运动诱发心肌病猝死机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     运动致心源性猝死(SCD)是某些器质性心脏病,包括肥厚型心肌病(HCM)、致心律失常性右室心肌病、先天性冠状动脉异常、预激综合症、传导系统疾病和离子通道疾病等,受到短暂、急剧的异常刺激而诱发的突然死亡。诱发因素包括急性心肌缺血,交感神经过渡兴奋,血流动力骤变等引起致死性室性心律失常。国外调查资料表明对运动员赛前进行HCM筛查可显著降低运动猝死的发生(3.6/10万降至0.4/10万)。长期大强度训练导致左室生理性肥厚与病理性左室肥厚难以鉴别,因此,制定一个积极、有效的赛前筛查策略对预防运动员SCD十分重要。HCM是一类具有不同表型的遗传性心脏疾病,可由多种基因突变引起,呈常染色体显性遗传。HCM是35岁以下运动员猝死的首要病因。已有22个突变基因,超过400个突变位点与HCM的发病相关,其中,60%是由编码肌小节蛋白的基因发生突变造成。已有资料表明β-肌球蛋白重链(Arg403Gln,Arg453Cys,Arg719Trp,Arg723Gly),肌钙蛋白T(Arg92Gln,Arg92Trp,Ile79Asn,Arg278Cys),α-肌凝蛋白(Val95Ala),肌球蛋白结合蛋白C(InsG791)和肌钙蛋白I(Lys183del)等突变伴运动猝死发生率较高。建立HCM基因突变动物模型是阐述HCM发生和运动致SCD的重要途径之一。
     本学科梯队用HCM病人心肌肌钙蛋白I突变(cTnI R145W,小鼠为cTnI R146W),制备转基因小鼠。本论文将观察和探讨游泳与cTnI R146W基因阳性小鼠SCD发生率及可能机制。
     目的
     本研究采用个人基本情况调查、超声心动图、心电图、血浆肌钙蛋白I检测和基因筛查等方法,对江苏省优秀运动员进行赛前心血管疾病筛查,检测高危的心血管疾病,预防运动猝死。并利用心肌肌钙蛋白I突变位点cTnI R146W转基因小鼠(人为cTnI R145W)初步探讨运动诱发心肌病猝死相关机制。
     内容和方法
     一、优秀运动员心血管疾病筛查
     1研究对象:运动员(训练年限>6年)
     2个人基本情况调查
     3临床检查:超声心动图、心电图和血浆肌钙蛋白I的检测
     4 cTnI基因突变位点检测
     二、cTnI R146W转基因小鼠传代和基因型鉴定
     三、运动对心肌肌钙蛋白I R146W转基因小鼠的影响
     1实验分组:8个月小鼠(4组)和2个月小鼠(5组)
     2运动负荷方案:
     运动起始一周,10min/次,1天两次,中间间隔4h,每天递增10min直至90min,以后90min/次,1天两次,中间间隔4h,持续总时间为7周。
     3超声心动图
     4心肌组织病理学检测:HE染色、Masson染色和电镜
     5 Western Blotting检测Genotype(+)和Genotype(-)小鼠心肌蛋白激酶C不同亚型(PKCβⅠ、PKCβⅡ和PKCγ)的表达变化
     四、统计学方法:数据均测量数据以平均数加标准差((?)±s)表示。组间差异采用独立样本t检验、单因素方差分析和x~2检验(SPSS 11.0),P<0.05有统计学意义。
     结果
     1优秀运动员心血管疾病筛查
     1.1 170名男子运动员超声未见明确心血管疾病。9名男子运动员发现轻微的瓣膜返流,包括二尖瓣,三尖瓣,肺动脉瓣和主动脉瓣。19名(10.9%)运动员LVDd≥60mm,最大上限为65.5mm。3名(1.7%)IVS>13mm;181名女子运动员,18名(9.9%)运动员LVDd≥50mm;7名(3.84%)运动员LVDd≥55mm,最大上限为62.3mm。181名女子运动员未发现室壁厚度超过12mm。
     1.2 351名运动员,有16名(4.5%)表现为心电图异常,其中4名明显异常,12名表现为中度异常。另外335名(95.5%)运动员中,157例心电图完全正常,另有178例表现为轻度异常。
     1.3 351名运动员中,3名(1.8%)男子运动员和2(1.1%)名女子运动员的血浆cTnI值>0.5 ng/ml。
     1.4微阵列芯片杂交定量荧光分析结果显示351名运动员cTnI基因第7外显子Cy3荧光强度介于6340.78-47540.32之间,Cy5荧光强度接近背景值介于489.28-964.17之间,Cy5/Cy3比率介于0.01-0.11,提示351名运动员cTnI基因第7外显子为4693C,均为野生型;351名运动员cTnI基因第8外显子Cy3荧光强度介于8870.93-58481.75之间,Cy5荧光强度介于711.72-1021.56之间,Cy5/Cy3比率介于0.01-0.11,提示351名运动员cTnI第8外显子为6488G,均为野生型。
     2运动对心肌肌钙蛋白I-R146W转基因小鼠的影响
     2.1 8个月小鼠游泳训练7周后,与Genotype(-)小鼠安静组相比,Genotype(-)小鼠游泳组左室心肌重量与体重之比增加了9%(4.46±0.39 VS 4.05±0.31mg/g,P<0.05),表明运动可诱导心肌发生生理性肥大。Genotype(+)小鼠游泳组左室的左室心肌重量与体重之比比Genotype(+)安静组,增加了27%(4.97±0.45 VS 3.95±0.52 mg/g,P<0.05);与Genotype(-)小鼠游泳组相比,Genotype(+)游泳组左室左室心肌重量与体重之比显著增加(P<0.05)。
     2.2 M型超声心动图结果显示运动前8个月Genotype(+)和Genotype(-)小鼠AOd、LAD、IVSd和LVPWD均无显著性差异;但7周游泳训练后,Genotype(+)游泳组的AOd和LAD显著大于Genotype(-)运动组(P<0.05);7周运动前后,Genotype(+)小鼠LVDd显著大于Genotype(-)小鼠(P<0.05),Genotype(+)组小鼠的EF显著低于Genotype(-)组小鼠(P<0.01)。
     2.3 8个月小鼠脉冲多普勒结果显示7周运动前后Genotype(+)小鼠二尖瓣瓣口的舒张早期血流速度E峰峰值流速显著低于Genotype(-)小鼠,而舒张血流速度A峰峰值流速基本维持不变,从而导致Genotype(+)小鼠E/A显著降低。组织多普勒超声结果显示Genotype(+)小鼠左室长轴切面左室后壁乳头肌位置心肌舒张早期的运动速度Ea以及Ea/Aa显著小于Genotype(-)小鼠。
     2.4 2个月小鼠脉冲多普勒结果显示Genotype(+)左室长轴切面或心尖四腔切面二尖瓣瓣口血流变化趋势与8个月Genotype(+)小鼠一致。组织多普勒超声结果显示Genotype(+)小鼠前后叶瓣环舒张早期的运动速度Ea显著小于Genotype(-)和C57B/6组小鼠(P<0.05),Ea/Aa显著小于Genotype(-)和C57B/6组小鼠,表明心肌舒张功能降低。
     2.5 7周运动期间,8个月Genotype(+)小鼠的死亡率为54%(13/24),8个月Genotype(-)小鼠的死亡率为18%(4/22)。x~2检验结果显示8个月Genotype(+)小鼠的死亡率显著大于8个月Genotype(-)小鼠(P<0.01)2个月Genotype(+)小鼠的死亡率为40%(6/15),2个月Genotype(-)小鼠的死亡率为25%(4/16)。x~2检验结果显示2个月Genotype(-)小鼠和2个月Genotype(+)小鼠的死亡率无显著差异,但2个月Genotype(+)小鼠的死亡率呈增加趋势。
     2.6左室心肌心尖和室间隔部位HE染色结果显示:7周运动后,8个月和2个月Genotype(+)小鼠表现出心肌细胞肥大、细胞核增大、增生、畸形、肌浆溶解和肌丝模糊。左室心肌心尖和室间隔部位HE染色结果显示:7周运动后,8个月Genotype(+)小鼠心肌和室间隔部位出现许多纤维母细胞。左室心肌心尖和室间隔部位Masson染色结果显示:7周运动后,8个月Genotype(+)小鼠心尖和室间隔部均出现明显细胞间质纤维化。
     2.7 7周运动期间发生死亡8个月和2个月Genotype(+)小鼠左室心尖部见心肌排列紊乱。
     2.8 2个月Genotype(+)和Genotype(-)小鼠安静对照组心肌总蛋白、胞浆和结合蛋白PKCβⅠ、PKCβⅡ和PKCγ无显著差异,但8个月Genotype(+)未运动组心肌胞浆蛋白和结合蛋白PKCβⅠ,心肌胞总蛋白PKCβⅡ表达增加;7周运动后,2个月运动组Genotype(+)心肌总蛋白PKCβⅠ表达增加,而8个月运动组Genotype(+)小鼠心肌总蛋白和胞浆蛋白PKCβⅠ表达增加,心肌结合蛋白PKCβⅡ表达增加。
     结论
     1 351名运动员赛前筛查未检测到易发运动猝死的高危心血管疾病,如HCM、Marfan's综合征、AVRC等。其原因可能是1)这些高危心血管疾病在本次入选运动员中的发病率较低。2)长期运动训练可导致左室发生重构现象,肥厚类似于HCM,本次所采用的筛查手段很难区分运动性心肌重构和HCM。
     2单基因芯片筛查有助于对HCM运动员进行早期诊断,对运动员心肌肥厚与HCM可进行鉴别诊断。
     3 Genotype(+)小鼠表现异常的心血管反应,死亡率比Genotype (-)小鼠高36%。舒张功能进一步损害。
     4 Genetype(+)小鼠运动后心肌细胞间质纤维化增加,心肌排列紊乱,部分心肌细胞断裂,心肌细胞核增大。以上病变可能是cTnI R146W阳性小鼠SCD的基础。
     5游泳后Genotype(+)小鼠心肌PKCβs表达发生变化,对于SCD发生通路和影响因素需进一步研究和证实。
Backgroud
     The causes of sudden cardiac death associated with exercise includeHypertrophic cardiomyopathy (HCM), Arrhythmogenic right ventricularcardiomyopathy, Congenital anomalies of coronary arteries, Pre-excitationsyndromes, Conduction diseases, Ion channel disease and so on. Suddencardiac death is usually the result of an interaction between structural lesions ofthe heart ('substrate') and transient acute abnormalities ('trigger'). Themechanisms of exercise related sudden death in young competitive athletesinclude a number of triggers such as acute myocardial ischaemia, sympatheticstimulation and abrupt haemodynamic changes leading to lifethreateningventricular arrhythmias. HCM is the first cause in athletes under 35 years. Theforeign data showed that the annual incidence of sudden cardiovascular deathamong competitive athletes decreased from 3.6 to 0.4 deaths per 100,000. Thisreduction in mortality during organized training and competition was probablyattributable to the power of the screening program to identify athletes withcardiomyopathies. There are very difficult to distinguish LV physiologicalhypertrophy induced by long high intensity training from HCM. So it isimportant to establish efficacy of pre-participation screening program foridentification of cardiovascular diseases in competitive athletes. HCM is agenetically heterogeneous autosomal dominant inherited heart disease and hasbeen linked to at least 22genes (more than 400 mutations). Among thesemutations, 60% HCM was caused by sarcomeric gene mutation. Severalgenetic mutations have recently been associated with a high risk of suddendeath with the phenotype of normal or moderate hypertrophy, in particular,some mutations of theβ-myosin heavy chain gene (Arg403Gln, Arg453Cys,Arg719Trp, Arg723Gly), of the troponin T gene (Arg92Gln, Arg92Trp,Ile79Asn, Arg278Cys), ofα-Tropomyosin gene (Val95Ala), of the Cardiacmyosin binding protein C gene (InsG791)and of the troponin Igene(Lys183del). So it is an important research fields to develop the transgenicHCM animal models to shed light on this mechanisms.
     A novel mutation, cTnI Arginine145→tryptophan linking withhypertrophic cardiomyopathy among Chinese people was found in our institute.And the transgenic mice (cTnI R146W in the mouse sequence) animal modelwas established successfully. So this animal model was used to shed light onunderlying mechanisms of exercise induced sudden cardiac death.
     Object:
     To identify individuals at risk for cardiovascular diseases resulting frompre-participation screening of young competitive athletes to prevent the suddencardiac death. A prospective screening evaluation of elite athletes wasundertaken by including personal and family history, physical examination, 12lead electrocardiogram, echocardiography, the plasma cTnI levels and genetictesting. Furthermore, the cTnI R146W transgenic mice (cTnI R145W in thehuman sequence) were used to shed light on underlying mechanisms ofexercise induced sudden cardiac death.
     Materials and methods
     1. Cardiovascular pre-participation screening of young competitive athletes
     1) Selection of subjects: Athletes (the training time>6 years)
     2) Personal and family history
     3) Clinical examination: 12 lead electrocardiogram, echocardiography andthe Plasma cTnI levels
     4) Genetic testing in cTnI mutations
     2. The cTnI R146W Genotype (+) and Genotype (-) mice were identified byPCR.
     3. The cardiac response to exercise in cTnI R146W transgenic mice
     1) Transgenic Animals
     The 8-month-old mice were separated into four groups and the 2-month-oldmice were separated into five groups.
     2) Exercise protocol:
     Mice were initially swum for 10 min twice daily separated by 4 h and the duration increased by 10-min increments daily. Upon reaching 90 mintwice daily, this duration was maintained for the remainder of the 7-weekexercise period.
     3) Echocardiography
     4) Cardiac tissue was treated for histological examination. Sections werefixed, embedded and tissues stained with either hematoxylin and eosin orMasson's trichrome.
     5) Protein expression of protein kinase C (PKCβⅠ、PKCβⅡ、PKCγ) inGenotype (+) and Genotype (-) mice was evaluated by Western blotting inthe total, cytosolic and particulate fractions, which were isolated from leftventricle.
     4. Statistics: All data are presented as mean±SD. The independent samples Ttest, One way ANOVA and chi-square test were used to analyze differencesand statistical tests were performed with the use of SPSS 13.0 statisticalsoftware. Statistical significance was accepted at P<0.05.
     Results
     1 The results of cardiovascular pre-participation screening of youngcompetitive athletes
     1.1 A cardiovascular abnormality was not identified by echocardiography, ninemale athletes had echocardiographic evidence of relatively mild valveregurgitation, including mitral, tricuspid, pulmonary and aortic valve. Of the170 male athletes, nineteen (10.9%) athletes presented with an LVDd≥60mm with an upper limit of 65.5mm. Only three male athletes presentedwith wall thickness values>13mm. The systolic (FS) and diastolic (E:A)function were within normal limits for all male athletes. A cardiovascularabnormality was not identified by echocardiography, four female athleteshad echocardiographic evidence of relatively mild valve regurgitation,including mitral, tricuspid, and aortic valve. Of the 181 female athletes, 18(9.9%) athletes presented with an LVDd≥50mm, and 7 (3.84%) athletespresented with an LVDd≥55mm, with an upper limit of 62.3mm. Nonewere found to have a maximum wall thickness greater than 12mm. The systolic (FS) and diastolic (E:A) function were within normal limits for allfemale athletes.
     1.2 Abnormal ECGs were identified in 16 athletes (4.5%); these included 4with distinctly abnormal and 12 with mildly abnormal patterns. Of the other335 athletes (95.5%), ECGs were completely normal in 157 athletes andshowed only minor alterations in 178 athletes.
     1.3 The plasma cTnI of most athletes were normal, only three of men (1.8%)and two of women (1.1%) have gone beyond the limits of cut off (cTnI>0.5ng/ml).
     1.4 Image scanning and data processing showed that 351 samples yieldingstrongly fluorescing Cy3 spots gave fluorescence scores between 6340.78and 47540.32 fluorescent units. The same spots yielding very low Cy5signals and near background signals gave fluorescencescores between489.28 and 964.17 fluorescent units. Cy5/Cy3 ratios were between 0.01 and0.11. The results indicated that DNA from these samples only completelymatched with detector 4693CC. They showed homozygous wild types. Astrongly fluorescing Cy5 spots and a strongly 'yellow' fluorescence were notfound in all samples. The same results were found for G6488A locus inathletes. 351 samples yielding strongly fluorescing Cy3 spots gavefluorescence scores between 8870.93 and 58481.75 fluorescent units. Thesame spots yielding very low Cy5 signals and near background signals gavefluorescence scores between 711.72 and 1021.56 fluorescent units. Cy5/Cy3ratios were between 0.01 and 0.11. They also showed homozygous wildtypes.
     2 The results of the cardiac response to exercise in cTnI R146W transgenicmice
     2.1 At the end of the 7 weeks exercise training, compared with the Genotype (-)sedentary group (8-month-old), while Genotype (-) mice had an average of a9% increase the ratio of LV to body weight in response to exercise (Genotype (-) sedentary group: 4.05±0.31VS swim group: 4.46±0.39.P<0.05), which showed that exercise could induce cardiac physiologicalhypertrophy. However, compared with the Genotype (+) sedentary group(8-month-old), the Genotype (+) exercise mice had an average of a 27%increase (Genotype (+) sedentary group: 3.95±0.52VS Genotype (+)exercise group: 4.97±0.45. P<0.05). And the ratio of LV to body weight inthe Genotype (+) exercise group increased significantly than Genotype (-)exercise group.
     2.2 M-mode echocardiographic data showed that before exercise training, nosignificant differences were found in AOd、LAD、IVSd and LVPWD inGenotype (+) and Genotype (-) mice. However, after 7 weeks of swimmingtraining, the Genotype (+) mice significantly increased AOd and LAD(P<0.05). Before and after 7 weeks exercise training, the LVDd in Genotype(+) mice increased significantly than Genotype (-) mice (P<0.05), while theEF and FS in Genotype (+) mice decreased significantly than Genotype (-)mice (P<0.05).
     2.3 Before and after 7 weeks exercise training, transmitral pulsed Dopplermeasurements showed that compared with the Genotype (-)mice(8-month-old), there was a significant decrease in Peak E in Genotype(+) mice (P<0.05), and no significant differences were found the in Peak Ain Genotype (-) and Genotype (+) mice, which led to significant decrease theE/A Genotype (+) mice(P<0.01). Doppler tissue Imaging (DTI) data showedthat compared with the Ea in Genotype (-) mice (8-month-old) within the LVposterior myocardial wall at the level of the papillary muscles, there weresignificant decrease Ea and Ea/Aa in Genotype (+) mice (P<0.01).
     2.4 Similarly, these changes were found transmitral pulsed Dopplermeasurements acquired in the parasternal long-axis view and four chamberview in Genotype (+) mice (2-month-old). DTI data showed that comparedwith the Ea in Genotype (-) group MA Lateral TDI, there was a significantdecrease in Ea and Ea/Aa in Genotype (+) mice (P<0.001). Similarly, thesechanges were found in MA septal TDI in Genotype (+) mice. 2.5 At the end of the 7-wk follow-up period, the rate of death in Genotype (+)mice swim group (8-month -old) was 54% (13/24), and the rate of death inGenotype (-) mice swim group (8-month -old) was 18% (4/22). Comparedwith the Genotype (-) mice swim group, the Genotype (+) mice swim groupdisplayed a significantly increased rate of death by x~2 analysis. The rate ofdeath in Genotype (+) mice swim group (2-month -old) was 40% (6/15), andthe rate of death in Genotype (-) mice swim group (2-month-old) was25%(4/16). Compared with the Genotype (-) mice swim group, theGenotype (+) mice swim group displayed no significantly increased rate ofdeath by x~2 analysis. But the rate of death in Genotype (+) mice swim groupshowed a tendency of increase.
     2.6 The histological analysis from hematoxylin and eosin in the cardiac apexand interventricular septum showed that at the end of exercise, Genotype (+)mice(8-month and 2-month-old) exhibited hypertrophied myocytes withlarge hyperchromatic nuclei, nuclei hyperplasy, nuclei anisotrophy, seriousdropsy, carcoplasm solution and cardiac muscle break. The cardiachistological results from hematoxylin and eosin also showed that at the endof exercise Genotype (+) mice (8-month) exhibited a lot of fibroblast. Andhistological results from Masson's Trichrome in the cardiac apex andinterventricular septum showed that at the end of exercise Genotype (+)mice (8-month) exhibited serious interstitial fibrosis.
     2.7 During the 7-wk exercise, the Genotype (+) mice (8-month and 2 month)death in exercise showed cardiomyocyte disarray.
     2.8 Before 7 weeks training, there were no significant differences in threeisozymes PKC (PKCβⅠ, PKCβⅡand PKCγ) in the total, cytosolic andparticulate fractions between Genotype (-) mice (2-month-old) andGenotype (+) mice (2-month-old). However, at 8 months mice, theexpression of PKC-βⅠ,βⅡwere associated preferentially with the cytosolicor particulate fraction in left ventricle in Genotype (+)mice. After 7 weeks swimming, the expression of PKC-βⅠin total fractions was upregulated in 2months Genotype (+) mice, and the expression of PKC-βⅠin total fractionsandβⅡin particulate fractions were upregulated in 2 months or 8 monthsGenotype (+) mice.
     Conclusions
     1 This screening protocol identified no athletes (351) with definite evidence ofhypertrophic cardiomyopathy, Marfan's syndrome or other cardiovasculardiseases that convey a significant potential risk for sudden death or diseaseprogression during athletic activity. This is largely due to the relative lowprevalence of conditions resulting in sudden cardiac death in young athletesand high false positive/negative rates in the tests used as part of thescreening process.
     2 Genetic testing is help to screen HCM in athletes early and distinguish theathlete's heart and HCM in athletes.
     3 The cTnI-R145W Genotype (+) mice showed an abnormal response toexercise. Compared with Genotype (-) mice swim group (8-month -old), thedeath rate of the Genotype (+) mice increased by 36%. Exercise canaggravate the diastolic function of Genotype (+) mice.
     4 The cause of increasing the rate of death in Genetype(+) mice (8-month-old)who died suddenly during exercise may largely due to the greater fibrosis,cardiomyocyte disarray, cardiomyocyte fragmentation and largehyperchromatic nuclei induced by exercise. Finally, these changes can alsolead to the Genetype(+) mice (8-month-old) death during exercise.
     5 The exercise can lead to the change of expression of PKCβs in Genetype(+)mice, However, the mechanisms of SCD is still unclear.
引文
1. Battaini F, Pascale A. Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci. 2005 ;1057:177-92.
    2. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet, 2004, 363:1881-91.
    3. Hypertrophic cardiomyopathy: a review of etiology and treatment. J Cardiovasc Nurs. 2007 ;22(1):65-73 .
    4. Sherrid MV. Pathophysiology and treatment of hypertrophic cardiomyopathy. Prog Cardiovasc Dis. 2006;49(2):123-51.
    5. Ferhaan Ahmad J.G. Seidman and Christine E. Seidman The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005,6,185-216.
    6. Spirito P, Maron BJ, Bonow RO, Epstein SE. Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am. J. Cardiol. 1987;60:123-29
    7. Maron BJ. 2002. Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308-20.
    8. 马文珠, 张寄南, 主编. 心肌疾病. 南京: 江苏科学技术出版社, 2000.1.
    9. Zou Y, Song L, Wang Z, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med, 2004, 116(1): 14-8.
    10. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633-44.
    11. Maron BJ, Thompson PD, Ackerman MJ, Balady G, Berger S, Cohen D. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation. 2007;115(12):1643-455.
    12. Biffi A, Pelliccia A, Verdile L, et al. Long-term clinical significance of frequent and complex ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol 2002;40(3):446-452.
    13. Pelliccia A The Athlete's Heart: Remodeling, Electrocardiogram And Preparticipation Screening. Cardiology in Review, 2002; 10(2):85-90.
    14. Jarcho JA, Mckenna W, Pare JAP et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14ql. N Engl J Med. 1989; 321:1372-1378
    15. Geisterfer-lowrance AAT, Kass S, Tanigawa G, et al. A moecular basis for familial hypertrophic cardiomyopathy: aPcardiac myosin heavy chain gene missense mutation. Cell. 1990; 62: 999-1006.
    16. Marian AJ. Clinical and Molecular Genetic Aspects of Hypertrophic Cardiomyopathy.Current Cardiology Reviews, 2005,1, 53-63.
    17. Diane fatkin AND Robert M. GRAHAM. Molecular Mechanisms of Inherited Cardiomyopathies. Physiol Rev .2002;82: 945-980.
    18. Crilley JG, Boehm EA, Blair E, et al. Hypertrophic Cardiomyopathy Due to Sarcomeric Gene Mutations Is Characterized by Impaired Energy Metabolism Irrespective of the Degree of Hypertrophy. J Am Coll Cardiol 2003;41: 1776-82.
    19. Zolk O, Schenke C, Sarikas A. The ubiquitin-proteasome system: focus on the heart. Cardiovasc Res. 2006;70(3):410-21.
    20. Sarikas A, Carrier L, Schenke C,et al. Impairment of the ubiquitin- proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 2005; 66: 33-44.
    21. Nguyen L, Chung J, Lam L, Tsoutsman T, Semsarian C. Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy . Int J Cardiol. 2006.
    1. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633-44.
    2. Maron BJ, Shirani J, Poliac LC, et al. Sudden death in young competitive athletes: clinical, demographic, and pathological profiles. JAMA 1996;276:199-204.
    3 Corrado D, Basso C, Rizzoli G, et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol 2003;42:1959 - 1963.
    4 Maron BJ, Pelliccia A, Spirito P. Cardiac disease in young trained athletes. Insights into methods for distinguishing athlete's heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation. 1995;91(5):1596-1601.
    5 Pigozzi F, Spataro A, Fagnani F, et al. Preparticipation screening for the detection of cardiovascular abnormalities that may cause sudden death in competitive athletes. Br. J. Sports Med 2003; 37: 4-5.
    6 Maron BJ, Douglas PS. 36th Bethesda Conference. Eligibility Recommendations for Competitive Athletes With Cardiovascular Abnormalities. J Am Coll Cardiol, Vol. 45, No. 8, 2005.
    7. Bader RS, Goldberg L, Sahn DJ. Risk of sudden cardiac death in young athletes: which screening strategies are appropriate? Pediatr Clin North Am 2004;51:1421-1441.
    8. Corrado D, Pelliccia A, Bjornstad HH, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J 2005;26(5):516-524.
    9 Maron BJ, Thompson PD, Ackerman MJ, Balady G, Berger S, Cohen D. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation. 2007;115(12):1643-455
    10. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978;58: 1072 - 1083.
    11. Devereux R, Reichek N. Echocardiographic determination of left ventricular mass in men: anatomic validation of the meathod. Circulation 1977;55: 613 - 618.
    12 Pelliccia A, Maron BJ, Culasso P, et al. Clinical Significance of Abnormal Electrocardiographic Patterns in Trained Athletes. Circulation. 2000; 102 278-284.
    13. Maron BJ. Does preparticipation cardiovascular screening of athletes save lives? Nat Clin Pract Cardiovasc Med. 2007.
    14. Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003;42(11):1959-63.
    15. Corrado D, Basso C, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden cardiac death? J Cardiovasc Med (Hagerstown). 2006;7(4):228-33.
    16 Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82:521—524.
    17 Pluim BM, Zwinderman AH, van der Laarse A, Van der Wall EE. The athlete's heart: a meta-analysis of cardiac structure and function. Circulation.1999;100:336 -344.
    18. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes.N Engl J Med. 1991;324:295-301
    19. Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA,Hemingway H, Starters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation.1997;96:741-747.
    20. Karjalainen J, Kujala UM, Stolt A, Mantysaari M, Viitasalo M, Kainulainen K, Kontula K. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes.J Am Coll Cardiol. 1999;34(2):494-9.
    21 Corrado D, Thiene G, Nava A, et al. Sudden death in young competitive athletes: clinicopathologic correlation in 22 cases. Am J Med 1990;89:588-596.
    22.Maron BJ, McKenna WJ, Danielson GK, et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy: a report of the AmericanCollege of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 2003;42:1687-1713.
    23 Maron BJ, Seidman JG, Seidman CE. Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. J Am Coll Cardiol 2004;44:2125-2132.
    24. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 1995;26:1699-1708.
    25 .Caso P, DAndrea A, Caso I, Severino S, Calabro P, Allocca F, Mininni N, Calabro R. The athlete's heart and hypertrophic cardiomyopathy: two conditions which may be misdiagnosed and coexistent. Which parameters should be analysed to distinguish one disease from the other? J Cardiovasc Med (Hagerstown). 2006;7(4):257-66.
    26. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349:1064-1075.
    27. Pelliccia A, Maron BJ, de Luca R, Di Paolo FM, Spataro A, Culasso F.Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002; 105:944 -949.
    28. Trusty JM, Beinborn DS, Jahangir A. Dysrhythmias and the athlete. AACN Clin Issues 2004;15:432-448.
    29. Biffi A, Pelliccia A, Verdile L, et al. Long-term clinical significance of frequent and complex ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol 2002;40(3):446-452.
    30. Pelliccia A The Athlete's Heart: Remodeling, Electrocardiogram And Preparticipation Screening. Cardiology in Review, 2002; 10(2):85-90.
    Burke AP, Farb V, Virmani R, et al. Sports-related and nonsports- related sudden cardiac death in young adults. Am Heart J 1991; 121:568-575
    31. Zehender M, Meinertz T, Keul J, et al. ECG variants and cardiac arrhythmias in athletes: Clinical relevance and prognostic importance. Am Heart J 1990;l 19:1378-1391.
    32. Maron, BJ. The young competitive athlete with cardiovascular abnormalities: causes of sudden death, detection by preparticipation screening, and standards for qualification. Card. Electrophysiol. Rev. 2002;6:100-103.
    33 .Pelliccia A, Di Paolo FM, Corrado D, Buccolieri C, Quattrini FM, Pisicchio C, Spataro A, Biffi A, Granata M, Maron BJ. Evidence for efficacy of the Italian national pre-participation screening programme for identification of hypertrophic cardiomyopathy in competitive athletes.Eur Heart J. 2006;27(18):2196-200.
    1. Marian AJ. Clinical and Molecular Genetic Aspects of Hypertrophic Cardiomyopathy. Current Cardiology Reviews. 2005; 1:53-63.
    2. Marian AJ and Roberts. The molecular genetic basis for hypertrophic cardiomyopathy. J mol cell cardiol. 2001;33:655-670.
    3. Poliac, Liviu C; Barron, Michael E; Maron, Barry J. Hypertrophic Cardiomyopathy. Anesthesiology. 2006;104(1):183-192.
    4. Corrado D, Basso C, Schiavon M, Thiene G. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998;339:364-369.
    5. Maron BJ. Sudden death in young athletes. N Engl J Med 2000;349:1064-1075.
    6. Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes: Clinical, demographic and pathological profiles. JAMA. 1996;276:199-204.
    7. Maron BJ. Hypertrophic Cardiomyopathy: An Important Global Disease. Am J Med. 2004; 116:63- 66.
    8. Wren C. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur Heart J. 2005;26:1804.
    9. Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H, Lu S, Wu P, Zhang dagger Y, Shen dagger L, Cai Y, Zhen double dagger Y, Liu Y, Hui R. Prevalence of idiopathic hypertrophic cardiomyopathy In China: a population-based echocardiographic analysis of 8080 adults. Am J Med. 2004;116:14-18.
    10. Hipp AA, Heitkamp HC, Rocker K, Dickhuth HH. Hypertrophic cardiomyopathy-sports-related aspects of diagnosis, therapy, and sports eligibility. Int J Sports Med. 2004;25(1):20-26.
    11. Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete's heart: a clinical problem of increasing magnitude and significance. Heart. 2005;91:1380-1382.
    12. Maron BJ, Pelliccia A, Spirito P. Cardiac disease in young trained athletes. Insights into methods for distinguishing athlete's heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation. 1995;91:1596-1601.
    13. Tanaka Y, Yoshinaga M, Anan R, Tanaka Y, Nomura Y, Oku S, Nishi S, Kawano Y, Tei C, Arima K. Usefulness and Cost Effectiveness of Cardiovascular Screening of Young Adolescents. Med Sci Sports Exerc. 2006;38:2-6.
    14. Maron BJ, Seidman JG, Seidman CE. Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44:2125-2132.
    15. CASO, P. A; D'Andrea, A. B; Caso. The athlete's heart and hypertrophic cardiomyopathy: two conditions which may be misdiagnosed and coexistent. Which parameters should be analysed to distinguish one disease from the other? Journal of Cardiovascular Medicine. 2006;7:257-266.
    16.Stolt A, Karjalainen J, Heinonen OJ, Kujala UM. Left ventricular mass, geometry and filling in elite female and male endurance athletes. Scand J Med Sci Sports. 2000; 10:28-32.
    17.Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH 3rd, Spirito P, Ten Cate FJ, Wigle ED; Task Force on Clinical Expert Consensus Documents. American College of Cardiology; Committee for Practice Guidelines. European Society of Cardiology. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol. 2003;42(9): 1687-713.
    18. Ji M, Hou P, Li S, He N, Lu Z. Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization. Mutat Res. 2004;548:97-105.
    19. Gomes AV, Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem. 2004;263:99-114.
    20. MacRae CA, Ellinor PT. Genetic screening and risk assessment in hypertrophic cardiomyopathy.J Am Coll Cardiol. 2004;44:2326-2328.
    21. Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998;338:1248-1257.
    22. Sharma S, Maron BJ, Whyte G, Firoozi S, Elliott PM, McKenna WJ. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete's heart and hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:1431-1436.
    1. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27:223-31.
    2. Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB. Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci U S A. 1981;78:6376-80.
    3. Tokita Y, Franco-Saenz R, Mulrow PJ. Reversal of the suppressed kidney renin level in the hypertensive transgenic rat TGR(mRen-2)27 by angiotensin converting enzyme inhibition. Am J Hypertens. 1995;8:1031-9.
    4. Chan AW, Luetjens CM, Schatten GP. Sperm-mediated gene transfer. Curr Top Dev Biol.2000;50:89-102.
    5. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731-4.
    6. Maass A, Leinwand LA. Animal models of hypertrophic cardiomyopathy. Curr Opin Cardiol. 2000;15:189-96.
    7. Gulick J, Subramaniam A, Neumann J, Robbins J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem. 1991;266:9180-5.
    8.Sanbe A, Gulick J, Hanks MC, Liang Q, Osinska H, Robbins J. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res. 2003;92:609-16.
    [1] Maron BJ. Hypertrophic Cardiomyopathy: An Important Global Disease. Am J Med. 2004;116:63-66.
    [2] Marian AJ. Clinical and Molecular Genetic Aspects of Hypertrophic Cardiomyopathy. Current Cardiology Reviews. 2005; 1:53-63.
    [3] Corrado D, Pelliccia A, Bjornstad HH, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol: Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26:516-524.
    [4] Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 3: hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. J Am Coll Cardiol. 1994;24:880-885.
    [5] McConnell BK, Fatkin D, Semsarian C, Jones KA, Georgakopoulos D, Maguire CT, Healey MJ, Mudd JO, Moskowitz IP, Conner DA, Giewat M, Wakimoto H, Berul CI, Schoen FJ, Kass DA, Seidman CE, Seidman JG. Comparison of two murine models of familial hypertrophic cardiomyopathy. Circ Res. 2001;88(4):383-9.
    [6] Marian AJ, Senthil V, Chen SN, Lombardi R. Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol. 2006;47(4):827-34.
    [7] Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev. 2005;10(3):237-48.
    [8] Geisterfer-Lowrance AA, Christe M, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731-734.
    [9] Manning WJ, Wei JY, Katz SE, et al. In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: necropsy validation. Am J Physiol Heart Circ Physiol 1994; 266: H1672-H1675.
    [10] 张寄南 曹克将 肥厚型心肌病诊断与治疗—美国心脏病学学会/欧洲心脏病学学会、美国心脏病协会专家共识导读中华心血管病杂志 2005;6:491-494.
    [11] 张寄南 曹克将 简述欧美有关诊断和治疗扩张型心肌病的建议[J].中华心血管病杂志 2006 No.3.197-200.
    [12] Maron BJ. Sudden death in young athletes. N Engl J Med 2000; 349: 1064-1075.
    [13] Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes: Clinical, demographic and pathological profiles. JAMA. 1996; 276: 199-204.
    [14] Maron BJ, Ackerman MJ, Nishimura RA, et al. Task Force 4: HCM and other cardiomyopathies, mitral valve prolapse, myocarditis, and Marfan syndrome. J Am Coll Cardiol. 2005; 45(8): 1340-5.
    [15] Konhilas JP, Watson PA, Maass A, et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ Res. 2006; 98 (4): 540-548.
    [16] McNally EM. Hypertrophic cardiomyopathy: exercise and eat right. Circ Res. 2006; 98 (4): 443-445.
    [17] Schaefer A, Klein G, Brand B, Lippolt P, Drexler H, Meyer GP. Evaluation of left ventricular diastolic function by pulsed Doppler tissue imaging in mice. J Am Soc Echocardiogr. 2003; 16(11): 1144-9.
    1. Gomes AV, Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem. 2004; 263(1-2): 99-114.
    2. Varnava AM, Elliott PM, Baboonian C, Davison F, Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation. 2001; 104(12): 1380-4.
    3. Maron BJ, Wolfson JK, Roberts WC. Relation between extent of cardiac muscle cell disorganisation and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiology. 1992; 70: 785-790.
    4. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996 May 3;272(5262):731-4.
    5. McConnell BK, Fatkin D, Semsarian C, Jones KA, Georgakopoulos D, Maguire CT, Healey MJ, Mudd JO, Moskowitz IP, Conner DA, Giewat M, Wakimoto H, Berul CI, Schoen FJ, Kass DA, Seidman CE, Seidman JG. Comparison of two murine models of familial hypertrophic cardiomyopathy. Circ Res. 2001;88(4):383-9.
    6. Marian AJ, Senthil V, Chen SN, Lombardi R. Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol. 2006 21;47(4):827-34.
    7.Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev. 2005;10(3):237-48.
    8 .Wolf CM, Moskowitz IP, Arno S, Branco DM, Semsarian C, Bernstein SA, Peterson M, Maida M, Morley GE, Fishman G, Berul CI, Seidman CE, Seidman JG. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proc Natl Acad Sci U S A. 2005;102(50):18123-8.
    9. James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, et al.Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 2000;87:805-11.
    10. Sanbe A, James J, Tuzcu V, Nas S, Martin L, Gulick J, et al. Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation 2005; 111:2330 - 8.
    11. Tsoutsman T, Chung J, Doolan A, Nguyen L, Williams IA, Tu E, Lam L, Bailey CG, Rasko JE, Allen DG, Semsarian C. Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2006;41(4):623-32.
    12. Yoshida N, Ikeda H, Wada T, et al. Exercise-induced abnormal blood pressure responses are related to subendocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1998;32:1938-1942.
    13. Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997;96:2987-2991.
    14. Frenneaux MP, Counihan PJ, Caforio AL, et al. Abnormal blood pressure response during exercise in hypertrophic cardiomyopathy.Circulation. 1990;82:1995-2002.
    15. La Vecchia L, Ometto R, Bedogni F, et al. Ventricular late potentials, interstitial fibrosis, and right ventricular function in patients with ventricular tachycardia and normal left ventricular function. Am J Cardiol. 1998;81:790-792.
    16.Maass AH, Ikeda K, Oberdorf-Maass S, Maier SK, Leinwand LA. Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation. 2004;110(15):2102-9.
    1 Bowling, N., et al. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation. 1999.99:384 - 391.
    2 Malhotra, A., Kang, B.P., Opawumi, D., Belizaire, W., and Meggs, L.G. Molecular biology of protein kinase C signaling in cardiac myocytes. Mol. Cell. Biochem. 2001.225:97 - 107.
    3 Wang, J., Liu, X., Arneja, A.S., and Dhalla, N.S. Alterations in protein kinase A and protein kinase C levels in heart failure due to genetic cardiomyopathy. Can. J. Cardiol. 1999. 15:683 - 690.
    4 Wakasaki, H., et al. 1997. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc. Natl. Acad. Sci. U. S. A. 94:9320 - 9325.
    5 Scruggs SB, Walker LA, Lyu T, Geenen DL, Solaro RJ, Buttrick PM, Goldspink PH. Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCepsilon phosphorylation. J Mol Cell Cardiol. 2006;40(4):465-73.
    6 MacGowan GA, Evans C, Hu TC, Debrah D, Mullet S, Chen HH, McTiernan CF, Stewart AF, Koretsky AP, Shroff SG. Troponin I protein kinase C phosphorylation sites and ventricular function. Cardiovasc Res. 2004;63(2):245-55.
    7 Maass AH, Ikeda K, Oberdorf-Maass S, Maier SK, Leinwand LA. Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation. 2004;110(15):2102-9.
    8 Wang H, Grant JE, Doede CM, Sadayappan S, Robbins J, Walker JW. PKC-betaII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144. J Mol Cell Cardiol. 2006;41(5):823-33.
    9 Dorn GW 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115(3):527-37.
    10 Walker JW.Protein kinase C, troponin I and heart failure: overexpressed, hyperphosphorylated and underappreciated? J Mol Cell Cardiol. 2006;40(4):446-50.
    11 James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, et al.Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 2000;87:805-11.
    12 Wang H, Grant JE, Doede CM, Sadayappan S, Robbins J, Walker JW. PKC-betaII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144. J Mol Cell Cardiol. 2006 41(5):823-33.
    1. Battaini F, Pascale A. Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci. 2005; 1057: 177-92.
    2. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet, 2004, 363: 1881-91.
    3. Hypertrophic cardiomyopathy: a review of etiology and treatment. J Cardiovasc Nurs. 2007; 22(1): 65-73.
    4. Sherrid MV. Pathophysiology and treatment of hypertrophic cardiomyopathy. Prog Cardiovasc Dis. 2006 t; 49(2): 123-51.
    5. Ferhaan Ahrnad J.G. Seidman and Christine E. Seidman The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005, 6, 185-216.
    6. Spirito P, Maron BJ, Bonow RO, Epstein SE. Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am. J. Cardiol. 1987; 60: 123-29
    7. Maron BJ. 2002. Hypertrophic cardiomyopathy: a systematic review. JAMA 287: 1308-20.
    8.马文珠,张寄南,主编.心肌疾病.南京:江苏科学技术出版社,2000.1.
    9. Zou Y, Song L, Wang Z, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med, 2004, 116(1): 14-8.
    10. Jarcho JA, Mckenna W, Pare JAP et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14ql. N Engl J Med. 1989; 321: 1372-1378
    11. Geisterfer-lowrance AAT, Kass S, Tanigawa G, et al. A moecular basis for familial hypertrophic cardiomyopathy: αβcardiac myosin heavy chain gene missense mutation. Cell. 1990; 62: 999-1006.
    12. Blair E, Redwood C, Ashrafian H, et al. Mutations in the r2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 2001; 10: 1215-1220.
    13. Thierfelder L, Watkins H, MacRae C, et al.. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994; 77: 701-12
    14. Marian A. J.Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol 2002, 17: 242-252.
    15. Tatiana Tsoutsman, Lien Lam and Christopher Semsarian. genes, calcium and modifying factors in hypertrophic cardiomyopathy. Clinical and Experimental Pharmacology and Physiology. 2006; 36, 139-145
    16. Zhu X, Bouzekri N, Southam L, et al. Linkage and association analysis of angiotensin I-converting enzyme (ACE)-gene polymorphism with ACE concentration and blood pressure. Am. J. Hum. Genet. 2001; 225: 1139-48.
    17. Lindpaintner K, Lee M, Larson GM et al. Absence of association of genetic linkage betwee angiotensin-converting-enzyme gene and left ventricular mass. N. Engl. J. Med. 1996; 334: 1023-8.
    18.Carolyn Y. Ho, Christine E. Seidman. A Contemporary Approach to Hypertrophic Cardiomyopathy Circulation 2006;113;858-862
    19.Arad M, Benson DW, Perez-Atayde AR,et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357-362.
    20.Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362-372.
    21.Matthew RG Taylor, Elisa Carniel and Luisa Mestron.Familial hypertrophic cardiaomyopathy:clinical features, molecular genetics and molecular genetics testing, Expert Rev. Diagn. 2004;4(1),99-113.
    22.Brian L. Stauffer, John P. Konhilas, Elizabeth D. Luczak,and Leslie A. Leinwand Soy diet worsens heart disease in mice J. Clin. Invest. 2006;116:209-216.
    23. Cathy J. Hatcher and Craig T. Basson. Taking a bite out of hypertrophic cardiomyopathy: soy diet and disease. J. Clin. Invest. 2006; 116:16-19.
    24.Marian AJ. Clinical and Molecular Genetic Aspects of Hypertrophic Cardiomyopathy.Current Cardiology Reviews, 2005, 1, 53-63.
    25Jarcho JA,McKenna w,Pare JA, et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14ql. N.Engl.J.Med. 1989;321,1372-1378.
    26.Pascale Richard, PHD,Eric Villard, Philippe Charron et al.The Genetic Bases of Cardiomyopathie . JACC.2006;48:A79-89
    27.Vikstrom KL AND Leinwand LA. Contractile protein mutations and heart disease. Curr Opin Cell Biol 1996;8: 97-105.
    28.Dec GW AND Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med 1994;331: 1564-1575.
    29.De windt LJ, Lim HW, Bueno OF, et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci 2001;USA 98: 3322-3327.
    30.Marian AJ. Genetic predisposition to cardiac hypertrophy. In:Wilkins MR, editor. Cardiovascular Pharmacogenetics. Springer, 2003: 178-199.
    31.Olson TM,Michels W,Thibodeau SN,et al. Actin mutations in dilated cardiomyopathy,a heritable form of heart failure.Science 1998;280,750-752.
    32.Mogensen J ,Klausen IC,Pedersen AK et al.Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J.Clin.Invest. 1999;103,R39-R43.
    33.Hoffmann B, Schmidt-traub H, Perrot A, et al. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat 2001 ;17: 524.
    34.Richard P, Charron P, Carrier L, et al. hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation.2003;107:2227-2232.
    35.Niimura H, Bachinski LL, Sangwatanaroj S, et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998; 338: 1248-1257.
    36.Erdmann J, Raible J, Maki-Abadi J, et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J Am Coll Cardiol 2001; 38: 322-330.
    37.Marian AJ and Roberts. The molecular genetic basis for hypertrophic cardiomyopathy.J mol cell cardiol. 2001 ;33:655-670.
    38.Satoh M, Takahashi M, Sakamoto T, et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res 1999;Commun 262: 411-417.
    39.Geier C, Oezcelik C, PERROT A, et al. Muscle LIM protein: a novel disease gene for hypertrophic cardiomyopathy? Circulation 2001; 104 Suppl II: 11-521
    40.Marian AJ. Clinical and Molecular Genetic Aspects of Hypertrophic Cardiomyopathy.Current Cardiology Reviews, 2005, 1, 53-63.
    41.Simon DK, Johns DR. Mitochondrial disorders: clinical and genetic features.Annu Rev Med 1999, 50:111-127.
    42.Marian A. J.Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol 2002, 17:242-252
    43 .Marian AJ, Yu QT, Workman R, et al. Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 1993, 342:1085-1086.
    44.Lechin M, Quinones MA, Omran A, et al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 1995, 92:1808-1812.
    45.Tesson F, Dufour C, Moolman JC, et al. The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 1997, 29:831-838.
    46.Diane fatkin AND Robert M. GRAHAM. Molecular Mechanisms of Inherited Cardiomyopathies. Physiol Rev .2002;82: 945-980.
    47.Lowey, S. Functional consequences of mutations in the Myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. rends Cardiovasc. Med. 2002; 12, 348-354
    48.Sweeney, H.L. et al. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc. Natl. Acad. Sci. 1998; 95, 14406-14410
    49.Ho, C.Y. et al. Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation 2002; 105, 2992-2997.
    50.Crilley JG, Boehm EA, Blair E, et al. Hypertrophic Cardiomyopathy Due to Sarcomeric Gene Mutations Is Characterized by Impaired Energy Metabolism Irrespective of the Degree of Hypertrophy. J Am Coll Cardiol 2003;41: 1776-82.
    51.Houman Ashrafian, Charles Redwood, Edward Blair,et al. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. TRENDS in Genetics 2003; 19(5) 263-268
    52.Spindler, M. et al. Diastolic dysfunction and altered energetics in the aMHC403/1 mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 1998; 101, 1775-1783.
    53.Arbustini, E. et al. Coexistence of mitochondrial DNA and b myosin heavy chain mutations in hypertrophic cardiomyopathy with late congestive heart failure. Heart 1998;80, 548-558.
    54.Zolk O, Schenke C, Sarikas A. The ubiquitin-proteasome system: focus on the heart. Cardiovasc Res. 2006;70(3):410-21.
    55.Sarikas A, Carrier L, Schenke C,et al. Impairment of the ubiquitin- proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 2005; 66:33- 44.
    56 Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H, Starters D, Jubb M, Girvain M, Varnava A, World M,Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation. 1997;96:741-747.
    57Karjalainen J, Kujala UM, Stolt A, Mantysaari M, Viitasalo M, Kainulainen K, Kontula K. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes.J Am Coll Cardiol. 1999 Aug;34(2):494-9.
    58.Bi, L., Okabe, I., Bernard, D.J., et al Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J. Biol. Chem. 1999;274:10963-10968.
    59. McMullen JR, Amirahmadi F, Woodcock EA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 2007; 104(2):612-7.
    60.Shioi, T., et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19:2537-2548.
    61.Shioi, T., et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol. 2002;22:2799-2809.
    62.Condorelli, G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 2002;99:12333-12338.
    63.Cho, H., Thorvaldsen, J.L., Chu, Q.,et al. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 2001;276:38349-38352.
    64.Rockman, H.A., Koch, W.J, et al. Seven-transmembrane-spanning receptors and heart function. Nature. 2002; 415:206-212.
    65.McMullen, J.R., et al Phosphoinositide 3-kinase(p110alpha) plays a critical role for theinduction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 2003;100:12355-12360.
    66 Crackower, M.A., et al. Regulation of myocardial contractility and cell size by distinct PI3KPTEN signaling pathways. Cell. 2002;110:737-749.
    67 Patrucco, E., et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell. 2004; 118:375-387.
    68.Whyte GP, George K, Sharma S,et al. The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience.Eur J Appl Physiol. 2004 ;92:592-7.
    69.Pelliccia A, Culasso F, Di Paolo FM, Maron BJ. Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Med. 1999; 130(1): 23-31
    70.Nagashima J, Musha H, Takada H, Murayama M. New upper limit of physiologic cardiac hypertrophy in Japanese participants in the 100-km ultramarathon. J Am Coll Cardiol. 2003 ;42:1617-23.
    71.Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006; 114:1633-44.
    72.Vinereanu D, Florescu N, Sculthorpe N, et al. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol. 2001;88:53-8.
    73.Cardim N, Oliveira AG, Longo S,et al. Doppler tissue imaging: regional myocardial function in hypertrophic cardiomyopathy and in athlete's heart. J Am Soc Echocardiogr. 2003 Mar; 1:223-32.
    74.Palka P, Lange A, Fleming AD, et al. Differences in myocardial velocity gradient measured throughout the cardiac cycle in patients with hypertrophic cardiomyopathy, athletes and patients with left ventricular hypertrophy due to hypertension. J Am Coll Cardiol. 1997;30:760-8.
    75.D'Andrea A, D'Andrea L, Caso P, et al. The usefulness of Doppler myocardial imaging in the study of the athlete's heart and in the differential diagnosis between physiological and pathological ventricular hypertrophy. Echocardiography. 2006 ;23:149-57.
    76.Pelliccia A. Athletes'heart and hypertrophic cardiomyopathy. Curr Cardiol Rep. 2000;2(2): 166-71.
    77.Hipp AA, Heitkamp HC, Rocker K, Dickhuth HH. Hypertrophic cardiomyopathy-sports-related aspects of diagnosis, therapy, and sports eligibility. Int J Sports Med. 2004 ;25(1):20-6.
    78.Ciampi Q, Betocchi S, Lombardi R, Manganelli et al. Hemodynamic determinants of exercise-induced abnormal blood pressure response in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:278-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700