Myostatin、MyoD、Myogenin基因对金华猪和长白猪肉质影响的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用半定量RT-PCR法,检测了不同生长阶段金华猪和长白猪(35d、80d、125d)背最长肌中肌肉生长抑制素(Myostatin、MSTN)、生肌调节因子(MyoD)和肌肉成肌素(Myogenin、MyoG)的mRNA水平,探讨了他们的基因表达随动物体重增加的变化规律,以及在肌肉沉积过程中的调控作用。
     根据Genebank登陆的MSTN、MyoD、MyoG和内标β-actin基因序列设计引物,分别以背最长肌组织RNA为模板,经反转录和PCR,克隆得到的相应基因片段(登录号分别为NM 214435、SSU12574和NM_001012406)同源性分别为97.0%、97.8%和93.6%。在此基础上,进一步探讨了PCR体系中适宜的退火温度、MgCl_2浓度和循环次数,构建了适合于相应基因序列的优化半定量RT-PCR法,用于不同生长阶段金华猪和长白猪背最长肌组织MSTN、MyoD和MyoG基因mRNA水平的测定。
     试验所用的金华猪和长白猪由浙江省东阳市金华猪保种场提供,按照品种分两个组,每组18头(28日龄断奶)预试期7天;正试期90天,金华与长白猪在相同的条件下饲养。分别于35,80和125日龄时采集背最长肌样品,测定瘦肉率,探讨MSTN、MyoD和MyoG基因表达与肌肉沉积的关系。
     试验结果表明,猪背最长肌组织中MSTN、MyoD和MyoG基因表达均呈现一定的生物学发育规律:
     (1)在两种猪的不同生长阶段(35日龄,80日龄,125日龄)MSTN mRNA都被检测到,其表达量在出生后35日龄时水平较高,而后,随着年龄体重的增加而显著减少(P<0.05)。但是,在整个试验期间,品种间无显著差异(P<0.05)。
     (2)在两种猪的不同生长阶段(35日龄,80日龄,125日龄)MyoD mRNA都被检测到,MyoD基因在金华猪背最长肌中的表达量随着年龄体重的增加而增加,80日龄到125日龄阶段增加平缓。而MyoD基因在长白猪背最长肌中的表达量则与金华猪的恰恰相反,长白猪在出生后35日龄时水平较高,而后,随着年龄体重的增加而减少(P<0.05)。在整个试验期间,品种间差异显著(P<0.05)。35日龄时品种间差异极显著(P<0.01)。
     (3)在两种猪的不同生长阶段(35日龄,80日龄,125日龄)MyoG mRNA都被检测到,金华猪背最长肌中MyoG基因的表达35日龄时较低,而后随着年龄和体重的增加而增加,但不同年龄阶段MyoG基因表达差异不显著。长白猪背最长肌中基因的表达则与金华猪相反,35日龄时较高,而后随着年龄和体重的增加而减少;同样,不同年龄阶段MyoG基因表达差异不显著。但是,在整个试验期间,35日龄品种间差异显著(P<0.05)。
     本试验探讨了MSTN、MyoD和MyoG基因与肌肉沉积的关系,结果表明,MSTN基因表达水平与胴体瘦肉率呈反比;MyoD基因表达水平在金华猪背最长肌中随着年龄和胴体瘦肉率的增加而增加呈正比变化,而长白猪背最长肌中的表达恰好相反;MyoG基因变化规律与MyoD基因变化规律相似。从而MSTN、MyoD和MyoG基因对猪肌肉沉积具有显著影响。
     MSTN、MyoD和MyoG基因mRNA水平随着猪日龄的变化和显著变化,其中80日龄到125日龄阶段表达量变化平缓,表明在猪的整个生长阶段中肌细胞在不断的分化,在生长后期分化程度减缓。
The subject of this semi-quantitative RT-PCR method to detect the different growth stages of Jinhua and Landrace pigs (35d, 80d, 125d) the longest back muscle in Myostatin (Myostatin, MSTN), myogenic regulatory factor (MyoD) And muscle-myoblasts (Myogenin, MyoG) of the mRNA level, to explore their gene expression with the animal's weight changes, as well as muscle deposition in the process of regulation.
     According to the Genebank landing MSTN, MyoD, MyoG standard andβ-actin gene sequence design primer, respectively, to back up muscle tissue RNA as a template, and RT-PCR, cloned the corresponding gene fragment (registry, were NM_214435, SSU12574 and NM_001012406) homology were 97.0%, 97.8% and 93.6%. On this basis, to further explore the PCR system suitable annealing temperature, MgCl_2 concentration and the number of cycle, suitable for the construction of the corresponding gene sequence optimization of semi-quantitative RT-PCR method for the different stages of growth and Landrace pigs Jinhua back most Long muscles MSTN, MyoD and MyoG gene mRNA level of determination.
     Test used by the Jinhua and Landrace pigs from the city of Jinhua in Zhejiang Province Dongyang pig farms to provide security, according to the varieties in two groups of 18 (28-day-old weaned) pre-trial period of 7 days is the 90-day trial period, Jinhua Landrace and in keeping under the same conditions. At 35, 80 and 125 days old when collecting samples of muscle back up, lean determination to explore MSTN, MyoD and MyoG gene expression and muscle deposition.
     Test results show that the pig back up muscle tissue MSTN, MyoD and MyoG gene expression showed a certain degree of development of the law of biology:
     (1) two pigs in different stages of growth (35-day-old, 80-day-old, 125-day-old) MSTN mRNA were detected, and its expression in the 35-day-old after birth when a higher level, then, with age, body weight The increase in a significant reduction (P <0.05). However, throughout the trial period, the species no significant difference (P <0.05).
     (2) two pigs in different stages of growth (35-day-old, 80-day-old, 125-day-old) MyoD mRNA were detected, MyoD gene in Jinhua pig muscle back up in the expression with age, body weight increases 80-day-old to the 125-day-old increase in the flat stages. The MyoD gene in Landrace muscle back up in the expression with the Jinhua pig On the contrary, Landrace at the age of about 35 days when a high level, then, with age, weight gain and reduced (P <0.05). Throughout the trial period, a significant difference between the varieties (P <0.05). 35-day-old differences between varieties at a very significant (P <0.01).
     (3) two pigs in different stages of growth (35-day-old, 80-day-old, 125-day-old) MyoG mRNA were detected, Jinhua pig muscle back up in MyoG gene expression at a lower 35-day-old, and then with the Age and body weight increases, but different age MyoG gene expression differences are not significant. Landrace longest back muscle in gene expression with the Jinhua pig On the other hand, when the 35-day-old high and then as age and weight gain reduced; Similarly, different age MyoG gene expression differences are not significant. However, throughout the trial period, the 35-day-old marked differences between varieties (P <0.05).
     This test explored MSTN, MyoD and MyoG gene and the relationship between muscle deposition, the results show that, MSTN gene expression and lean carcass was inverse; MyoD gene expression in Jinhua pig muscle back up with the age of lean meat and carcass The rate of increase was proportional to the change, and Landrace muscle back up in the expression of the opposite; MyoG gene variation and gene variation is similar to MyoD. Thus MSTN, MyoD and MyoG gene on muscle swine have a significant impact on the deposition.
     MSTN, MyoD and MyoG gene mRNA level of day-old pigs with the changes and significant change in the 80-day-old stage to the 125-day-old moderate changes in theexpression of that pig in the whole growth stage of the muscle cell differentiation in the constant, the growth in The degree of differentiation in the late slow down.
引文
[1]中华人民共和国国家统计局编.中国统计年鉴[M].北京:中国统计出版社,2009.
    [2]张增荣,肌肉生长抑制素(MSTN)基因的研究进展[J],黑龙江畜牧兽医,2007,(1):19-21.
    [3]Dunner S.Toward interbred IBD fine mapping the mh IOCUS:Double muscling in the Austriana de Valles breed involves the same locus as in the Belgium Blue cattle breed[J]Mamm Genome,1997,(8):430 -435
    [4]沈冰营,倪宏波,苗树君,肌肉生成抑制素基因及其应用研究进展[J],黑龙江八一农垦大学学报,2005,17(5):57-60.
    [5]Davis,R.L,Weintraub,H,Lassar,A.B.,Expression of asingletransfected cDNA converts fibroblasts to myoblasts[J].Cell.1987:987-1000.
    [6]Olson,E.N,MyoD family:a paradigm for development[J].Genes Dev.1990 4:1454-1461.
    [7]MiehaelA,Rudnleki,Patrick N,et al.MyoD or Myf-5 is Required for the formation of skeletal muscle[J].Cell,1993,75:1 351-1 359.
    [8]TePas MF,Verbung FJ,Gerritsen C L,et al.Messenger ribonueleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate[J].Journal of Animal Science,2000,78:69-77.
    [9]Kablar B,Krastel K,Ying C H.et al.MyoD and Myf-5 differentially regulate the development of limbversus trunk skeletal musele.DeveloPment,1997,124(23):4729-4738.
    [10]Weintraub H.The MyoD family and myogenesis:redundancy,networks and thresholds[J].Cell,1993,75:1241 - 1244.
    [11]Megeney L A,Kablar B,Garrett K,et al.MyoD is required for myogenic Stem cell function in adult skeletal muscle[J].Genes Dev.1996,10:1173
    [12]Braun T,Grzeschik K-H,Bober E,Arnold H-H.The MYF genes,a group of human muscle determining factors,are localized on different human chromosomes(Abstract).Cytogenet.Cell Genet.1989,51:969.
    [13]Tapscott S.J.,Davis,R.L.,Thayer,M.J.,Cheng,P.F.,Welntraub,H.,Lassar,A.B.,MyoD1:anuelear Phosphoprotein requiring a Myc-homology region to convert fibroblasts to myoblasts[J].Science 1988,242:405-411
    [14]Henry 1 Puech,A ntignac C,Couillin P,Jeanpierre,M,Ahnine L,Bariehard F,Boehm T,Augereau P,Scrable H,Rabbitts T H,Rochefort H,Cavenee W,Junien C.Subregional mapping of BWS,CTSD,MYODI,and a T-ALL breakpoint in 11p15(Abstract)[J].Cytogenet.Cell Genet.1989,51:1013.
    [15]Gessler M,Hameister H,Henry 1,Junien C,Braun T,Amold H H.The human MyoDI(MYF3) gene maps on the short arm of chromosome 11but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome[J].Hum.Genet.1990,86:135-138.
    [16]Serable H J,Johnson D K,Rinchik E M,Cavenee W K.Rhabdomyosarcoma-associated locus and MYOD 1 are syntenic but separate loci on the short arm of human chromosome 11[J].Proc.Nat.Acad.Sci.USA 1990,87:2182-2186.
    [17]李永平,梁炳生,MyoD肌形成作用机制研究进展[J],国际骨科学杂志,2007,28:37-40
    [18]Wyzykowski JC,Winata TI,Mitin N.,et al.Identification of Novel MyoD Gene Targets in Proliferating Myogenic Stem Cells[J].Mol Cell Biol,2002,22(17):6199-6208
    [19]Konll A.,Nebola M.,Dvorak J.,et al.Detection of a Ddel PCR RFLP with in intron 1 of the porcine MyoD 1(MYF3) locus[J].Anim Genet,1997,28(4):321
    [20]朱砺,李学伟,MyoD基因在不同猪种中的PCR—RFLP遗传多态性及其遗传效应研究[J].畜牧兽医学报,2005,36(8):761-766
    [21]Jolanta K.,Wojcicch K.,Danuta C.,et al.Are polymorphisms in non-coding regions of porcine MyoD genes suitable for predicting meat and fat deposition in the carcass?[J].Animal Science Papers and Reports,2002,20(4):245-254
    [22]Cieslak D.,Kapelanski W.,Blicharski T.,et al.Restriction fragment length polymorphisms in MyoG and myf3 genes and their influence on lean meat contentin pigs[J]. J Anim Breed Genet, 2000, 17: 43-55
    [23]Te Pas MF., Haders I. Soullpon A J. , Genetic variation at the porieine Myf-5 gene locus.lack of association with meat production traits[J]. Mamm Genome, 1999, 10(2): 123-127
    [24]Te Pas MF. ,Verburg FJ., Gerritsen CL., et al Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate[J]. Anim Sci, 2000,78(1): 69-77
    [25]Atsuko, Fujisawa-Sehara, Yoko, Nabeshlms Tohru, Komlya.Differentian trans-activation of muscle-specific regulatory elements including the mysosln light chain box by chicken MyoD, MyoG, and MRF4[J].The Journal of Biological Chemistry. 1992,267(14): 10031-10038.
    [26]Barbut S. Problem of pale soft exudative meat In broiler chickens[J].British Poultry. 1993,32(12):681-690.
    [27]Clude AD, Qinwei, Juanita E. E-Box-and MEF-2-independent muscle-specific expression, positive auto regulation, and cross-activation of the chicken MyoD(CMDI) promoter reveal an indirect regulatory Pathway[J]. Molecular and Cellular Biology,1994,5474-5486.
    [28]Scrable H J, Johnson D K, Rinehik E M, Cavenee W K.Rhabdomyosarcoma-associated locus and MYOD 1 are syntenic but separate loci on the short arm of human chromosome 11[J] .Proc. Nat. Acad. Sci. USA 1990,87:2182-2186.
    [29]Weintraub H, Davis R,Tapscott, et al. The MyoD gene family: nodal point during specification of the muscle cell lineage[J].Science.1991 251:761-766
    [30]TePas MFW, Visscher A H, Genetic regulation of meat production by embryonic mouse muscle formation-areview[J]. Anim Breed Genet. 1994,111 :404-412.
    [31]Key PH Marlow SA, Mitchell CA Papadimitriou JM. Studies on the evolution and function of different forms of the mouse myogenic gene MyoD1 and upstream flanking region[J],Genel993,28;124(2):215-222.
    [32]Coutinho LL, MomsJ, Marks HL, Buhr RJ, Ivarie R. Delayed somite formation In a quail line exhibiting myofiber hyperPlasla is accompanied by delayed expression of myogenic regulatory factors and myosin heavy ehain[J].DeveloPment.l993,117(2):563-569.
    [33]Puri PL, BhaktaK, Wood LD, Costanzo A, Zhu J, Wang,JYJ.,A myogenic differentiation checkpoint activated by genotoxie stress[J]. Nature Genet.2002,32:585-593
    [34]Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis[J]. Clinical Genetics .2000(10)16-25
    [35]Naidu PS, Ludolph DC, To RQ, Hinterberger TJ, Konieczny S F. MyoG and MEF2 function synergistically to activate the MRf4 Promoter during myogenesis[J]. Molecular and Cellular Biology.l995,15(5):270-2718,
    [36]Valdez MR, Richardson JA, Klein WH, Olson EN. Failure of Myf5 to Support Myogenic Differentiation without MyoG, MyoD, and MRF4[J]. Developmental Biology,2000,(12):287-298
    [37]NevilleCM, Schmidt M, Schmidt J.Response of myogenic determination actors to cessation and resumption of electrical activity in skeletal muscle: a possible role for MyoG in denervation super sensitivity[J]. Cell Mol Neurobiol .1992,12(6):511-527.
    [38]Hasty P, Bradley A, Morris J H, Edmondson DG, Venuti J M, Olson E N, Klein W H. Muscle deficiency and neonatal death in mice with a targeted mutation in the MyoG gene[J].Nature. 1993,364:501-506.
    [39] 106.王琼,朱庆,肌肉生长相关因子 MyoG 的研究进展[J], 黑龙江畜牧兽医 2007,4:23-24
    [40]Olson E N. Molecular control of myogenesis: antagonism between and differentiation[J]. Molecular Cell Biochemical, 1991, 104:7-13.
    [41]Nabeshima Y, Hananka K, Hayasaka M, Esumi E, Li S and I Nonaka. MyoG gene disruption results in prenatal lethality because of severe muscle defect [J]. Nature, 1993, 364(6437): 532-535.
    [42]Wright W E,Sassoon D A and V K Lin.MyoG a factor regulating myogenesis,has a domain homologous to MyoD[J].Cell,1989,56(4):607-617.
    [43]Dwyer C M,Flecther J M and N C Stickland.Muscle cellularity and postnatal growth in the pigs[J].Journal Animal science,1993,71(12):3339-3343.
    [44]林万华,黄路生,艾华水等,MyoG基因型对二脸花猪早期生长性状及肌肉组织学特性的影响[J].农业生物技术学报,2002,10(4):367-372.
    [45]高勤学,刘梅,杨月琴等,猪MyoG基因的PCR-SSCP分型及其与生长性能和肌纤维数目的相关性分析[J].中国兽医学报,2005,25(3):330-332.
    [46]姜俊芳,脂肪细胞分化相关因子基因表达在猪生长过程中的变化规律研究[J],浙江大学博士学位论文,2006.
    [47]Ji SQ,Losinski RL,Cornelius SCE Frank GR,Willis GM,Gerrard DE,Depreux FFS Spurlock ME.Myostatin expression in porcine tissue:tissue specificity and development and postnatal regulation[J].The American Physiology Society,1998,275:1266-1273
    [48]Stephen welle.Insulin-like growth factor-1 and MSTN mRNA expression in muscle[J],comparison between 62-77 and 21-31 yolk men Experimental gerontology,2002,37:833-839
    [49]胡兰,郭东新,胡锐,刘梅,王娜,栾新红,大骨鸡中MSTN基因表达规律性的研究[J].动物科技,2003,20(11):42-44.
    HuL,GuoD X,HuR,LiuM,W an gN,LuanX H.Expression rule of MSTN gene in big bones chicken.Animal Technology,2003,20(11),42-44.(in Chinese)
    [50]Ji S,LosinskiRL,CorneusSG,Frank GR,Willis GM,Gexard DE,Depreux F F S,Spurlock M E.Myostatin expression in porcine tissues:tissue specificity an d developmental an d postnatal regulation[J],American Journal of Physiology,1998,275:R1265-R1273
    [51]Carlson C,Both F W,Gordon S E.Skeletal muscle MSTN mRNA expression is fiber-type specific an d increases during hind limb unloading[J],American Journal of Physiology,1999,277:R601-R606.
    [52]Thomas M L,Angley B,Berry C.Myostatin,a negative regulator of muscle growth,functions by inhibiting myoblast proliferation[J],Journal of Biological Chemistry,2000,275:40235 40243.
    [53]Thomas M,et al,2000.J Biol Chem.275(51):40235-402
    [54]ZIPORA,REUVENI A.MyoD and MyoG expression patterns in cultures of fetal and adult chicken myoblasts[J].Histochemistry Cytochemistry.2001,49(4)..455-462.
    [55]Liu C,McFARLD C,VELLEMAN SG.Effect of Genetic Selection on MyoD and MyoG.expression in turkeys with different growth rates[J].Poultry Science,2005(84):376-383.
    [56]Te Pas MFW,Soumillion A,Rettenberger G,VandenBosch TJ,Veninga G,Meuwissen THE.Characterization of the porcine MyoG gene locus and association between polymorphism and growth traits[J].Animal Genetical,1996,27:101-119.
    [57]Weintraub H,Davis Tapscoa S,et al.The MyoD gene family:Nodal point during specification of the muscle cell lineage[J].Science,1991,251(4995):761-6.
    [58]Sassoon DA.Myogenic regulatory factors:Dissecting their role and regulation during vertebrate embryogenesis[J].Dev Biol,1993,156(1):1123.
    [59]Sabourin L A,Rudnicki MA.The molecular regnlation of myogenesis [J].Clin Genet,2000,57(1):16-25.
    [60]朱砺,李学伟,MyoD基因在不同猪种中的PCR-RFLP遗传多态性及其遗传效应研究[J].畜牧兽医学报,2005,36(8):761-766
    [61]Maltin C,Balcerzak D,Tilley R,Delday M.Determinants of meat quality[J].tenderness Proc Nutr Soe,2003,62(2):337-47
    [62]林万华,黄路生,艾华水等,MyoG基因型对二花脸猪早期生长性状及肌肉组织学特性的影响[J].农业生物技术学报,2002.10(4):367-372
    [63]朱砺,李学伟,MyoG基因的遗传效应分析[J].遗传,2005,27(5):710-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700