化法和改良的pre-plating差速贴壁法,消化、分离、纯化出小鼠原代肌源干细胞;用台盼蓝染色法鉴定所获小鼠肌源干细胞的活性;倒置相差显微镜下观察历次贴壁细胞和肌源干细胞的细胞形态改变和生长状态;以Sca-1(干细胞表面标记物)和Desmin(肌源性标记物)进行western、免疫组织化学荧光染色及流式细胞检测进行鉴定;(2)显微镜下取小鼠坐骨神经和背根神经节经消化、培养获得小鼠雪旺细胞,并获得小鼠雪旺细胞条件培养液;以小鼠雪旺细胞条件培养液诱导小鼠肌源干细胞,倒置显微镜下观察细胞形态改变,并以S100,GFAP和p75等雪旺细胞表面标记物进行western bolt、免疫组织化学荧光染色及流式细胞学检测进行鉴定;(3)用ELISA方法检测雪旺细胞条件培养液中相关神经营养因子的表达情况,选取表达量相对较高的神经营养因子作为进一步诱导MDSCs向雪旺细胞方向分化的的诱导因子加以研究;(4)将选择的神经营养因子加入干细胞培养液对小鼠肌源干细胞进行体外诱导,倒置显微镜下观察细胞的形态学改变,并以S100,GFAP和p75等雪旺细胞表面标记物进行western blot、免疫组织化学荧光染色及流式细胞学检测进行鉴定。
     【结果】(1)台盼蓝染色法显示分离、纯化所得小鼠肌源干细胞的活性为95%;倒置显微镜下观察历次贴壁细胞和肌源干细胞的细胞形态和生长状态,发现细胞呈小圆形或短梭形的形态特征,未发生分化,增殖速度快, Sca-1和Desmin的细胞免疫组织化学荧光染色均呈现阳性;流式细胞检测结果亦显示Sca-1和Desmin阳性表达,阳性率分别为93.23±0.93%和94.18±0.38%,双阳性率为90.1±1.28%;(2)小鼠雪旺细胞条件培养液成功诱导小鼠肌源干细胞向类雪旺细胞分化,发现小鼠肌源干细胞诱导72h后细胞形态发生改变,成梭形或条索形,两端有突起形成,成片聚集,诱导后细胞免疫组织化学荧光检测特异性标记物S100的表达,结果显示为阳性;流式细胞检测结果亦显示雪旺细胞特异性标记物S100,GFAP和p75阳性表达,阳性率分别为65.48±6.20%、39.84±1.66%和41.08±0.78%,三阳性率约为25.86±5.37%;(3)用ELISA方法检测小鼠雪旺细胞条件培养液中神经营养因子的表达情况,发现除FGF、GDNF基本检测不到外,神经生长因子(NGF)、脑源性神经生长因子(BDNF)、神经营养素-3(NT-3)、血小板源性生长因(PDGF)、胰岛素样生长因子-2(IGF-2)均有不同量的表达,因此确定以上述有表达的神经营养因子为研究对象;(4)5种NTFs单独诱导小鼠肌源干细胞,结果无作用;尝试5种NTFs两两组合,共10组进行诱导,结果也未发现明显效果;尝试5种NTFs三三组合,共9组进行诱导小鼠肌源干细胞,结果神经营养素-3(NT-3)(500pg/ml)、血小板源性生长因(PDGF)(1000pg/ml)、胰岛素样生长因子-2(IGF-2)(200pg/ml)组成功诱导其分化为类雪旺细胞,其余组无效。诱导72h后小鼠肌源性干细胞细胞形态发生改变,成梭形或条索形,两端有突触形成,成片聚集,分布较散乱;诱导后细胞免疫荧光检查雪旺细胞特异性标记物S100的表达为阳性;流式细胞检测结果亦显示雪旺细胞特异性标记物S100,GFAP和p75阳性表达,阳性率分别为58.64±4.38%、47.38±0.84%和44.33±2.39%;三阳性百分比约为27.89±5.98%。
     【结论】对传统的pre-plating差速贴壁法加以改良,应用显微外科技术,从小鼠骨骼肌组织中分离、纯化获得活性良好、纯度较高的肌源干细胞;在明确小鼠雪旺细胞条件培养液能成功诱导小鼠肌源干细胞分化为类雪旺细胞的前提下,进一步明确小鼠肌源干细胞分化为类雪旺细胞的分子机制,从而更准确的探讨肌源干细胞的分化条件;为雪旺细胞作为种子细胞提供更广阔的选择空间;为周围神经损伤修复的临床治疗和实验室研究提供更多的参考。
【Background】peripheral nerve injury is a very frequent diseases in clinicalsurgery. Clinicians and scientist devoted to improve their surgical technique and method torepair injured peripheral nerves. But the result is still disaffect with regard to those severenerve stem injury and the functional rehabilitation after treatment; autoallergic nervetransplantation usually caused sensory disorders and motor dysfunction; And it is very toobtain enough donor tissue and allotransplantation faced with immunologic rejection.Therefore, Tissue Engineering become to be the hotspot. Schwann cell is a kind of TissueEngineering cell which is effective and well studied. Schwann cells can survive,proliferate, differentiate and secrete kinds of neurotrophic factors,cellular adhesionmolecules and extracellular matrix to promote the regeneration of axon and themedullation after transportation, thereby promote the restoration of peripheral nerves.However as seed cells, Schwann cells have a very limited differentiation potency,theyare terminal-stage cells and hard to obtain. Therefore we need another kind of cell which isyounger and could differentiate to schwann cells. According to the papers, many kinds ofstem cells could differentiate to schwann cells include bone marrow mesenchyma stemcells(BMSCs),bone marrow stroma stem cells(MSCs),adipose-derived stem cells(ADSCs), nerve stem cells(NSCs)and etc.
     Muscle drived stem cells(MDSCs)reside in skeletal muscles,and could differentiateto muscle cells, hematopoietic cells, osteoblasts, chondrocytes,endotheliocytes,endotheliocytes, hepatocytes; nerve cells and ect. But we had hardly any heard about thenews that MDSCs induced to schwann cells. If we could successfully induce MDSCs toschwann cells-like, it will be a new thread and provide a new choice for peripheral nerveinjury treatment of peripheral nerve injury.
     【Objective】(1)To master the method and technique of digestion, isolation,cultivation and identification of mouse muscle drived stem cells;(2)prepare Schwann cell conditioned medium, make sure that it could induce mouse MDSCs to schwann cells-like;(3) to detect the expression of several kinds of NTFs in Schwann cell conditioned mediumaccording to our available condition and relevant papers;choose the higher-express onesto induce MDSCs;(4)mouse MDSCs were induced by NTFs,then morphocytology,immunohistochemistry and flow cytometry was detected to make sure that the cells afterinduction are schwann cells-like; to provide a new alternative choise for laboratory studiedand clinical treatment.
     【Methods】(1) obtain the pure mouse skeletal muscle tissue under microscope,usethe enzyme digestion and improved pre-plating technique to digest, isolate and purify thetissue,when we got the cells(tSCs), use trypan blue staining to evaluate the activity ofthem;observe the appearance and growth of tSCs;then immunohistochemistry and flowcytometry was detected to make sure that the cells after induction are MDSCs use theMarker(sSca-1,Desmin)of mouse MDSCs;(2)Schwann cells were isolated from mousesciatic nerve and Dorsal Root Ganglia(DRG),and were identified byimmunohistochemistry and flow cytometry method use the commonly used makers(S100,GFAP,p75) of Schwann cell. Schwann cell conditioned medium was obtainedby half-harvest method;(3) Detect the expression of NTFs in Schwann cell conditionedmedium culture with ELISA method and choose the higher express one induce mouseMDSCs;(4) Induce mouse MDSCs with NTFs by add it in stem cell growth medium; thenobserve the appearance and growth of tSCs; immunohistochemistry and flow cytometrywas detected to evaluate the cells after induction use the commonly used makers(S100,GFAP,p75) of Schwann cell.
     【Results】(1) trypan blue staining showed that the activity of MDSCs was95%;mouse MDSCs under inverted microscope were little round-shaped or shotspindle-shaped; differentiation didn’t happen and differentiation is fast; thenimmunohistochemistry showed that Sca-1and Desmin were both positive expressed;theflow cytometry showed that the positive rate of Sca-1and Desmin expression was93.23±0.93%and94.18±0.38%,Double positive rate was90.1±1.28%;(2)mouseMDSCs was successfully induced to Schwann cells-like by Schwann cell conditionedmedium,after72h induction,the cells presented spindle or trabs shape and appeared synapses in both side;immunohistochemistry showed that S100was positive expressed;the flow cytometry showed that S100,GFAP and P75was positive expressed,thepositive rate was65.48±6.20%、39.84±1.66%and41.08±0.78%respectively,the triplepositive rate was about25.86±5.37%;(3) the ELISA detection showed that among theNTFs,besides FGF and GDNF were undetected, NGF, BDNF, NT-3,PDGF and IGF-2were expressed in different level,so we decided to induce MDSCs with these five NTFs;(4)After72h induction by NT-3(500pg/ml), PDGF(1000pg/ml) and IGF-2(200pg/ml), thecells presented spindle or trabs shape and appeared synapses in both side;immunohistochemistry showed that S100was positive expressed;the flow cytometryshowed that S100,GFAP and P75was positive expressed,the positive rate was58.64±4.38%、47.38±0.84%and44.33±2.39%respectively,the triple positive rate wasabout27.89±5.98%.
     【Conclusions】(1)we obtained high-activity and high-purity MDSCs from mouseskeletal muscle tissue through improved pre-plating technique and the use of microsurgicaltechnique;successfully induced mouse MDSCs to Schwann cells-like both with Schwanncell conditioned medium and NTFs(NT-3,PDGF and IGF-2),therefore provide a newalternative choise and for laboratory studied and clinical treatment of peripheral nerveinjury.
引文
[1] Wiberg, M. Terenghi, G.Will it be possible to produce peripheral nerves? Surg Technol Int2003,11:303-310.
    [2] Dadon-Nachum M, Melamed E, Offen D. Stem cells treatment for sciatic nerve injury. ExpertOpin Biol Ther.2011Dec;11(12):1591-7.
    [3] Lundborg G.A25year perspective of peripheral nerve surgery:evolving neuroscientific conceptsand clinical sign.Ficance [J].J Hand Surg Am,2000,25(3):391-414.
    [4] Lukas A. Pfister, MichaeL PapaloIzos. Nerve conduits and growth factor delivery in peripheralnerve repair. Journal of the Peripheral Nervous System12:65–82(2007).
    [5]赵娟,俞红,徐义明.物理治疗促进坐骨神经损伤再生的实验研究.中国修复重建外科杂志2011年1月第25卷第1期
    [6]孔令海.显微外科技术修复周围神经损伤.医学创新研究2007年11月第4卷第32期
    [7] Abefi FM, Abbas BP. End-to-fide neurorrhaphy:an experimental study in rabbits.Microsttrgery,2003,23:359-362.
    [8] Elizabeth O. Johnson, Aristides B. Zoubos. Regeneration and repair of peripheral nerves. Injury,Int. J. Care Injured (2005)36S, S24-S29.
    [9] Pfister BJ, Gordon T, Biomedical engineering strategies for peripheral nerve repair: surgicalapplications, state of the art, and future challenges. Crit Rev Biomed Eng.2011;39(2):81-124.
    [10] Raimondo S, Fornaro M, Perspectives in regeneration and tissue engineering of peripheral nerves.Ann Anat.2011Jul;193(4):334-40.
    [11] Deal DN, Griffin JW, Hogan MV. Nerve conduits for nerve repair or reconstruction. J Am AcadOrthop Surg.2012Feb;20(2):63-8.
    [12] Srinivas Madduri and Bruno Gander. Schwann cell delivery of neurotrophic factors for peripheralnerve regeneration. Journal of the Peripheral Nervous System15:93–103(2010).
    [13] Dong MM, Yi TH. Stem cell and peripheral nerve injury and repair. Facial Plast Surg.2010Oct;26(5):421-7.
    [14] Dezawa M.Adachi-Usami E. Role of schwann cells in retinal ganglion cell axonregeneration.Prog Retin Eye Res2000;l9(2):l7l-204.
    [15] Wakao S, Hayashi T, Long-term observation of auto-cell transplantation in non-human primatereveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheralnerve regeneration. Exp Neurol.2010Jun;223(2):537-47.
    [16] Paul J. Kingham. Daniel F. Kalbermatten. Adipose-derived stem cells differentiate into a Schwanncell phenotype and promote neurite outgrowth in vitro. Experimental Neurology207(2007)267–274.
    [17] Satoshi Shimizu, Masaaki Kitada. Peripheral nerve regeneration by the in vitrodifferentiated-human bone marrow stromal cells with Schwann cell property. Biochemical andBiophysical Research Communications359(2007)915–920.
    [18] Fátima Rosalina Pereira Lopes, Flávia Frattini.Transplantation of bone-marrow-derived cells intoa nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration oftransected mouse sciatic nerve. G Model JMIC-1515; No. of Pages8.
    [19] Hou SY, Zhang HY, Quan DP, Liu XL, Zhu JK. Tissue-engineered peripheral nerve grafting bydifferentiated bone marrow stromal cells. Neuroscience.2006Jun19;140(1):101-10.
    [20] Gerburg Keilhoff, Alexander Goihl. Transdifferentiation of mesenchymal stem cells into Schwanncell-likemyelinating cells. European Journal of Cell Biology85(2006)11–24.
    [21] Chun-Jung Chen, Yen-Chuan Ou. Transplantation of bone marrow stromal cells for peripheralnerve repair. Experimental Neurology204(2007)443–53.
    [22] Bridget M Deasy, Yong Li. Tissue engineering with muscle-derived stem cells. Current Opinion inBiotechnology2004,15:419–423.
    [23] Patrick Seale, Atsushi Asakura, The Potential of Muscle Stem Cells. Developmental Cell, Vol.1,333-342, September,2001,
    [24] RJ Jankowski, BM Deasy. Muscle-derived stem cells. Gene Therapy (2002)9,642–647.
    [25] Arvydas Usas, Johnny Huard. Muscle-derived stem cells for tissue engineering and regenerativetherapy. Biomaterials28(2007)5401–5406.
    [26] Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B,Gates C, Wernig A, Huard J. Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration. J Cell Biol.2002May27;157(5):851-64.
    [27] S. Hall. Nerve repair: a neurobiologist’s view. J Hand Surg Br,2001,26(2):129-36.
    [28] Frostick, S.P., Yin, Q., Kemp, G.J.. Schwann cells, neurotrophic factors, and peripheral nerveregeneration. Microsurgery,1998,18(7):397-405.
    [29] Ide, C. Peripheral nerve regeneration. Neurosci Res,1996,25(2):101-121.
    [30] Negishi H, Dezawa M, Oshitari T, Adachi-Usami E. Optic nerve regeneration within artificialSchwann cell graft in the adult rat. Brain Res Bull,2001,55(3):409-19.
    [31] Li, Q. Ping, P.Jiang, H., Liu, K.. Nerve conduit filled with GDNF genemodified Schwann cellsenhances regeneration of the peripheral nerve. Microsurgery,2006,26(2):116-21.
    [32] Mosahebi, A., Fuller, P., Wiberg, M., Terenghi, G.. Effect of allogeneic Schwann celltransplantation on peripheral nerve regeneration. Exp Neurol,2002,173(2):213-223.
    [33] Rutkowski, G.E., Miller, C.A., Jeftinija, S., Mallapragada, S.K.. Synergistic effects ofmicropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. JNeural Eng,2004,1(3):151-7.
    [34] Tohill, M., Terenghi, G.. Stem-cell plasticity and therapy for injuries of the peripheral nervoussystem. Biotechnol. Biotechnol Appl Biochem,2004,40(Pt1):17-24.
    [35] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman,M.A., Simonetti, D.W., Craig, S., Marshak, D.R.. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147.
    [36] Barry, F.P., Murphy, J.M.. Mesenchymal stem cells: clinical applications and biologicalcharacterization. Int. J. Biochem. Cell Biol,2004,36(4):568-584.
    [37] Caddick, J., Kingham, P.J., Gardiner, N.J., Wiberg, M., Terenghi, G. Phenotypic and functionalcharacteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia,2006,54(8):840-849.
    [38] Keilhoff, G., Goihl, A., Langnase, K., Fansa, H., Wolf, G.. Transdifferentiation of mesenchymalstem cells into Schwann cell-like myelinating cells. Eur J Cell Biol,2006,85(1):11-24.
    [39] Gimble, J., Guilak, F.. Adipose-derived adult stem cells: isolation, characterization, anddifferentiation potential. Cytotherapy,2003,5(5):362-369.
    [40] Strem, B.M., Hicok, K.C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R.E., Fraser, J.K., Hedrick,M.H.. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med,2005,54(3):132-141.
    [41] Paul J. Kingham, Daniel F. Kalbermatten, Daljeet Mahay, Stephanie J. Armstrong, MikaelWiberg, Giorgio Terenghi. Adipose-derived stem cells differentiate into a Schwann cellphenotype and promote neurite outgrowth in vitro. Experimental Neurology,2007,207(2):267-274.
    [1] Asakura A.Stem cells in adult skeletal muscle.Trends Cardiovasc Med,2003,13(3)123-128
    [2] Seale, P.and Rudnicki, M.A. A new look at the origin, function, and―stem-cell‖status of musclesatellite cells. Dev Biol,2000,218(2):115-124.
    [3] Allen R,Tennm Grove C,Sheehan S,et aL Skeletal mucle cultures[J].Methods Cell Biol,1997,(52):108-112.
    [4] Gussoni, E., Soneoka, Y., Strickland, C.D., Buzney, E.A., Khan, M.K., Flint, A.F., Kunkel,L.M.and Mulligan, R.C. Dystrophin expression in the mdx mouse restored by stem celltransplantation. Nature,1999,401(6751):390-394.
    [5] Jackson, K.A., Mi, T., Goodell, M.A. Hematopoietic potential of stem cells isolated from murineskeletal muscle. Proc. Natl. Acad. Sci. USA.1999,96(25):14482-14486.
    [6] Jackson K A,Mi T,Goodel M.Hematopoietic potential of stem cells isolated from routine skeletalmuscle[J].Proc Natl Acad Sci U S A,1999,(96):14482-14486.
    [7] Seal P,Sabourin L A,Oirgis Gabardo A,et a1.Pax7is reqmredfor the specification of myogenicsatellite cells[J].Cell,2000(102):771-786.
    [8] Jiang Y,Vaessen B,Lenvik T,et a1.Multipotent progenitor cells can be isolated from po stnatalmurine bone nlanow.muscle,and brain.Exp Hematol,2002,30(8):896-904
    [9] Adachi N.muscle derived cell-based ex vivo gene therapy for the treatment of full-thicknessarticular cartilage defectsI-J].JRheumatol,2000,(43):1781-1788.
    [10] Mckinney-Freeman S L,Jackson K A,Camargo F D,et al. Muscle-derived hematopoietic stemcells are hematopo ietic in orisin[J].PNAS,2002,(99):1341-1346.
    [11] Cao B,Zheng B,Jankowski R J,et a1.Muscle stem cells differentiation into haematopoieticlineages but retain myogenic oerentia1.Nat Cel Bi,2003.5(7):640-646
    [12] Torrente Y, Tremblay J P, Pisati F, et a1. Intraarterial injection of muscle-derivedCD34(+)Sea-1(+)stem cells restores dystrophin in mdx mice.Cel Biol,2001,152(2):335-348
    [13] Geiger H,True J M,Grimes B,et al, Analysis of the hematopoietic potential of muscle-derivedcells in mice.Blood,2002,100(2):721-723
    [14] Wei Y,Li Y,Chen C,et a1.Human skeletal muscle-derived stem cells retain stem cell propertiesafter expansion in myosphere culture.Exp Cell Res,2011,317(7):1016-1027.
    [15] Deasy B M,Gharaibeh B M,PoHett J B,et a1.Long-term self-renewal of postnatalMuscle-derived Stem CeHs.Mol Biol Cell,2005,16(7):3323—3333
    [16] Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, CaoB,Gates C, Wernig A, Huard J. Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration. J Cell Biol,2002,157(5):851-64.
    [17] Pate DW et al. Isolation and differentiation of mesenchymal stem cells from rabbit muscle. ClinRes1993;41:374A.
    [18] Young HE et al. Pluripotent mesenchymal stem cells reside within avian connective tissue matrices.In Vitro Cell Dev Biol Anim1993;29A:723–736.
    [19] Rogers JJ et al. Differentiation factors induce expression of muscle, fat, cartilage, and bone in aclone of mouse pluripotent mesenchymal stem cells. Am Surg1995;61:231–236.
    [20] Williams JT et al. Cells isolated from adult human skeletal muscle capable of differentiating intomultiple mesodermal phenotypes. Am Surg1999;65:22–26.
    [21] Young HE, Steele TA, Bray RA, Detmer K, Blake LW, Lucas PW, Black AC Jr. Human pluripotentand progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56andMHC class-1. Proc Soc Exp Biol Med,1999,221(1):63-71.
    [22] Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG. Cells isolated from adult humanskeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg,1999,65(1):22-26.
    [23] Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J. Synergistic enhancement ofbone formation and healing by stem cell expressed VEGF and bone morphogenetic protein-4. JClin Invest,2002,110(6):751–9.
    [24] Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J.Cartilage repairusing bone morphogenetic protein4and muscle-derived stem cells. Arthritis Rheum,2006,54(2):433-42.
    [25] Peng H, Huard J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair.Transpl Immunol,2004,12(3-4):311-9.
    [26] Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B, Cummins J, Epperly M,Qu-Petersen Z, Huard J. Muscle stem cells differentiate into haematopoietic lineages but retainmyogenic potential. Nat Cell Biol,2003,5(7):640-6.
    [27] Sarig R, Baruchi Z, Fuchs O, Nudel U, Yaffe D. Regeneration and transdiferentiation potentialofmuscle-derived stem cells propagated as myospheres. Stem Cels,2006,24(7):1769-78.
    [28] Buján J, Pascual G, Corrales C, Gómez-Gil V, Garcia-Honduvilla N, Bellón JM. Muscle-derivedstem cells used to treat skin defects prevent wound contraction and expedite reepithelialization.Wound Repair Regen,2006,14(2):216-223.
    [29] Hwang J H。Yuk S H,Lee J H,et a1.Isolation of muscle derived stem cells from rat and its smoothmuscle diferentiation.Mol Cels,2004,17(1):57-61
    [30] Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, CaoB,Gates C, Wernig A, Huard J. Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration. J Cell Biol,2002,157(5):851-64.
    [31] Lavasani M, Lu A, Peng H, Cummins J, Huard J. Nerve growth factor improves themuscleregeneration capacity of muscle stem cells in dystrophic muscle. Hum Gene Ther,2006,17(2):180-92.
    [32] Deasy BM, Lu A, Tebbets JC, Feduska JM, Schugar RC, Pollett JB, Sun B, Urish KL, GharaibehBM, Cao B, Rubin RT, Huard J. A role for cell sex in stem cell-mediated skeletal muscleregeneration: female cells have higher muscle regeneration efficiency. J Cell Biol,2007,177(1):73-86.
    [33] Gharaibeh B,Lu A,Tebbets J,et a1.Isolation of a slowlyadhering cell fraction containing stemcells from murine skeletal muscle by the preplate technique.Nat Protoc,2008,3(9):l501.1509.
    [34] Jankowski R J,Deasy B M。Cao B,et a1.The role of CD34expression and cellular fusion in theregeneration capacity of myogenic progenitor cells.Cel Sci,2002,115(Pt22):4361-4374
    [1] Dezawa M. Adachi—Usami E. Role of schwann cells in retinal ganglion cell axonregeneration.Prog Retin Eye Res2000;l9(2):l7l-204.
    [2] Wakao S, Hayashi T, Long-term observation of auto-cell transplantation in non-human primatereveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheralnerve regeneration. Exp Neurol.2010Jun;223(2):537-47.
    [3] S. Hall. Nerve repair: a neurobiologist’s view. J Hand Surg Br,2001,26(2):129-36.
    [4] Frostick, S.P., Yin, Q., Kemp, G.J.. Schwann cells, neurotrophic factors, and peripheral nerveregeneration. Microsurgery,1998,18(7):397-405.
    [5] Ide, C. Peripheral nerve regeneration. Neurosci Res,1996,25(2):101-121.
    [6] Negishi H, Dezawa M, Oshitari T, Adachi-Usami E. Optic nerve regeneration within artificialSchwann cell graft in the adult rat. Brain Res Bull,2001,55(3):409-419.
    [7] Li, Q., Ping, P., Jiang, H., Liu, K.. Nerve conduit filled with GDNF gene modified Schwann cellsenhances regeneration of the peripheral nerve. Microsurgery,2006,26(2):116-121.
    [8] Mosahebi, A., Fuller, P., Wiberg, M., Terenghi, G.. Effect of allogeneic Schwann celltransplantation on peripheral nerve regeneration. Exp Neurol,2002,173(2):213-223.
    [9] Rutkowski, G.E., Miller, C.A., Jeftinija, S., Mallapragada, S.K.. Synergistic effects ofmicropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. JNeural Eng,2004,1(3):151-157.
    [10] Langer R, Vacanti JP. Tissue engineering. Science,1993,260(5110):920-926.
    [11] Srinivas Madduri and Bruno Gander. Schwann cell delivery of neurotrophic factors for peripheralnerve regeneration. Journal of the Peripheral Nervous System,2010,15:93–103.
    [12] Paul J. Kingham. Daniel F. Kalbermatten. Adipose-derived stem cells differentiate into a Schwanncell phenotype and promote neurite outgrowth in vitro. Experimental Neurology207(2007)267–274.
    [13] Satoshi Shimizu, Masaaki Kitada. Peripheral nerve regeneration by the in vitrodifferentiated-human bone marrow stromal cells with Schwann cell property. Biochemical andBiophysical Research Communications359(2007)915–920.
    [14] Fátima Rosalina Pereira Lopes, Flávia Frattini.Transplantation of bone-marrow-derived cells intoa nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration oftransected mouse sciatic nerve. G Model JMIC-1515; No. of Pages8.
    [15] Hou SY, Zhang HY, Quan DP, Liu XL, Zhu JK. Tissue-engineered peripheral nerve grafting bydifferentiated bone marrow stromal cells. Neuroscience.2006Jun19;140(1):101-10.
    [16] Gerburg Keilhoff, Alexander Goihl. Transdifferentiation of mesenchymal stem cells into Schwanncell-likemyelinating cells. European Journal of Cell Biology85(2006)11–24.
    [17] Chun-Jung Chen, Yen-Chuan Ou. Transplantation of bone marrow stromal cells for peripheralnerve repair. Experimental Neurology204(2007)443–453.
    [18] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman,
    [19] M.A., Simonetti, D.W., Craig, S., Marshak, D.R.Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147.
    [20] Barry, F.P., Murphy, J.M.. Mesenchymal stem cells: clinical applications and biologicalcharacterization. Int. J. Biochem. Cell Biol,2004,36(4):568-584.
    [21] Caddick, J., Kingham, P.J., Gardiner, N.J., Wiberg, M., Terenghi, G.. Phenotypic and functionalcharacteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia,2006,54(8):840-849.
    [22] Keilhoff, G., Goihl, A., Langnase, K., Fansa, H., Wolf, G.. Transdifferentiation of mesenchymalstem cells into Schwann cell-like myelinating cells. Eur J Cell Biol,2006,85(1):11-24.
    [23] Gimble, J., Guilak, F.. Adipose-derived adult stem cells: isolation, characterization, anddifferentiation potential. Cytotherapy,2003,5(5):362-369.
    [24] Strem, B.M., Hicok, K.C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R.E., Fraser, J.K., Hedrick,M.H.. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med,2005,54(3):132-141.
    [25] Paul J. Kingham, Daniel F. Kalbermatten, Daljeet Mahay, Stephanie J. Armstrong, MikaelWiberg, Giorgio Terenghi. Adipose-derived stem cells differentiate into a Schwann cell phenotypeand promote neurite outgrowth in vitro. Experimental Neurology,2007,207(2):267-274.
    [26] Bridget M Deasy, Yong Li. Tissue engineering with muscle-derived stem cells. Current Opinion inBiotechnology2004,15:419–423.
    [27] Patrick Seale, Atsushi Asakura, The Potential of Muscle Stem Cells. Developmental Cell, Vol.1,333–342, September,2001,
    [28] RJ Jankowski, BM Deasy. Muscle-derived stem cells. Gene Therapy (2002)9,642–647.
    [29] Arvydas Usas, Johnny Huard. Muscle-derived stem cells for tissue engineering and regenerativetherapy. Biomaterials28(2007)5401–5406.
    [30] Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B,Gates C, Wernig A, Huard J. Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration. J Cell Biol.2002May27;157(5):851-64.
    [31] Hassan HT, Gutensohn K, Zander AR. CD34positive cell sorting and enrichment: applications inblood banking and transplantation. In: Recktenwald D, Radbruch A, eds. Cell Separation:Methodsand Applications. New York: Marcel Dekker1998:283-92.
    [32] Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells:Isolation,expansion and differentiation. Methods,2008,45(2):115-120.
    [33] Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation ofidentified bone marrow stromal cells. J Neurosci,2002,22(15):6623-30.
    [34] Paul J. Kingham, Daniel F. Kalbermatten, Daljeet Mahay, Stephanie J. Armstrong, Mikael Wiberg,Giorgio Terenghi. Adipose-derived stem cells differentiate into a Schwann cell phenotype andpromote neurite outgrowth in vitro. Exp Neurol,2007,207(2):267-74.
    [35] Caddick, J., Kingham, P.J., Gardiner, N.J., Wiberg, M., Terenghi, G. Phenotypic and functionalcharacteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia,2006,54(8):840-849.
    [36] Keilhoff, G., Goihl, A., Langnase, K., Fansa, H., Wolf, G. Transdifferentiation of mesenchymalstem cells into Schwann cell-like myelinating cells. Eur J Cell Biol,2006,85(1):11-24.
    [37] Dezawa M,Takahashi I,Esaki M,et a1.Sciatic nerve regeneration in rats induced bytransplantation of in vitro diferentiated bone-marrow stromal cells.Eur J Neurosci JT [J].TheEuropean journal of neuro-science,2001,14(11):1771-6.
    [38] Mimura T,Dezawa M,Kanno H,et a1.Peripheral nerve regeneration by transplantation of bonemarrow stromal cell—derived Schwann cells in adult rats.J Neurosurg JT[J].Journalofneurosurgery,2004,101(5):806.12.
    [39] Tohill M,Mantovani C,Wiberg M,et a1.Rat bone marrow mesenchymal stem cells express glialmarkers and stimulate nerve regeneration.Neurosci Lett JT[J].Neuroscience letters,2004,362(3):200-3.
    [40] Deng W,Obrocka M,Fischer I,et a1.In vitro differentiation of human marrow stromal cells intoearly progenitors of neural cells by conditions that increase intracellular cyclic AMP.BiochemicalBiophysical Res Communication JT[J].Biochemical and biophysical research communications,2001,282(1):148-52
    [41] Villanueva S,Glavic A,Ruiz P,et a1.Posteriorization by FGF,Wnt,and retinoic acid is requiredfor neural crest induction.Dev Biol JT[J].Developmental biology,2002,241(2):289-301
    [42] Leimeroth R,Lobsiger C,Lussi A,et a1.Membrane-bound neuregulinl type III actively promotesSchwann cell differentiation of multipotent Progenitor cells.Dev Biol JT [J],Developmentalbiology,2002,246(2):245-58
    [43] Mirsky R,Jessen KR,Brennan A,et a1.Schwann cells as regulators of nerve development.JPhysiol Paris JT [J].Journal of physiology,Paris,2002,96(1-2):17-24.
    [44] Lobsiger CS,Schweitzer B,Taylor V,et a1.Platelet-derived growth factor-BB supports thesurvival of cultured rat Schwarnn cell precursors in synergy with neurotrophin-3.Glia JT[J]Glia,2000,30(3):290-300.
    [45] Chaudhary LR,Avioli LV.Activation of extracellular signal-regulated kinases1and2(ERK1andERK2)by FGF-2and PDGF-BB in norma1human osteoblastic and bone marrow stromal cells:differences in mobility and in-gel renaturation of ERK1in human,rat,and mouse osteoblasticcells.Biochemical Biophysical Res Commun JT[J].Biochemical and biophysical researchcommunications,1997,238(1):134-9.
    [46] Krampera M,Marconi S,Pasini A,et a1.Induction of neural-like differentiation in humanmesenchymal stem cells derived from bone marrow, fat, spleen and thymus.Bone JT–Bone,2007,40(2):382-90.
    [47] Goncalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement ofS100B, a putative marker of brain injury. Clin Biochem,2008,41(10-11):755-763.
    [48] Henning J, Strauss U, Wree A, Gimsa J, Rolfs A, Benecke R, Gimsa U. Differential astroglialactivation in6-hydroxydopamine models of Parkinson S disease. Neurosci Res,2008,62(4):246-253.
    [49] Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC. structural and mechanistic insightsinto nerve growth factor interactions witl1the TrkA and p75receptors. Neuron,2007,53(1):25-38.
    [50] Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M. Peripheral nerve regenerationby the in vitro differentiated-human bone marrow stromal cells with Schwann cell property.Biochemical Biophysical Res Commun,2007,359(4):915-20.
    [51]周广东,曹谊林。软骨细胞与骨髓基质细胞共培养体外软骨形成的实验研究。中华医学杂志2004年l0月17日第84卷第20期。
    [52]刘霞,周广东,刘伟,曹谊林。组织工程化软骨分泌的可溶性因子对骨髓基质干细胞诱导作用的实验研究。中华整形外科杂志2010年5月第26卷第3期。
    [1] Dezawa M. Adachi-Usami E. Role of schwann cells in retinal ganglion cell axonregeneration.Prog Retin Eye Res2000;l9(2):l7l-204.
    [2] Frostick, S.P., Yin, Q., Kemp, G.J.. Schwann cells, neurotrophic factors, and peripheral nerveregeneration. Microsurgery,1998,18(7):397-405.
    [3] Ide, C. Peripheral nerve regeneration. Neurosci Res,1996,25(2):101-121.
    [4] Meier C., ParmantierE., Brennan A., Mirsky R., Jessen K.R. Developing Schwann cells acquirethe ability to survive without axons by establishing an autocrine circuit involving IGF, NT-3andPDGF-BB, J. Neurosci.19(1999)3847–3859.
    [5] J.W. Fawcett, R.J. Keynes, Peripheral nerve regeneration, Annu. Rev. Neurosci.13(1990)43–60.
    [6] W. Nadim, P.N. Anderson, M. Turmaine, The role of Schwann cells and basal lamina tubes in theregeneration of axons through long lengths of freeze-killed nerve grafts, Neuropathol. Appl.Neurobiol.16(1990)411–421.
    [1]Burmester T,weich B,Reinhardt S,et a1.A vertebrate globin expressed in the brain.Nature,2000,407:520.
    [2]Zhou FQ,Zhou J,Dedhar S,et a1.NGF-induced axon growth is mediated by localized inactivationof GSK-3beta and functions of the microtubule plus end binding protein ApeNeuron.2004,42:897-912.
    [3]Barde YA,Edgar D,Thoenen H.Purification of a new neurotrophie factor from mammalianbrain.EMB0J,1982,l:549-53.
    [4] Dauer W. Ncurotrophie Factors and Parkinson's Disease:The Emergence of a New Player? ScisTKE.2007,411:pc60.
    [5]Farinas L Severe sensony and sympathetic deficits in mice lacking neurotrophin-3.Nature,1994,369l658-660.
    [6]Lykissas MG,Batistatou AK,Charalabopoulos KA,et&The role of neurotrophins in axonal growth,guidance,and regeneration.Curr Neurovasc Res,2007,4;143-51.
    [7]Xin Iiu, Ernfors P. Sensory but not motor neuron deficits in mice lscking NT4and BDNF.Nature,1995,375:238—240.
    [8]Ebendal T.Function and evolution in the NGF family and its reeeptors.J of Neurosci,1992,32:461-470.
    [9]Koliatsos VE,et a1.Neurotrophin-4/5is a trophic factor for mammalian faeial motorneurons.ProeNatl Acad Scj USA,1994,91:3304-3308.
    [10]Barbin G,et a1.Purification of the chick eye ciliary neurotrophie factor.J Neuroehem,1984,43:1468-1478.
    [11]Sendener M,et a1.Ciliary neurotrophic factor prevents the degeneration of motor neuronsafteraxotomy.Nature,1990,345:440-441.
    [12]Fackelman K.Protein protects,restores neurons.Science news,1995,147:52.
    [13]Ronald M.Neuron saving schemes.Nature,1995,373.289-290
    [14]Westberg JA,Serlachius M,Lankila P,et a1.Hypoxie preconditioning induces neuroprotectivestanniocalcin-1in brain via IL-6signaling.Stroke,2007,38:1025-1030.
    [15]Qiao Yan,Matheson C,et a1.In vivo neurotrophic effects of GDNF on neonatal and adult facialmotor neurons.Nature,1995,373:341-343.
    [16]Sherer TB,Fiske BK,Svendsen cN,et a1.Crossroads in GDNF therapy for Parkinson'sdisease.Mov Disord,2006,21:136一141.
    [17]Rossdla C,Stefano F,Pagano AC.et a1.Regdation of neuronal differentiation in human CNS stemcell progeny by leukemia inhibitory factor.Dev Neurosci.2000,22:86.
    [18]Yvan A.Samuel w.Insulin-1like growth factor-1is a diferentiation factor fo postmitotic CNS stemeell derived neuronsl precursors:distine actions from those of brain-derivedneurotrophie factor.JNeurosci,1998,18:2118.
    [19]Ebendal sG,Tomac A,Hoffer BJ,et a1.Glial cell line derived neurotrophic factor stimulates fiberformation and survival in cultured neurons from peripheral autonomic gagli&Neuosci Res,1995.40:276.
    [20]St hal CC,Muller HW.Experhaaental straleg s to promote axonal regeneration after traumaticcentral nervous system injury.Pr0g Neurobiol,1998.56:l19-148.
    [21] Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hindlimb function. Science.1996Jul26;273(5274):510-3.
    [22] Menei P,Montero Menei C,Whittem ore SR,et a1.Schwann cells genetically modified to secretehuman BDNF promote enhanced axonal regrowth across transected adult rat spinal cord.Eur JNeurosci,1998.10:607-62.
    [23] Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH. Cellular delivery of neurotrophin-3promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. JNeurosci.1997Jul15;17(14):5560-72.
    [24] Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I. Transplants offibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinalaxons and recovery of forelimb function. J Neurosci.1999Jun1;19(11):4370-87.
    [25] Jakeman LB, Wei P, Guan Z, Stokes BT. Brain-derived neurotrophic factor stimulates hindlimbstepping and sprouting of cholinergic fibers after spinal cord injury. Exp Neurol.1998Nov;154(1):170-84.
    [26]Houwelmg DA,Lankhorst AJ,G-pen.H, et at. Collagen containing neurotrophin-3(NT-3) attractsregrowing injured cortico spinal axons in the adult rat spinal cord and promotes partialfunctionalrecovery.Exp Neur ol,1998.153:49-59.
    [27] Ribotta MG, Provencher J, Ferabo Lohnherr D, et at. Activation of locomotionin adult chronicspinal rats is achieved by transplantation of embryonic raphe cells reiunervating a precise lumbarIcye1.J Neurosci,2000.20:5144-52.
    [28] Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adultspinal cord.Nature,2000,403:312-6.
    [1]K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. TheSchwanncell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonicnerves, Neuron12(1994)509–527.
    [2]D.J. Anderson, Cell and molecular biology of neural crest cell lineage diversification, Curr. Opin.Neurobiol.3(1993)8–13.
    [3]M. Bronner-Fraser, Segregation of cell lineage in the neural crest, Curr. Opin. Genet. Dev.3(1993)641–647.
    [4]K.R. Jessen, R. Mirsky, Schwann cells: early lineage, regulation of proliferation and control ofmyelin formation, Curr. Opin. Neurobiol.2(1992)575–581.
    [5]N. Le Douarin, C. Dulac, E. Dupin, P. Cameron-Curry, Glial cell lineages in the neural crest, Glia4(1991)175–184.
    [6]M.F. Marusich, J.A. Weston, Development of the neural crest, Curr. Opin. Genet. Dev.1(1991)221–229.
    [7]J. Georgiou, R. Robitaille, W.S. Trimble, M.P. Charlton, Synaptic regulation of glial proteinexpression in vivo, Neuron12(1994)443–455.
    [8] M.D. Gershon, A. Chalazonitis, T.P. Rothman, From neural crest to bowel: development of theenteric nervous system, J. Neurobiol.24(1993)199–214.
    [9]E. Pannese, The satellite cells of the sensory ganglia, Adv. Anat. Embryol. Cell Biol.65(1981)1–111.
    [10]E.M. Carpenter, M. Hollyday, The location and distribution of neural crest-derived Schwann cellsin developing peripheral nerves in the chick forelimb, Dev. Biol.150(1992)144–159.
    [11] J.F. Loring, C.A. Erickson, Neural crest cell migratory pathways in the trunk of the chick embryo,Dev. Biol.121(1987)220–236.
    [12] E.R. Lunn, J. Scourfield, R.J. Keynes, C.D. Stern, The neural tube origin of ventral root sheathcells in the chick embryo, Development101(1987)247–254.
    [13]M. Rickmann, J.W. Fawcett, R.J. Keynes, The migration of neural crest cells and the growth ofmotor axons through the rostral half of the chick somite, J. Embryol. Exp.Morphol.90(1985)437–455.
    [14]K. Sharma, Z. Korade, E. Frank, Late-migrating neuroepithelial cells from the spinal corddifferentiate into sensory ganglion cells and melanocytes, Neuron14(1995)143–152.
    [15] K.R. Jessen, R. Mirsky, Embryonic Schwann cell development: the biology of Schwann cellprecursors and early Schwann cells, J. Anat.191(1997)501–505.
    [16] K.R. Jessen, R. Mirsky, Origin and early development of Schwann cells, Microsc. Res. Tech.41(1998)393–402.
    [17] R. Mirsky, K.R. Jessen, Schwann cell development, differentiation and myelination, Curr. Opin.Neurobiol.6(1996)89–96.
    [18] P.D. Henion, J.A. Weston, Timing and pattern of cell fate restrictions in the neural crest lineage,Development124(1997)4351–4359.
    [19] N.M. Shah, M.A. Marchionni, I. Isaacs, P. Stroobant, D.J. Anderson, Glial growth factor restrictsmammalian neural crest stem cells to a glial fate, Cell77(1994)349–360.
    [20] L. Hagedorn, U. Suter, L. Sommer, P0and PMP22mark a multipotent neural crest-derived celltype that displays community effects in response to TGF-beta family factors, Development126(1999)3781–3794.
    [21]N.M. Shah, A.K. Groves, D.J. Anderson, Alternative neural crest cell fates are instructivelypromoted by TGFb superfamily members, Cell85(1996)331–343.
    [22] D. Meyer, C. Birchmeier, Multiple essential functions of neuregulin in development, Nature378(1995)386–390.
    [23] D. Riethmacher, E. Sonnenberg-Riethmacher, V. Brinkmann, T. Yamaai, G.R. Lewin, C.Birchmeier, Severe neuropathies in mice with targeted mutations in the ErbB3receptor, Nature389(1997)725–730.
    [24] M-J. Lee, A. Brennan, A. Blanchard, G. Zoidl, Z. Dong, A. Tabernero, C. Zoidl, M.A.R. Dent, K.R.Jessen, R. Mirsky, P0is constitutively expressed in the rat neural crest and embryonic nerves and isnegatively and positively regulated by axons to generate non-myelin-forming and myelin-formingSchwann cells, respectively, Mol. Cell. Neurosci.8(1997)336–350.
    [25] Z. Dong, A. Brennan, N. Liu, Y. Yarden, G. Lefkowitz, R. Mirsky, K.R. Jessen, NDF is aneuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors,Neuron15(1995)585–596.
    [26] J. Gavrilovic, A. Brennan, R. Mirsky, K.R. Jessen, Fibroblast growth factors and insulin growthfactors combine to promote survival of rat Schwann cell precursors without induction of DNA synthesis,Eur. J. Neurosci.7(1995)77–85.
    [27] K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic, TheSchwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in ratembryonic nerves, Neuron12(1994)509–527.
    [28]A.N. Garratt, S. Britsch, C. Birchmeier, Neuregulin, a factor with many functions in the life of aSchwann cell, Bioessays22(2000)987–996.
    [29] R. Mirsky, K.R. Jessen, The neurobiology of Schwann cells, Brain Pathol.9(1999)293–311.
    [30] J.B. Grinspan, M.A. Marchionni, M. Reeves, M. Coulaloglou, S.S. Scherer, Axonal interactionsregulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role ofneuregulins, J. Neurosci.16(1996)6107–6118.
    [31]T.K. Morrissey, A.D. Levi, A. Nuijens, M.X. Sliwkowski, R.P. Bunge, Axon-induced mitogenesisof human Schwann cells involves heregulin and p185erbB2, Proc. Natl. Acad. Sci. USA92(1995)1431–1435.
    [32] D.E. Syroid, P.R. Maycox, P.G. Burrola, N. Liu, D. Wen, KF. Lee, G. Lemke, T.J. Kilpatrick, Celldeath in the Schwann cell lineage and its regulation by neuregulin, Proc. Natl. Acad. Sci. USA93(1996)9229–9234.
    [33]J.T. Trachtenberg, W.J. Thompson, Schwann cell apoptosis at developing neuromuscular junctionsis regulated by glial growth factor, Nature379(1996)174–177.
    [34] Z. Dong, A. Sinanan, D. Parkinson, E. Parmantier, R. Mirsky, K.R. Jessen, Schwann celldevelopment in embryonic mouse nerves, J. Neurosci. Res.56(1999)334–348.
    [35]A. Brennan, C.H. Dean, A.L. Zhang, D.T. Cass, R. Mirsky, K.R. Jessen, Endothelins control thetiming of Schwann cell generation in vitro and in vivo, Dev. Biol.227(2000)545–557.
    [36] E.J. Arroyo, J.R. Bermingham, M.G. Rosenfeld, S.S. Scherer, Promyelinating Schwann cellsexpress Tst-1/SCIP/Oct-6, J. Neurosci.18(1998)7891–7902.
    [37] J.R. Bermingham, S.S. Scherer, S. O’Connell, E. Arroyo, K.A. Kalla, F.L. Powell, M.G. Rosenfeld,Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normalrespiration, Genes Dev.10(1996)1751–1762.
    [38]S. Britsch, D.E. Goerich, D. Riethmacher, R.I. Peirano, M. Rossner, K-A. Nave, C. Birchmeier, M.Wegner, The transcription factor Sox10is a key regulator of peripheral glial development, Genes Dev.15(2001)66–78.
    [39]M. Jaegle, W. Mandemakers, L. Broos, R. Zwart, A. Karis, P. Visser, F. Grosveld, D. Meijer, ThePOU factor Oct-6and Schwann cell differentiation, Science273(1996)507–510.
    [40] K. Kuhlbrodt, B. Herbarth, E. Sock, I. Hermans-Borgmeyer, M. Wegner, Sox10, a noveltranscriptional modulator in glial cells, J. Neurosci.18(1998)237–250.
    [41] K. Kuhlbrodt, C. Schmidt, E. Sock, V. Pingault, N. Bondurand, M. Goossens, M. Wegner,Functional analysis of Sox10mutations found in human Waardenburg-Hirschsprung patients, J. Biol.Chem.273(1998)23033–23038.
    [42] P. Murphy, P. Topilko, S. Schneider-Maunoury, T. Seitanidou, A. Baron-Van Evercooren, P.Charnay, The regulation of Krox-20expression reveals important steps in the control of peripheral glialcell development, Development122(1996)2847–2857.
    [43] E.M. Southard-Smith, L. Kos, W.J. Pavan, Sox10mutation disrupts neural crest development inDom Hirschsprung mouse model, Nat. Genet.18(1998)60–64.
    [44] P. Topilko, S. Schneider-Maunoury, G. Levi, A. Baron-Van Evercooren, A.B. Chennoufi, T.Seitanidou, C. Babinet, P. Charnay, Krox-20controls myelination in the peripheral nervous system,Nature371(1994)796–799.
    [45]M. Jaegle, D. Meijer, Role of Oct-6in Schwann cell differentiation, Microsc. Res. Tech.41(1998)372–378.
    [46] K.R. Jessen, L. Morgan, H.J.S. Stewart, R. Mirsky, Three markers of adult non-myelin-formingSchwann cells,217c (Ran-1), A5E3and GFAP: development and regulation by neuron-Schwann cellinteractions, Development109(1990)91–103.
    [47]J.W. Fawcett, R.J. Keynes, Peripheral nerve regeneration, Annu. Rev. Neurosci.13(1990)43–60.
    [48] R.M. Gould, K.R. Jessen, R. Mirsky, G. Tennekoon, The cell of Schwann: an update, in: R.E.Martenson (Ed.), Myelin: Biology and Chemistry, CRC Press, Boca Raton, FL,1992, pp.123–171.
    [49] S.S. Scherer, J.L. Salzer, Axon–Schwann cell interactions during peripheral nerve degeneration andregeneration, in: K.R. Jessen, W.D. Richardson (Eds.), Glial Cell Development, Basic Principles andClinical Relevance, Chapter9, Bios Scientific Publishers Ltd, Oxford,1996, pp.165–196.
    [50]H. Li, C. Wigley, S.M. Hall, Chronically denervated rat Schwann cells respond to GGF in vitro,Glia24(1998)290–303.
    [51]W. Nadim, P.N. Anderson, M. Turmaine, The role of Schwann cells and basal lamina tubes in theregeneration of axons through long lengths of freeze-killed nerve grafts, Neuropathol. Appl. Neurobiol.16(1990)411–421.
    [52] C. Meier, E. Parmantier, A. Brennan, R. Mirsky, K.R. Jessen, Developing Schwann cells acquirethe ability to survive without axons by establishing an autocrine circuit involving IGF, NT-3andPDGF-BB, J. Neurosci.19(1999)3847–3859.
    [53] B.J.Dowsing,W.A.Morrison, N.A.Nicola,G.P. Starkey, T. Bucci, T.J. Kilpatrick. Leukemiainhibitory factor is an autocrine survival factor for Schwann cells, J. Neurochem.73(1999)96–104.
    [54]M.C. Subang, P.M. Richardson, Influence of injury and cytokines on synthesis of monocytechemoattractant protein-1mRNA in peripheral nervous tissue, Eur. J. Neurosci.13(2001)521–528.
    [55] S. Sugiura, R. Lahav, J. Han, S.Y. Kou, L.R. Banner, F. de Pablo, P.H. Patterson, Leukaemiainhibitory factor is required for normal inflammatory responses to injury in the peripheral and centralnervous systems in vivo and is chemotactic for macrophages in vitro, Eur. J. Neurosci.12(2000)457–466.
    [56] G.K. Tofaris, P.H. Patterson, K.R. Jessen, R. Mirsky, Schwann cells deprived of axonal contactproduce the chemoattractants MCP-1and LIF which are regulated by autocrine circuits involving LIFand IL-6, Soc. Neurosci. Abstr.590(2000)223.13.
    [57]S.L. Carroll, M.L. Miller, P.W. Frohnert, S.S. Kim, J.A. Corbett, Expression of neuregulins andtheir putative receptors, ErbB2and ErbB3, is induced during Wallerian degeneration, J. Neurosci.17(1997)1642–1659.
    [58]C. Rosenbaum, S. Karyala, M.A. Marchionni, H.A. Kim, A.L. Krasnoselsky, B. Happel, I. Isaacs, R.Brackenbury, N. Ratner, Schwann cells express NDF and SMDF/n-ARIA mRNAs, secrete neuregulin,and show constitutive activation of erbB3receptors: evidence for a neuregulin autocrine loop, Exp.Neurol.148(1997)604–615.
    [59] R.J. Thompson, B. Roberts, C.L. Alexander, S.K. Williams, S.C. Barnett, Comparison ofneuregulin-1expression in olfactory ensheathing cells, Schwann cells and astrocytes, J. Neurosci. Res.61(2000)172–185.
    [60]P. Cassacia-Bonnefil, C. Gu, M.V. Chao, Neurotrophins in cell survival/death decisions, Adv.Exp.Med. Biol.468(1999)275–282.
    [61]C. Raoul, B. Pettmann, C.E. Henderson, Active killing of neurons during development andfollowing stress: a role for p75(NTR) and Fas? Curr. Opin. Neurobiol.10(2000)111–117.
    [62]J.M. Frade, Y.A. Barde, Genetic evidence for cell death mediated by nerve growth factor and theneurotrophin receptor p75in the developing mouse retina and spinal cord, Development126(1999)683–690.
    [63] J.M. Frade, A. Rodriguez-Tebar, Y.A. Barde, Induction of cell death by endogenous nerve growthfactor through its p75receptor, Nature383(1996)166–168.
    [64]M. Soilu-Hanninen, P. Eckert, T. Bucci, D. Syroid, P.F. Bartlett, T.J. Kilpatrick, Nerve growthfactor signalling through p75induces apoptosis in Schwann cells via a Bcl-2-independent pathway, J.Neurosci.19;1999(4828-4838).
    [65] Z. Xia, M. Dickens, J. Raingeaud, R.J. Davis, M.E. Greenberg, Opposing effects of ERK andJNK-p38MAP kinases on apoptosis, Science270(1995)1326–1331.
    [66]D. Parkinson, Z. Dong, H. Bunting, J. Whitfield, C. Meier, H. Marie, R. Mirsky, K.R. Jessen, TGFbmediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions withsurvival signals and the relationship of TGFb mediated death to Schwann cell differentiation, J.Neurosci.(2001) under review.
    [67]A.M. Skoff, R.P. Lisak, B. Bealmear, J.A. Benjamins, TNFalpha and TGF-beta act synergisticallyto kill Schwann cells, J. Neurosci. Res.53(1998)747–756.
    [68]M.B. Bunge, P.M. Wood, L.B. Tynan, M.L. Bates, J.R. Sanes, Perineurium originates fromfibroblasts: demonstration in vitro with a retroviral marker, Science243(1989)222–231.
    [69] Y. Olsson, Microenvironment of the peripheral nervous system under normal and pathologicalconditions, Crit. Rev. Neurobiol.5(1990)265–311.
    [70]M.J. Bitgood, A.P. McMahon, Hedgehog and Bmp genes are coexpressed at many diverse sites ofcell-cell interaction in the mouse embryo, Dev. Biol.172(1995)126–138.
    [71] E. Parmantier, B. Lynn, D. Lawson, M. Turmaine, S. Sharghi Namini, L. Chakrabarti, A.P.McMahon, K.R. Jessen, R. Mirsky, Schwann cell-derived Desert Hedgehog controls the development ofperipheral nerve sheaths, Neuron23(1999)713–724.
    [72] Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D,Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A. The tumour-suppressor genepatched encodes a candidate receptor for Sonic hedgehog. Nature.1996Nov14;384(6605):129-34.
    [73]M.J. Bitgood, L. Shen, A.P. McMahon, Sertoli cell signaling by Desert hedgehog regulates the malegermline, Curr. Biol.6(1996)298–304.
    [74] S.M. Hall. Regeneration in the peripheral nervous system, Neuropathol. Appl. Neurobiol.15(1989)513–529.
    [75] A.M. Clark, K.K. Garland, L.D. Russell, Desert hedgehog (Dhh) gene is required in the mousetestis for formation of adult-type leydig cells and normal development of peritubular cells andseminiferous tubules, Biol. Reprod.63(2000)1825–1838.
    [76] F. Umehara, G. Tate, K. Itoh, N. Yamaguchi, T. Douchi, T. Mitsuya, M. Osame, A novel mutationof desert hedgehog in a patient with46,XY partial gonadal dysgenesis accompanied by minifascicularneuropathy,Am. J.Hum.Genet.67(2000)1302–1305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700