自体筋膜作为骨骼肌再生支架的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     肌肉缺损是临床常见现象,常由各种创伤包括深度烧伤、电损伤、车祸等意外事故引起。肌肉组织的修复是医学界较为棘手的课题,尽管游离肌肉移植以其动力修复的显著疗效为外科医生所青睐,然而它对供区的损害及术后受区欠佳的外形和肌力分布限制其广泛应用。近年来随着细胞生物学的迅猛发展和组织工程的兴起,为肌肉的缺损和动力修复开创了一个崭新的研究前景。自从20世纪80年代中期提出组织工程概念后,许多学者试图利用组织工程方法在体外构建具有功能的肌肉组织。但是,迄今为止仍然没有理想的组织工程化肌肉能满足临床需要。究其原因,主要是尚无理想的供肌肉组织再生的支架材料。在肌肉再生研究中,种子细胞赖于生存的支架材料的研究就成为重要的内容。
     组织工程的支架材料可分为:1,天然高分子材料。常用的天然高分子材料主要为多糖和蛋白质两大类。多糖类有纤维素、甲壳素、硫酸软骨素、透明质酸等;蛋白质材料主要有胶原和纤维蛋白等结构蛋白。这类材料的优点在于包含着许多生物信息,能够使细胞产生或维持各种功能,并具有很好
BACKGROUND
    Loss of muscle tissues resulting from traumatic injuries is a very common phenomenon in hospitals. These injuries often result from car accidents, electric injuries, burns, tumor ablations and numerous other injuries. The reconstruction of contractile skeletal muscle has been a complex and difficult problem in the field of plastic surgery. Although free muscle flap transplants have had remarkable success and are favored by surgeons, the donor area left by the muscle flap removal has a very unsightly appearance. In addition, the muscle strength is markedly weak with decreased function of the graft muscle in the recipient area. Therefore, the extensive application of muscle flap is limited. With the outstanding development of medical cell and molecular biology and tissue engineering in recent years, a new alternative approach to address difficult tissue reconstruction is the
引文
1.朱志祥,许晓光,李伟萍,等.急诊综合修复电损伤临床回顾分析.中华烧伤杂志,2001,17:18-21.
    2.李伟萍,朱志祥,许晓光,等.生物氧耗量测定诊断高压电损伤的实验研究.中华烧伤杂志,2001,17:111-113.
    3.王正国.组织工程研究.中国医学科学院报,2003,25(1):1
    4.鄂征,刘流主编 医学组织工程技术与临床应用。北京出版社,2003年第1版
    5. DiEdwardo C. A., Petrosko P., Acarturk T. O., DiMillaP. A., LaFramboise W. A., Johnson P. C., Muscle tissue engineering, Clin. Plast. Surg., 1999, 26:647-656
    6. Bach A. D., Stem-Straeter J., Beier J. P., Bannasch H., Stark G. B., Engineering of muscle tissue, Clin. Plast.Surg. 2003, 30: 589-599
    7. Bonassar L. J., Vacanti C. A., Tissue engineering: the first decade and beyond, J. Cell Biochem. Suppl., 1998, 30-31:297-303
    8. Kopp J., Jeschke M. G., Bach A. D., Kneser U., Horch R. E., Applied tissue engineering in the closure of severeburns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix, Cell Tissue Bank, , 2004, 5:81-87
    9. Horch R. E., Debus M., Wagner G., Stark G. B., Cultured human keratinocytes on type Ⅰ collagen membranes to reconstitute the epidermis, Tissue Eng. , 2000, 6:53-67
    10. Hurme T., Kalimo H., Lehto M., Jarvinen M., Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study, Med. Sci. Sports Exerc. , 1991, 9.3:801-810
    11.杨志明.组织工程的发展趋势.中国修复重建外科杂志,2003,17(2):81-82
    12. Langer R, VacantiJP. Tissue engineering. Science, 1993, 260:920-925
    13. Cho N, Heller J. Drug delivery devices manufactured from polyorthoesters and polyorthocarbonates. US patent, 1978, 4093709
    14. Heller J, Penhale D, Helwing R. Preparation of poly(orthoesters) by the reaction of kiketene acetals and polyols. J Polym Sci 1980, 18:619-624.
    15. Heller J, Sparer RV, Zentner GM. Poly(ortho esters). In: Chasin M, Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990, p121-161.
    16. Heller J, Penhale DW, Helwing RF, Fritzinger BK. Controlled release of norethindrone from poly(orthoesters). In: Mansdorf S, Ram T, editors. Controlled release delivery systems. NewYork: Marcel Dekker; 1983, p91-105.
    17. Heller J, Fritzinger BK, Ng SY, Penhale DW. In vitro and invivo release of levonorgesrel from poly(ortho esters)—1. Linear polymers. J Controlled Release 1985, 1:225-232.
    18. Heller J, Ng SY, Penhale DW, Fritzinger BK, Sanders LM, Bruns RA, Gaynon MG, Bhosale SS. Use of poly(ortho esters) for the controlled:release of 5-fluorouracil and a LH-RH analog. J Control Release 1987, 6:217-224.
    19. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994, 263:1715-1720
    20. Seliktar D. Extracellular stimulation in tissue engineering. Ann NY Acad Sci. 2005, 1047: 386-394.
    21. Hollinger JO, Schmitz JP. Restoration of bone discontinuities in dogs using a biodegradable implant. J Oral Maxillofac Surg 1987, 45:594-600.
    22.黄渭清,李森恺,凌诒淳。晚期面瘫整形外科治疗历史。中华整形烧伤外科杂志,1998,14(1):59-61
    23. Asakura A, Komaki M, Rudnicki M: Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 2001, 68:245-253.
    24. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, HashimotoN: Generation of different fates from multipotent muscle stem cells. Development 2002, 129:2987-2995.
    25. Qu Z, Balkir L, van Deutekom JC, Robbins PD, Pruchnic R, Huard J: Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 1998, 142:1257-1267.
    26. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J,Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J:Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration. J Cell Biol 2002, 157:851-864.
    
    27. Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J,Usas A, Gates C, Robbins P, Wernig A, Huard J: Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 2000, 150:1085-1100.
    
    28. Mauro A: Satellite cells of skeletal muscle fibers. J Biophys Biochem Cytol , 1961,9:493-495.
    
    29. Hawke TJ, Garry DJ: Myogenic satellite cells: physiology to molecular biology. J Appl Physiol, 2001, 91:534-551.
    
    30. Snow MH: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat Rec 1977, 188:181-199.
    
    31. Snow MH: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study.Anat Rec 1977, 188:201-217.
    
    32. Maltin CA, Harris JB, Cullen MJ: Regeneration of mammalian skeletal muscle following the injection of the snake-venom toxin, taipoxin. Cell Tissue Res 1983, 232:565-577.
    
    33. Darr KC, Schultz E: Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 1987, 63:1816-1821.
    34. Appell HJ, Forsberg S, Hollmann W: Satellite cell activation in human skeletal muscle after training: evidence for muscle fiber neoformation. Int J Sports Med 1988, 9:297-299.
    35. Snow MH: Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anat Rec 1990, 227:437-446.
    36. Snow MH: A quantitative ultrastructural analysis of satellite cells in denervated fast and slow muscles of the mouse. Anat Rec 1983, 207:593-604.
    37. Polesskaya A, Seale P, Rudnicki MA: Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 2003, 113:841-852.
    38.黎鳌,杨宗城,肖光夏,汪仕良主编。实验烧伤外科学。1997年9月第1版,重庆大学出版社,P17
    39.杨成,周树夏,刘彦普,等.肌肉组织工程的基础研究-高纯度卫星细胞培养方法。中国美容医学,2004,13(1):7-9
    40. Wering A, Irintchev A, Hartlin G, et al. Formation of new muscle fibers and tumours after injection of cultured myogenic cells. J Neurocytol, 1991, 20:982-997
    41. Cooper RN, Tajbakhsh S, Mouly V et al. In vivo satellite cell activation via Mrf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci, 1999, 112:2895
    42. Megeney LA, Kablar B, G arrett K et al. MyoD isrequired for myogenic stem cell function in adult skeletal muscle. Genes Dev, 1996, 10:1173
    43. Lounds, MD. Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol,1999,12:535-543
    44. Seale P, Rudnicki MA. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol, 2000, 218: 115-124
    45. Ellen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor Ⅰ, and fibroblast growth factor. J Cell Physiol, 1989,138:311-315
    46. eRoith D, McGuinness M, Shemer J, et al. Insulin-like growth factors. Biol Signals, 1992, 1:173-181
    47. aidya TB, Rhodes SJ, Taparowsky EJ, et al. Fibroblast growth factor and transforming growth factor beta repress trans cription of the myogenic regulatory gene MyoD1. Mol Cell Biol, 1989, 9: 3576-3579
    48. Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol, 2000, 89:1365-1379
    49. Adams GR, Haddad F, Balwin KM. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol, 1999, 87:1705-1712
    50. Yan Z, Biggs RB, Booth FW. Insulin-like growth factor immunoreactivity increases in muscle after acute eccentric contractions. J Appl Physiol, 1993, 74:410-414
    51. Sheehan SM, Alien RE. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte factor. J Cell Physiol, 1999, 181(3):499
    52. Floss T, Arnold HH, Braun T. A role for FGF-6 in skeletal muscle regeneration. Genes Dev, 1997, 11:2040-2051
    53. Scata KA, Bernard DW, Fox J, et al. FGF receptor availability regulates skeletal myogenesis. Exp Cell Res, 1999, 250:10-21
    54. Sheehan SM, Allen RE. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol, 1999, 181:499-506
    55. Whitman M. Smads and early developmental signaling by the TGFβ super-family. Genes Dev, 1998, 12:2445-2462
    56. Hibi M, Nakajima K, Hirano T. IL-6 cytokine family and signal transduction: a model of the cytokine system. J Mol Med, 1996, 74:1-12
    57. Kurek JB, Bower JJ, Romanella M, et al. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve, 1997, 20:815-822
    58. Cantini M, Carraro F. Control of cell proliferation by macrophage-myoblast interactions. Basic Appl Myol, 1996, 6: 485-489
    59. Kami K, Senba E. Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve, 1998, 21:819-822
    60.张臻,朱洪生,钟竑,等.犬骨骼肌卫星细胞的分离、培养及扩增方法探索.上海实验动物学,2000,20:72-74
    61. Borschel GH, Dennis RG, KuzonJr WM. Contractile Skeletal Muscle Tissue-Engineered on an Acellular Scaffold. Plastic and Reconstructive Surgery, 2004, 113:595-602
    62. Mooney D. J., Mikos A. G., Growing new organs, Sci. Am., 1999, 280: 60-65,
    63. Law P. K., Goodwin T. G., Fang Q., Deering M. B., Duggirala V., Larkin C., Florendo J. A., Kirby D. S., Li H. J., Chen M. et al., Cell transplantation as an experimental treatment for Duchenne muscular dystrophy, Cell Transplant. , 1993, 2:485-505
    64. Guettier-Sigrist S., Coupin G., Braun S., Wafter J. M., Poindron P., Muscle could be the therapeutic target in SMA treatment, J. Neurosci. Res. ,1998, 53:663-669
    65. Vangsness C. T. Jr., Kurzweil P. R., Lieberman J.R., Restoring articular cartilage in the knee, Am. J. Orthop., 2004, 33:29-34
    66. Oakes B.W., Orthopaedic tissue engineering: from laboratory to the clinic, Med. J. Aust. , 2004, 180: S35-S38
    
    67. Kojima K., Bonassar L.J., Ignotz R.A., Syed K.,Cortiella J., Vacanti C.A., Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea, Ann. Thorac. Surg., 2003 , 76:1884-1888
    
    68. Chang S. C, Tobias G., Roy A.K., Vacanti C.A. ,Bonassar L.J.,Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding, Plast. Reconstr. Surg., 112:2003, 793-799
    
    69. Guettier-Sigrist S., Coupin G., Braun S., Rogovitz D.,Courdier I.,Warter J.M., Poindron P., On the possible role of muscle in the pathogenesis of spinal muscular atrophy, Fundam. Clin.Pharmacol., , 2001, 15: 31-40
    
    70. Fauza D.O., Marler J.J., Koka R., Forse R.A., Mayer J.E., Vacanti J.P., Fetal tissue engineering: diaphragmatic replacement, J.Pediatr. Surg. ,2001, 36: 146-151
    
    71. Seliktar D. Extracellular stimulation in tissue engineering. Ann NY Acad Sci. 2005, 1047: 386-394.
    
    72. Hollinger JO, Schmitz JP. Restoration of bone discontinuities in dogs using a biodegradable implant. J Oral Maxillofac Surg.1987;45:594-600.
    
    73. Heckman JD, Boyan BD, Aufdemorte TB, Abbott JT. The use of bone morphogenetic protein in the treatment of non-union in a canine model. J Bone Joint Surg (Am), 1991;73:750-764.
    74. Agrawal CM, Bert J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials 1995; 16:1255-1260.
    75. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineering cartilage. J Orthop Res 1999;17:130-138.
    76. Freed LE, Vunjak-Novakovic G, Langer P. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem 1993;51:257-264.
    77. Freed L, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:1-23.
    78. Athanasiou KA, Korvick D, Schenck RC. Biodegradable implants for the treatment of osteochondral defects in a goat model. Tissue Eng 1997;3:363-374.
    79. Hamalainen KM, Maatta R, Piirainen H, Sarkola M, Vaisanon A, Ranta VP, Urtti A. Roles of acid/base nature and molecular weight in drug release from matrices of gel foam and monoisopropyl ester of poly(vinyl methyl ether-maleic anhydride). J Controlled Release 1998;56:273-283.
    
    80. Hanes J, Chiba M, Langer R. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials 1998;19:163-172.
    
    81. Chiba M, Hanes J, Langer R. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres. Biomaterials 1997:18:893-901.
    
    82. Chasin M, Lewis D, Langer R. Polyanhydrides for controlled drug delivery. Biopharm Mfg 1998;1:33-46.
    
    83. Ibim SE, Uhrich KE, Attawia M, Shastri VR, El-Amin SF,Brorison R, Langer R, Laurencin CT. Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J Biomed Mater Res 1998;43:374-379.
    
    84. Ibim SM, Uhrieh KE, Bronson R, El-Amin SF, Langer RS,Laurencin CT. Poly(anhydride-co-imides): In vivo biocompatibility in a rat model. Biomaterials 1998;19:941-951.
    
    85. Heller J, Sparer RV, Zentner GM. Poly(ortho esters). In: Chasin M,Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990. p 121-161.
    
    86. Heller J, Penhale DW, Helwing RF, Fritzinger BK. Controlled release of norethindrone from poly(orthoesters). In: Mansdorf S,Ram T, editors. Controlled release delivery systems. NewYork: Marcel Dekker; 1983. p 91-105.
    
    87. Heller J, Fritzinger BK, Ng SY, Penhale DW. In vitro and in vivo release of levonorgesrel from poly(ortho esters)—1. Linear polymers. J Controlled Release 1985;1:225-232.
    
    88. Heller J, Ng SY, Penhale DW, Fritzinger BK, Sanders LM, Bruns RA, Gaynon MG, Bhosale SS. Use of poly(ortho esters) for the controlled release of 5-fluorouracil and a LH-RH analog. J Control Release 1987;6:217-224.
    
    89. Allen C, Yu Y, Maysinger D, Eisenberg A.Polycaprolactoneb-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug Chem 1998;9:564-572.
    
    90. Pitt C. Poly-epsilon-caprolactone and its copolymers. In:Chasin M, Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990. p 71-120.
    
    91. Peyman GA, Yang D, Khoobehi B, Rahimy MH, Chin SY. In vitro evaluation of polymeric matrix and porous biodegradable reservoir devices for slow-release drug delivery. Ophthal Surg Lasers 1996;27:384-391.
    
    92. Lemmouchi Y, Schacht E, Lootens C. In vitro release of trypanocidal drugs from biodegradable implants based on poly-(epsilon-caprolactone) and poly(D,L-lactide). J Controlled Release 1998;55:79-85.
    93. Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, Anglen JO, Allen WC. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. J Biorned Mater Res 1997;36:536-541.
    94. Kohn J. Pseudo-poly(amino acids). Biodegradable polymers as drug delivery systems. In: Chasin M, Langer R, editors. New York: Marcel Dekker; 1990. p195-229.
    95. Choueka J, Charvet JL, Koval KJ, Alexander H, James KS, Hooper KA, Kohn J. Canine bone response to tyrosinederived polycarbonates and poly(L-lactic acid). J Biomed Mater Res 1996;31:35-41.
    96. Ertel SI, Kohn J, Zimmerman MC, Parsons JR. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications. J Biomed Mater Res 1995; 29:1337-1348.
    97. Yu C, Mielewczyk SS, Breslauer KJ, Kohn J. Tyrosine-PEGderived poly(ether carbonate)s as new biomaterials. Part Ⅱ: Study of inverse temperature transitions. Biomaterials 1999; 20:265-272.
    98. Peter SJ, Yaszemski MJ, Suggs LJ, Payne RG, Langer R, Hayes WC, Unroe MR, Alemany LB, Engel PS, Mikos AG. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J Biomater Sci Polym Ed 1997;8:893-904.
    99. Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Aufdemorte TB, Mikos AG. The ingrowth of new bone tissue and initial mechanical properties of a degradable polymeric composite scaffold. Tissue Eng 1995; 1:41-52.
    100. Peter SJ, Lu L, Kim Dff, Mikos AG. Marrow stromal osteoblast function on a poly(propylene fumarate)/b-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 2000;21:1207-1213.
    101. Ishaug-Riley S. Bone formation by three-dimehsional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997;36:17-28.
    102. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski M J, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998; 19:1405-1412.
    103. Attawia MA, Uhrich KE, Botchwey E, Langer R, Laurencin CT. In vitro bone biocompatibility of poly(anhydride-coimides) containing pyromellitylimidoalanine. J Orthop Res 1996;14:445-454.
    104. Campion DR. The muscle satellite cell: a review, Int. Rev. Cytol., 1984, 225-251.
    105. Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat., 2003,203:89-99
    
    106. Li Y, Huard J. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am. J.Pathol. 2002,161:895-907
    
    107. Dennis RG, Kosnik PE, Gilbert ME, et al. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am.J.Physiol.2001,280:C288.
    
    108. Dennis RG, Kosnik PE, Gilbert ME, et al. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am.J.Physiol.2001,280:C288.
    
    109. Dennis RG, Kosnik PE. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev.Biol.Anim. 2000,36:327
    
    110. Kosnik PE, Faulkner JA, Dennis RG. Functional development of engineered skeletalmuscle from adult and neonatal rats. Tissue Eng. 2001, 7:573
    
    111. Fauza DO, Marler JJ, Koka R, et al. Fetal tissue engineering:Diaphragmatic replacement. J Pediatr Surg. 2001,36:146,
    
    112. van Wachem PB, Brouwer LA, van Luyn MJ.Absence of muscle regenration after implantation of a collagen matrix seeded with myoblasts. Biomaterials. 1999,20:419.
    
    113 Chromiak JA, Shansky J, Perrone C, et al. Bioreator perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell. Dev.Biol.Anim.1998,34:694.
    
    114. Saxena AK, Marler J, Benvenuto M, et al. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng.1999,5:525.
    
    115. Vandenburgh HH, Hatfaludy S, Karlisch P, et al. Mechanically induced alteration in cultured skeletal muscle growth. J Biomech.1991,24:91
    
    116. Vandenburgh HH, Swasdison S, Karlisch P. Computer-aided mechanogenesis of skeletal-muscle organs from single cells in vitro. FASEB J.1991,5:2860.
    
    117. Vandenburgh HH, Kaelisch P, Shansky J, et al. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture.Am J Physiol. 1991,260:C475.
    
    118. Vandenburgh HH, Hatfaludy S, Sohar I, et al. Stretch-induced prostaglandins and proteinturnover in cultured skeletal muscle. Am J Physiol.1990,259:C232.
    
    119. Vandenburgh HH, Karlisch P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator.In Vitro Cell Dev Biol. 1989, 25:607.
    
    120. Vandenburgh HH, A computerized mechanical cell stimulator for tissue culture: Effects on skeletal-muscle organogenesis. In Vitro Cell Dev Biol. 1988, 24:609.
    121. Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol. 1988, 24:166.
    122. Kamelger FS, Marksteiner R, Margreiter E. et al. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials. 2004, 25:1649-1655
    123. Saxena AK., Marler J., Benvenuto M., et al. Skeletal muscle tissue engineering using isolated myoblasts on synthetic bio degradable polymers: preliminary studies. Tissue Eng. 1999,5:525-532
    124. Powell CA, Smiley BL, Mills J, et al. Mechanical stimulation improves tissue-engeered human skeletal muscle. Am. J. Physiol. Cell Physiol. 2002, 283: C1557-C1565.
    125. Dusterhoft S, Pette D. Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation. 1993, 53: 25-33.
    126.胡柏平,赵咏梅.运动对骨骼肌肌动蛋白及其基因表达影响的研究进展.体育学刊,2C104,11:48-50
    1 朱志祥,许晓光,李伟萍,等.急诊综合修复电损伤临床回顾分析.中华烧伤杂志,2001,17:18-21.
    2 李伟萍,朱志祥,许晓光,等.生物氧耗量测定诊断高压电损伤的实验研究.中华烧伤杂志,2001,17:111-113.
    3 王正国.组织工程研究.中国医学科学院报,2003,25(1):1
    4 鄂征,刘流主编医学组织工程技术与临床应用。北京出版社,2003年第1版
    5 Yang S, Leong KF, Du z. et al. The design of scaffolds for use in tissue engineering. Part Ⅱ. Rapid prototyping techniques. Tissue Engineering. 2002, 8(1):1-11.
    6 Seliktar D. Extracellular stimulation in tissue engineering. Ann NY Acad Sci. 2005, 1047: 386-394.
    7 竺亚斌,高长有,王登勇等 聚合物组织工程材料 生物医学工程杂志,2003,20(2):356-360
    8 Peppas NA, Langer R. New challenges in biomaterials. Science. 1994, 263:1715-1720
    9 杨志明.组织工程的发展趋势.中国修复重建外科杂志,2003,17(2):81-82
    10 陈晓萍,范明.肌卫星细胞研究进展.生理科学进展,2003,34:136-139.
    11. Hollinger JO, Schmitz JP. Restoration of bone discontinuities in dogs using a biodegradable implant. J Oral Maxillofac Surg. 1987;45:594-600.
    12. Heckman JD, Boyan BD, Aufdemorte TB, Abbott JT. The use of bone morphogenetic protein in the treatment of non-union in a canine model. J Bone Joint Surg (Am), 1991;73:750-764.
    
    13. Agrawal CM, Bert J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions.Biomaterials 1995; 16:1255-1260.
    
    14. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S,Grodzinsky AJ, Langer R, Freed LE. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineering cartilage. J Orthop Res 1999;17:130-138.
    
    15. Freed LE, Vunjak-Novakovic G, Langer P. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem 1993;51:257-264.
    
    16. Freed L, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R.Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:1-23.
    
    17. Athanasiou KA, Korvick D, Schenck RC. Biodegradable implants for the treatment of osteochondral defects in a goat model. Tissue Eng 1997;3:363-374.
    
    18. Hamalainen KM, Maatta R, Piirainen H, Sarkola M, Vaisanon A,Ranta VP, Urtti A. Roles of acid/base nature and molecular weight in drug release from matrices of gel foam and monoisopropyl ester of poly(vinyl methyl ether-maleic anhydride). J Controlled Release 1998;56:273-283.
    19. Hanes J, Chiba M, Langer R. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials 1998;19:163-172.
    20. Chiba M, Hanes J, Langer R. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres. Biomaterials 1997;18:893-901.
    21. Chasin M, Lewis D, Langer R. Polyanhydrides for controlled drug delivery. Biopharm Mfg 1998; 1:33-46.
    22. Ibim SE, Uhrich KE, Attawia M, Shastri VR, E1-Amin SF, Bronson R, Langer R, Laurencin CT. Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J Biomed Mater Res 1998;43:374-379.
    23. Ibim SM, Uhrich KE, Bronson R, El-Amin SF, Langer RS, Laurencin CT. Poly(anhydride-co-imides): In vivo biocompatibility in a rat model. Biomaterials 1998;19:941-951.
    24. Heller J, Sparer RV, Zentner GM. Poly(ortho esters). In: Chasin M, Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990. p 121-161.
    25. Heller J, Penhale DW, Helwing RF, Fritzinger BK. Controlled release of norethindrone from poly(orthoesters). In: Mansdorf S, Ram T, editors. Controlled release delivery systems. NewYork: Marcel Dekker; 1983. p 91-105.
    26. Heller J, Fritzinger BK, Ng SY, Penhale DW. In vitro and in vivo release of levonorgesrel from poly(ortho esters)—1. Linear polymers. J Controlled Release 1985;1:225-232.
    27. Heller J, Ng SY, Penhale DW, Fritzinger BK, Sanders LM, Bruns RA, Gaynon MG, Bhosale SS. Use of poly(ortho esters) for the controlled release of 5-fluorouracil and a LH-RH analog. J Control Release 1987;6:217-224.
    28. Allen C, Yu Y, Maysinger D, Eisenberg A. Polycaprolactoneb-poly(ethylene oxide) block copolymer micelles as a noveldrug delivery vehicle for neurotrophic agents FK506 and L-685, 818. Bioconjug Chem. 1998;9:564-572.
    29. Pitt C. Poly-epsilon-caprolactone and its copolymers. In: Chasin M, Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990. p 71-120.
    30. Peyman GA, Yang D, Khoobehi B, Rahimy MH, Chin SY. In vitro evaluation of polymeric matrix and porous biodegradable reservoir devices for slow-release drug delivery. Ophthal Surg Lasers 1996;27:384-391.
    31. Lemmouchi Y, Schacht E, Lootens C. In vitro release of trypanocidal drugs from biodegradable implants based on poly-(epsilon-caprolactone) and poly(D, L-lactide). J Controlled Release 1998;55:79-85.
    32. Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, Anglen JO, Alien WC. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. J Biomed Mater Res 1997;36:536-541.
    33. Kohn J. Pseudo-poly(amino acids). Biodegradable polymers as drug delivery systems. In: Chasin M, Langer R, editors. New York: Marcel Dekker; 1990. p 195-229.
    34. Choueka J, Charvet JL, Koval KJ, Alexander H, James KS, Hooper KA, Kohn J. Canine bone response to tyrosinederived polycarbonates and poly(L-lactic acid). J Biomed Mater Res 1996;31:35-41.
    35. Ertel SI, Kohn J, Zimmerman MC, Parsons JR. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications. J Biomed Mater Res 1995; 29:1337-1348.
    36. Yu C, Mielewczyk SS, Breslauer KJ, Kohn J. Tyrosine-PEGderived poly(ether carbonate)s as new biomaterials. Part Ⅱ: Study of inverse temperature transitions. Biomaterials 1999; 20:265-272.
    37. Peter SJ, Yaszemski MJ, Suggs LJ, Payne RG, Langer R, Hayes WC, Unroe MR, Alemany LB, Engel PS, Mikos AG. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J Biomater Sci Polym Ed 1997;8:89:3-904.
    38. Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Aufdemorte TB, Mikos AG. The ingrowth of new bone tissue and initial mechanical properties of a degradable polymeric composite scaffold. Tissue Eng 1995;1:41-52.
    39. Peter SJ, Lu L, Kim DJ, Mikos AG. Marrow stromal osteoblast function on a poly(propylene fumarate)/b-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 2000;21:1207-1213.
    40. Ishaug-Riley S. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997;36:17-28.
    41. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998; 19:1405-1412.
    42. Attawia MA, Uhrich KE, Botchwey E, Langer R, Laurencin CT. In vitro bone biocompatibility of poly(anhydride-coimides) containing pyromellitylimidoalanine. J Orthop Res 1996;14:445-454.
    43 Champion DR. The muscle satellite cell: a review, Int. Rev. Cytol., 1984, 225-251.
    44 Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat., 2003, 203:89-99
    45 Li Y, Huard J. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am. J.Pathol. 2002, 161:895-907
    46 Dennis RG, Kosnik PE, Gilbert ME, et al. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am.J.Physiol.2001, 280:C288.
    47 Dennis RG, Kosnik PE. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 2000,36:327
    48 Kosnik PE, Faulkner JA, Dennis RG. Functional development of engineered skeletalmuscle from adult and neonatal rats. Tissue Eng. 2001, 7:573
    49 Fauza DO, Marler JJ, Koka R, et al. Fetal tissue engineering: Diaphragmatic replacement. J Pediatr Surg. 2001, 36: 146,
    50 van Wachem PB, Brouwer LA, van Luyn MJ. Absence of muscle regenration after implantation of a collagen matrix seeded with myoblasts. Biomaterials. 1999,20:419.
    51 Chromiak JA, Shansky J, Perrone C, et al. Bioreator perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell. Dev.Biol.Anim. 1998, 34:694.
    52 Saxena AK, Marler J, Benvenuto M, et al. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng.1999,5:525.
    
    53 Vandenburgh HH, Hatfaludy S, Karlisch P, et al. Mechanically induced alteration in cultured skeletal muscle growth. J Biomech.1991,24:91
    
    54 Vandenburgh HH, Swasdison S, Karlisch P. Computer-aided mechanogenesis of skeletal-muscle organs from single cells in vitro. FASEB J.1991,5:2860.
    
    55 Vandenburgh HH, Kaelisch P, Shansky J, et al. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture.Am J Physiol. 1991,260:C475.
    
    56 Vandenburgh HH, Hatfaludy S, Sohar I, et al. Stretch-induced prostaglandins and proteinturnover in cultured skeletal muscle. Am J Physiol.l990,259:C232.
    
    57 Vandenburgh HH, Karlisch P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator.In Vitro Cell Dev Biol. 1989, 25:607.
    
    58 Vandenburgh HH, A computerized mechanical cell stimulator for tissue culture: Effects on skeletal-muscle organogenesis. In Vitro Cell Dev Biol. 1988, 24:609.
    
    59 Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol. 1988, 24:166.
    60 Kamelger FS, Marksteiner R, Margreiter E. et al. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials. 2004, 25: 1649-1655
    61 Saxena AK., Marler J., Benvenuto M., et al. Skeletal muscle tissue engineering using isolated myoblasts on synthetic bio degradable polymers: preliminary studies. Tissue Eng. 1999, 5:525-532.
    62 Powell CA, Smiley BL, Mills J, et al. Mechanical stimulation improves tissue-engeered human skeletal muscle. Am. J. Physiol. Cell Physiol. 2002, 283: C1557-C1565.
    63 Dusterhoft S, Pette D. Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation. 1993, 53: 25-33.
    64 Mow VC, Ratcliffe A, Poole AR, Biomaterials. 1992,13:67-97
    65 Vunjak-Novakovixc G, Martin I, Obradovic B, et. al. J. Orthop. Res. 1999, 17:130-138
    66 Hench LL, Polak JM, Xynos ID, et. al. Bioactive material to control cells, Mat. Res. Innovat.2000.3:313-323
    67 Hench LL, Ethridge EC. An Interracial Approach. Biomaterial. 1982.
    68 Kwan MK, Coutts RD, Woo, SL, et. al. J. Biomech 1989, 22:921-930
    69 Komi PV. J. Biomech. 1990, 23:23-44
    70 Badylak S, Amoczky S, Polouhar P, et, al. Naturally occurring matrix as a scaffold for musculoskeletal repair. Clinical Orthopedics. 1999, 367:s333-343
    71 Chen G, Ushida T and Tateishi T. Scaffold design for tissue engineering. Macromolecular Bioscience. 2002, 2(2):67-77
    72 Borschel GH, Dennis RG, KuzonJr WM. Contractile Skeletal Muscle Tissue-Engineered on an Acellular Scaffold. Plastic and Reconstructive Surgery, 2004, 113:595-602.
    73 汪道新,朱志祥,张力勇,等。自体筋膜作为骨骼肌再生支架的实验研究。中华烧伤杂志,2005,6(3):185-188
    74 黄渭清,李森恺,凌诒淳。晚期面瘫整形外科治疗历史。中华整形烧伤外科杂志,1998,14(1):59-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700