针刀松解法对颈椎病兔颈后肌纤维化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     通过兔颈椎病动物模型,进行针刀干预治疗以及电针对照治疗。本实验采用低头位方法造颈椎病模型,首先采用HE染色法观察兔颈肌形态学观察,以及采用电镜观察肌外膜形态学,X线观察颈椎和椎间隙之间的改变情况。用RT-PCR法检测Ⅰ型胶原和转化生长因子β1(TGFβ1的基因水平表达以及Western-blot法检测Ⅰ型胶原和转化生长因子β1(TGFβ1)的蛋白水平表达,观察颈椎病兔颈肌肉结缔组织中Ⅰ型胶原和转化生子因子β1 (TGFβ1)相互影响的局势。探讨颈肌肌间组织纤维化改变与颈椎病的关系,丰富对颈椎病的发病机制的认识,并且从针刀治疗颈椎病的作用机制研究以及疗效判定提供客观依据。
     研究方法
     选用由北京市海淀区兴隆实验动物养殖场提供的健康成年新西兰家兔30只,6月龄,雌雄各半,每只体重2.5±0.5kg。按体重编号,分为空白组、模型组、针刀组和电针组,每组6只动物,其余6只动物同期造模,以补充模型组动物在造模过程中的缺失。采用低头位固定的方法制作兔颈椎病动物模型,使颈椎处于低头屈曲45度位。每天固定一次时间定为5小时,松解后笼中自由饲养。针刀组、电针组于造模第90天开始进行治疗干预,针刀组每周干预1次,电针组每周干预3次(隔日一次),共三周。采用HE染色法观察兔颈后肌形态学观察,X线观察颈椎和椎间隙之间的改变情况、电镜观察颈肌外膜形态学观察。然而采用Western-blot法检测Ⅰ型胶原和转化生长因子β1(TGFβ1)的蛋白水平表达和RT-PCR法检测Ⅰ型胶原和转化生长因子β1(TGFβ1)的基因水平表达。
     结果
     1.本实验分别对颈椎病兔放入特制的低头位兔架方式制造了颈椎病模型,本模型模拟了颈椎病初步病情状态的病理特征,从X线的变化过程以及组织形态学的变化确定模型的可靠性。结果显示针刀治疗可有效改善局部炎症反应,改善局部组织瘢痕的增生以及促进损伤组织修复,且针刀的效果优于电针。
     2.通过HE染色观察颈后肌肉以及电镜观察颈后肌外膜的形态学中模型组明显有肌肉组织结构破坏,肌纤维肿胀、变形如肌纤维吞噬被Ⅰ型胶原纤维代替等现象。经过针刀松解明显出现整体上修复过程状态。可以推断针刀通过恢复颈椎的生物力学平衡,改善局部代谢,提高致痛物质和炎症物质的吸收。
     3.颈椎病兔颈后肌组织中Ⅰ型胶原基因水平表达量的研究结果显示,造模后模型组、针刀组、电针组的模型兔颈肌中Ⅰ型胶原基因水平表达量较空白组明显升高,模型组与空白组之间有极显著性差异(P<0.01);针刀组与空白组之间均无显著性差异(P>0.05);电针组与空白组之间有极显著性差异(P<0.01);针刀组与电针组之间有显著性差异(P<0.05)。
     4.造模后,模型兔颈后肌中Ⅰ型胶原蛋白水平表达量显示造模后,模型组、针刀组、电针组的模型兔颈肌中Ⅰ型胶原蛋白水平表达量较空白组明显升高,模型组与空白组间有极显著性差异(P<0.01);模型组与针刀组之间有显著性差异(P<0.05);电针组与空白组之间有极显著性差异(P<0.01);针刀组与电针组之间有显著性差异(P<0.05)。
     5.颈椎病兔颈后肌组织中TGF-β1基因水平表达量的研究结果显示,造模后,模型组、针刀组、电针组的模型兔颈肌中TGF-β1的PCR表达量较空白组明显升高,模型组和空白组两者之间有显著性差异(P<0.05);针刀组与模型组之间有显著性差异(P<0.05);电针组与空白组之间有极显著性差异(P<0.01);针刀组与电针组之间有显著性差异(P<0.05)。
     6.模型兔颈后肌中TGF-β1蛋白水平表达量的研究结果显示,造模后,模型组、针刀组、电针组的模型兔颈肌中TGF-β1蛋白水平表达量较正常组明显升高模型组和空白组两者之间有极显著性差异(P<0.01);针刀组与模型组之间有显著性差异(P<0.05);电针组与正常组之间有极显著性差异(P<0.01);针刀组与电针组之间有显著性差异(P<0.05)。
     结论
     1.本实验通过X线观察不仅可以显示病变的部位、范围和程度,从平片中C3-C6之间显示生理弯曲变形、椎体骨质增生、椎间隙变化等影像学改变等提供了造模成功的可靠依据。同时考虑造模时间为3个月的因素本实验中的颈椎病定为颈型颈椎病,为颈椎病的初步阶段。提供的有利的依据。
     2.从局部的组织的HE染色以及电镜结果显示,针刀治疗可以有效缩小病变区的胶原疲痕组织形成,针刀松解法可以改善颈后肌纤维化。针刀治疗后,肌纤维排列恢复整齐,说明针刀治疗不仅可以有效阻止病理性瘫痕的形成,而且可以恢复局部静态及动态平衡状态,使组织恢复后不影响肌肉功能活动。这与针刀直接对瘫痕等局部组织进行铲拨、切割有关。
     3.实验中观察针刀和电针对兔颈后肌Ⅰ型胶原的影响,在模型兔颈后肌肉中RT-PCR检测显示Ⅰ型胶原基因水平表达结果显示,造模后模型组与空白组之间Ⅰ型胶原基因水平表达量明显增加又有极显著性差异(P<0.01),针刀组跟模型组之间Ⅰ型胶原基因水平表达量有明显降低又有显著性差异(P<0.05),且与空白组之间无显著差异(P>0.05),针刀组检测接近于空白组,说明针刀治疗颈椎病兔模型中的Ⅰ型胶原基因水平表达量有良好的调节作用。
     4.在模型兔颈后肌肉中Western-Blot检测显示Ⅰ型胶原蛋白水平表达量明显增加,模型组与空白组相比有极显著性(P<0.01),说明了颈椎病兔模型通过纤维化主要因素的Ⅰ型胶原中引起肌肉纤维化的现象。针刀组跟模型组之间Ⅰ型胶原蛋白水平表达量有明显降低又有显著性差异(P<0.05),针刀组检测接近于空白组,说明针刀治疗颈椎病兔模型中的Ⅰ型胶原蛋白水平表达量有良好的调节作用。
     5.在模型兔颈后肌肉中RT-PCR检测显示造模后颈椎病兔模型的TGF-β1的基因水平表达量明显增加,模型组与空白组相比有极显著性(P<0.01),说明了颈椎病兔模型通过TGF-β1基因释放纤维化物质的信号。针刀治疗后TGF-β1的基因水平表达量较模型明显降低,针刀组与模型组之间出现显著性变化(P<0.05),较接近空白组,表现出良好的调节作用。针刀组与电针组之间有显著性差异(P<0.05),显示针刀优于电针等差异。
     6.从模型兔颈后肌肉中Western-Blot检测显示TGF-β1的蛋白水平表达量明显增加,模型组与空白组相比有极显著性差异(P<0.01)说明颈椎病兔模型引起局部长期劳损使机体为了能够适应应变而增加TGF-β1的蛋白表达量,TGF-β1是胶原合成最迅速的刺激因子从而而促进肌肉纤维化的过程。针刀组与模型组之间出现显著性变化(P<0.05)和针刀组与电针组之间有显著性差异(P<0.05),说明针刀治疗颈椎病兔模型中的TGF-β1有良好的调节作用以及接近正常水平以及针刀治疗优势与电针治疗。
Objective
     This study established rabbit models of cervical spondylosis (CS) by the method of imitating human long-term flexed neck posture,applied acupotomy intervention after modeling, and compared to the group intervented by electro-acupuncture. Morphology of rabbit's cervical muscles by hematoxylin-eosin staining,and epimysium of rabbit's cervical muscles by electronic speculum were observed. All the animals were cervical X-rayed for the observation of changes of the cervical vertebrae and intervertebrale.Expression of apoptosis genes of type I collagen and TGFβ1 by RT-PCR test,and expression of apoptosis protein of type I collagen and TGFβ1 by Western blot test were conducted.Thus to observe the interaction relationship between type I collagen and TGFβ1, and it is expected to explore the relationship between fibrosis and cervical spondylosis in the neck muscle, enrich understanding of the pathogenesis of cervical spondylosis,and provide evidences for the mechanism research and efficacy of acupuncture therapy.
     Methods
     30 Six-month-old healthy adult New Zealand rabbits, equal between genders, provided by Xinglong experimental animals farms in Haidian District, Beijing,from which each weight 2.5±0.5kg.. number by weight and divided into four groups randomly:normal control group,model group, acupotomy group,electro-acupuncture(EA) group.Each group had 6 rabbits,and the rest 6 rabbits are raised to be the back-ups of model group. CS models were made by the method of imitating human long-term flexed neck posture of 45 degrees for 5 hours a day, After modeling, acupotomy and electro-acupuncture were applied to treat in acupotomy group and electro-acupuncture group. Once a week in acupotomy group, three times a week in electro-acupuncture group, both groups were treated for three weeks.Morphology of rabbit's posterior cervical muscles by hematoxylin-eosin staining,and epimysium by electronic speculum were observed.All the animals were cervical X-rayed for the observation of changes of the cervical vertebrae and intervertebrale, Expression of apoptosis genes of type I collagen and TGFβ1 by RT-PCR test,and expression of apoptosis protein of type I collagen and TGFβ1 by Western blot test were conducted.
     Results
     1.In this study, CS models were made by the method of fixing the rabbits'neck posture in specialized boxes thus simulated the pathological features of the initial status of cervical spondylosis. With the observation of morphology of cervical muscles and manifestations of cervical X-ray, the results verified model of CS was established successfully and the modeling method is reliable.And acupotomy therapy has good effects in regulating the local inflammatory response, and promoting damaged tissue repairation,and the effect of the acupotomy therapy is better than EA.
     2.The results of Real-time PCR tests showed that,in comparison with normal control group after modeling,expression of apoptosis genes of type I collagen increased significantly in other 3 groups, there was a highly significant difference between the model group and normal control group (P<0.01);also with the EA group and normal control group (P<0.01); and significant difference between the model group and acupotomy group (P<0.05); also significant difference between the acupotomy group and EA group (P<0.05).
     3. The results of Western blot tests showed that, in comparison with normal control group after modeling, expression of apoptosis protein of type I collagen increased significantly in other 3 groups, and there was a highly significant difference between the model group and normal control group (P<0.01);also with the EA group and normal control group (P<0.01);and significant difference between the model group and acupotomy group (P<0.05);also significant difference between the acupotomy group and EA group (P<0.05).
     4. The results of Real-time PCR tests showed that, in comparison with normal control group after modeling, expression of apoptosis genes of TGF-β1 increased significantly in other 3 groups, there was a significant difference between the model group and normal control group (P<0.05);also with the acupotomy group and normal control group (P<0.05);the acupotomy group and EA group (P<0.05).;and highly significant difference between the EA group and normal control group (P<0.01).
     5. The results of Western blot tests showed that, in comparison with normal control group after modeling, expression of apoptosis protein of TGF-β1 increased significantly in other 3 groups,and there was a highly significant difference between the model group and normal control group (P<0.01);also with the EA group and normal control group (P<0.01);and significant difference between the model group and acupotomy group (P<0.05);also significant difference between the acupotomy group and EA group (P<0.05).
     Conclusion
     In this experiment, the X-ray observations can not only display lesion location, extent and degree of physiological bending, vertebral hyperostosis,intervertebral space changes the image changes from a flat film, C3-C6 between the making model was successful and reliable basis. Taking into account the modeling time of the cervical syndrome, cervical spondylosis in the 3 months of the factors in this experiment as a preliminary stage of cervical spondylosis. Provided a favorable basis.
     From the local organization of HE staining and electron microscopy results showed that acupuncture therapy can effectively reduce the collagen weakness of the lesion scar tissue formation, needle knife method can improve the back of the neck muscle fibrosis. Acupuncture therapy, the muscle fibers arranged in recovery neat, indicating that acupuncture therapy can not only effectively prevent pathological scar formation, and the local static and dynamic equilibrium can be restored, so that the organization does not affect muscle function after recovery. Directly with the needle knife scar local tissue shovel aside, cutting related.
     Three experimental observation of the needle knife and electric rabbit back of the neck muscle of type I collagen in the back of the neck muscles in the rabbit model RT-PCR analysis showed that the level of type I collagen gene expression results showed that after modeling, model group and blank group between the level of type I collagen gene expression increased significantly there are very significant differences (P<0.01)between the knife group with the model group, the level of type I collagen gene expression levels have decreased significantly and there are significant differences (P<0.05) with a blank between groups was no significant difference (P> 0.05), the knife group detected close to the blank group, indicating that acupuncture therapy in cervical spondylosis rabbit model of type I collagen gene level expression of good regulation.
     Western-Blot shows in the back of the neck muscles in the rabbit model of type I collagen protein levels increased significantly, compared to the model group and blank group had significantly (P<0.01), indicating a rabbit model of cervical disease through fibrosis The main factors of type I collagen cause muscle fibrosis. Type I collagen levels between the knife group with the model group expression levels have significantly reduced there are significant differences (P<0.05),the knife group detected close to the blank group, indicating that acupuncture therapy in cervical spondylosis rabbit model of type I the level of collagen expression of good regulation.
     In the back of the neck muscles in the rabbit model RT-PCR analysis showed that the level of cervical spondylosis rabbit model of TGF-β1 gene expression was significantly increased after modeling, model group and blank group was highly significant (P<0.01). illustrates the rabbit model of cervical disease and fibrosis of the signal of the substance released by TGF-β1 gene. The expression levels of TGF-β1 gene level compared with the model in acupuncture therapy significantly reduced, significant changes (P<0.05)between the knife group and model group, closer to the blank control group, showed good regulation. Significant difference (P<0.05) between the knife group and EA group. Show acupotomology better than the EA differences.
     From the Western-Blot back of the neck muscles in the rabbit model of TGF-β1 protein level was significantly increased compared to the model group and blank group there was a significant difference(P<0.01) a rabbit model of cervical spondylosis caused by the local long-term strain so that the body in order to be able to adapt the strain increase of TGF-β1 protein expression of TGF-β1 is the most rapid collagen synthesis stimulating factor to promote the process of muscle fibrosis.Changes between the knife group and model group were significantly (P<0.05) and the knife group and EA group, significant differences (P<0.05), indicating the knife treatment of cervical spondylosis rabbit model of TGF-β1 good regulation, as well as close to normal levels, as well as acupuncture therapy strengths and electro-acupuncture treatment.
引文
[1]王冰,段义萍,张友常,等.颈椎病患病特征的流行病学研究[J].中南大学学报(医学版),2004,29(4):472-474.
    [2]周秉文.颈肩痛.人民卫生出版社[M],1998,229-230.
    [3]王维钧.手法治疗脊柱相关疾病的疗效观察[J].中国针灸.1995,2:174
    [4]杨克勤,张之虎.颈椎病.人民卫生出版社[M],1995,1-4.
    [5]王贤才.从医学专业角度看《医学专业英语语法》[J].江西医药.1980,06:59-61
    [6]杨克勤.脊柱疾患的临床与研究[M].北京出版社,1994:504.
    [7]李增春,陈德玉,吴德升,等.第三届全国颈椎病专题座谈会纪要[J].中华外科杂志,2008,46(23):1796-1799.
    [8]魏征.脊椎病因治疗学[M].香港:商务印书馆,1987:163.
    [9]韦以宗.颈曲紊乱分型诊断与胸椎关系-颈椎病病因探讨之二[J].世界中医骨科杂志,2004,6(2):13-16.
    [10]周立武.颈椎病诊断与针灸推拿治疗规范化临床研究[J].光明中医,2007,22(7):2-3.
    [11]高仰来,姚军汉,郭军雄.颈椎病中西医分型的研究概况及临床意义[J].中医正骨,2011,23(8):78-80.
    [12]朱汉章.针刀医学原理[M].人民卫生出版社,2002,126-153.
    [13]杨克勤,张之虎.颈椎病[M].人民卫生出版社,1995,1
    [14]贾连顺.颈椎病研究的现状进展和展望[J].中国矫形外科杂志,2001;8(9):733.
    [15]郝永强、施祀.实验性颈椎动力平衡失调后椎间盘胶原酶活性观察[J].中国矫形外科杂志,2000;7(4):357.
    [16]李家顺、贾连顺.颈椎外科学[M].上海:上海科技出版社,2004:262.
    [17]王拥军,施杞.关于颈椎病理论与临床探讨[J].中国中医骨伤科杂志,1997,5(2):60-62
    [18]张茂狮.颈椎病发病机制再认识[J].颈腰痛杂志,1998,19(3):217-218.
    [19]施杞.要重视对颈椎病的研究[J].中国中医骨伤科杂志,1999;7(1):1.
    [20]王毅.颈椎后关节半脱位与颈椎病[J].按摩与导引.1999;15(2)32-33
    [21]张菊香,张鹏,陈晓萍TGF-β/肌肉生长抑制素信号通路对骨骼肌作用的研究进展[J].航天医学与医学工程,2011;24(3):224-226
    [22]陈冬平.运动中骨骼肌细胞损伤机理的阐述[J].西安文理学院学报:自然科学版.2007;10(4):16-19。
    [23]Lehto MU, Jarvinen MJ. Muscles injuries, their healing process and treatment. Ann Chir Gynaecol,1991,80:102-108.
    [24]Menetrey J, Kasemkijwattana C, Day CS, et al. Growth factors improve muscle healing in vivo. J Bone Joint Surg Br,2000,82(1):131-137.
    [25]Crisco JJ, Jokl P,Henien GT,et al.Amuscle contusion model. Am J Sports Med, 1994,22(5):702-710.
    [26]曲绵域、高云秋等.实用运动医学[M].北京科学技术出版社,1996:561
    [27]周里、李永智.骨骼肌损伤后修复的组织学研究现状[J].西安体育学院学报.2000,17(4):35-37
    [28]Kirk S, Oldham J, Kambadur R, et al. Myostatin regulation during skeletal muscle regeneration. J Cell Physiol,2000,184(3):356-363.
    [29]陈世益,李云霞,马昕,等.外源性胰岛素样生长因子-2促进骨骼肌损伤修复的实验研究[J].中国运动医学杂志,2002,21(4):340-345.
    [30]RobertsonTA, Papadimitrious JM, GroundsMD, et al. Fusion of myogenic cells to the newly sealed region of damaged myofibers in skeletal muscle regeneration. Neuropathol Appl Neurobiology,1993,19:350-358.
    [31]Hume T, Kalimo H. Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc,1992,24(2):197-205.
    [32]Hough T. Erggraphic Studies in Muscle Soreness [J].Am. J. Physiol,1992,7:76-92
    [33]Newham D.J.Skeletal Muscle Damage; a Study of Isotope Uptake, Enzyme Efflux and Fain after Stepping[J].Eur.J. Appl,Physiol.1986,55:106
    [34]Warren G.W.,Hayes D.,Lowe D.A,et al. Mechanical Factors in the Initiation of Eccentric Contraction-Induced Injury in Rat Soleus Muscle[J].J. Physiol,1993,464:457-475
    [35]Newham D.J.,Ultrastructural Changes after Eccentric Contractions of Human Muscle[J].J.Neurol.Sci,1983,61:109
    [36]杨锡让,傅浩坚.运动生理学进展—质疑与思考[M].北京:北京体育大学出版社,2002:91-92
    [37]杨锡让,傅浩坚.运动生理学进展—质疑与思考[M].北京:北京体育大学出版社,2002:98-100
    [38]Morgan DL. New Insights into the Behavior of Muscle During Axtive Lengthening[J]. J Biophysical,1990,57:209-221
    [39]R.H.Fitts. Cellular Mechanisms of Muscle Fatigue [J]. Physiol. Rev,1994,74:72
    [40]Bessman. S.P.and P.J.Geiger. Transport of Energy in Muscle:The Phosphorycreatine Shuttle[J].Science,1981,211:448-452
    [41]Meyer.R.A.HL. Sweeney,M.J.Kushmerick. A Simple Analysis of the " Phosphocreatine Shuttle" [J].Am.J. Physiol,1984,246:C 365-C 377
    [42]Fitts R.K.,J.B.Courtright,D.H.Kim. Muscle Fatigue with Prolonged Exercise on Tractile and Biochemical Alterations [J[.Am.J. Physiol.1995,242:11
    [43]Grisdale R.K.,I.Jacobs,E.Cafarelli. Relative Effects of Glycogen Depletion and Previous Exercise on Muscle Force and Endurance Capacity[J].J.Appl.Physiol,1990,69:1276-1282
    [44]田野,杨锡让.细胞Ca2+与性骨骼肌纤维损伤[J].中国运动医学杂志,1992(1):44-48
    [45]田野,周锦林,李洁.急性运动对骨骼肌钙转运功能的影响[J].中国运动医学杂志,1997(3):173-175
    [46]Armstrong RB. Initial Events in Exercise-Induced Musclar Injury[J].Med Sci Sports Exer,1990,22(4):429-435
    [47]Murphy JG.,et al. The Role of Calcium in Ischemic Myocardial Injury[J]. Circulation,1987,75(Suppl.V):15-24
    [48]Carpenter S.,Karpati G. Segmental Necrosis and Its Demarcation in Experimental Micropuncture Injury of Skeletal Muscle Fibers[J]. J.Neurol and Exper Neurol,1989,48:154-170
    [49]Goldfarb A.H. Nutritional Antioxidants as the Rapeutic and Preventive Modalities in Exercise-Induced Muscle Damage[J]. Can. J. Appl. Physol,1999,24(3):249-266
    [50]Croisier JL.,Camus G Deby-Dupont. Myocellular Enzyme Leakage,Poly Morphonuclear Neutrophil Activation and Delayed Onset Muscle Soreness Induced by Sokinetc Eccentric Exercise[J]. Arch physiol,Biochem,1996,104 (3):322-329
    [51]Pedeerser BK., Osterowski K.,Rohde T. The Cytokine Response to Strenuous Exercise [J].Canj Physiol Pharmacol,1998,76(5):505-511
    [52]王永红、段俊峰、宁俊忠.颈肌于颈椎病关系浅析[J].颈腰痛杂志,2004;25(1):46-47
    [53]刘正津、陈尔瑜.临床解剖学丛书一胸部和脊柱分册[M].北京:人民卫生出版社1989;276.
    [54]姜淑云,房敏,左亚忠.颈部肌群与颈椎病[J].颈腰痛杂志,2006,27(3):235-238.
    [55]王永红,段俊峰,宁俊忠.颈肌与颈椎病关系浅析[J].颈腰痛杂志,2004,25(1)46-47.
    [56]杨世斌.颈肌与颈型颈椎病的关系[J].颈腰痛杂志,2008,29(1):77-79.[57]叶添文,贾连顺.颈椎周围肌肉系统病变与颈椎病的关系[J].中国骨与关节损伤杂志,2005,20(2):140-142.
    [58]冯金升,李勇枝,敬红平,等.颈肌退变与颈椎病[J].局解手术学杂志,2005,14(3):189-190.
    [59]贾连顺.脊柱外科的现状与发展前景[J].国外医学骨科学分册,2002;23(2):65-66.
    [60]朱汉章.针刀医学原理[M].北京:人民卫生出版社,2004:4.
    [61]张天民.慢性软组织损伤的力学病理机制及针刀治疗学原理[J].湖北中医学院学报,2010,12(3):46-47.
    [62]魏恩德,施晓阳,王建平.慢性软组织损伤针刀治疗研究进展[[J].中国保健营养:临床医学学刊,2009,18(3):102-104.
    [63]万碧江,张天民.针刀医学整体观念理论研究[J].中国民间疗法,2010;18(7):5-6.
    [64]农泽宁.针刀治疗慢性软组织损伤的研究进展[J].微创医学.2006;6(5):444-446
    [65]张义,郭长青.针刀治疗软组织疾病的理论依据及其效应[J].中国组织工程研究与临床康复.2010;14(24):4520-4523
    [66]Wharton SB, Chan KK, Pickerd JD,et al. Paravertebral muscles in disease of the cervical spine. Neurol Neurosurg Psychiatry.1998;61(45):461-467.
    [67]姜淑云,房敏,左亚忠,等.颈部肌群与颈椎病[J].颈腰痛杂志,2006,27(3):235-238.
    [68]施杞,郝永强,彭宝淦,等.动静力平衡失调与颈椎病[J].上海中医药大学学报,1999,13(1):52-56.
    [69]罗才贵,常德贵,罗建,等.颈椎病兔颈肌Ca2+-ATP酶活性的变化及颈康灵对其的影响[J].辽宁中医药大学学报,2008,10(12):158-159.
    [70]程少丹,杨豪,郑福增,等.关于“肌源性颈椎病期”的讨论[J].中国中医骨伤科杂志,2008,16(5):67-69.
    [71]陈贵珍,许云祥.脊柱相关疾病及整脊治疗[J].中国中医骨伤科杂志,2004,12(4):61-63.
    [72]任月林.针刀疗法治疗颈型颈椎病机制探讨(附208例临床报告)[J].山西医药杂志,1998,27(3):268-270.
    [73]张天民.颈椎病的针刀诊治思路[J].湖北中医学院学报,2007,9(3):66-67.
    [1]刘建惠.生长因子与肌键愈合研究现状[D].郑州大学硕士学位论文,2005:2-5
    [2]李翠玲,崔正言.转化生长因子β分子生物学研究进展[J].国外医学免疫学分册.1995,3:124-127
    [3]张平.转化生长因子β[J].生理科学进展.1990,4(21):323-328
    [4]施渭康.转化生长因子[J].细胞生物学杂志.1992,2(14):49-53
    [5]谭龙益,孔宪涛.转化生长因子β受体的研究进展[J].国外医学临床生物化学与检验学分册,1997,8(2):63-66.
    [6]Massague J. TGF-β signal transduction [J].Annu Rev Biochem,1998,67(7):753-791.
    [7]Piek E,Heldin CH,Dijke PT.Specificity,diversity,and regulation in TGF-β superfamily signaling[J].FASEBJ,1999,13(15):2105-2124.
    [8]Chen CQChen CL,Liu HN.Primary papular xanthoma of children:a clinicopathologic, immunohistopathologic and ultrastructural study [J].J Biol Chem,1997,19(6):596-601.
    [9]万秋红,杨歧生TGF-β超家族信号传导机制研究进展[J].国外医学分子生物学分册,2000,22(3):137-142.
    [10]Aasbo V,Raeder JC,Groqaard B,et al.No additional analgesic effect of intra-articular morphine or bupivacaine compared with placebo after elective knee arthroscopy[J].J Biol Chem,1996,40(5):585-588.
    [11]Lawler S, Feng XH, Chen RH,et al.The type Ⅱ transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues[J]. J Biol Chem, 1997,272(23):14850-14859.
    [12]Luo KX, Zhu YF, ZhangLX, et al.In situ investigation of Fas/FasL expression in chronic hepatitis B infection and related liver diseases[J].J Viral Hepat,1997,4(5):303-307.
    [13]Liu YP, Liu J, Palmiter RD, et al. Inhibitory effects of two oligosaccharides on murine melanoma experimental liver metastasis. Letters Biotechnol,1996,9(3):198.
    [14]Massague J. How cells read TGF-beta signals. EMBO J,2000,1(3):169-178.
    [15]Mehra A,Wrana J.TGF-beta and the Smad signal transduction pathway [J].Biochem Cell Biol,2002,80(5):605-622.
    [16]Roson D. M, et al. Transforming grouth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol,1988,134:337
    [17]Sporn M B, et al. Transforming growth factor-beta, biological function and chemical structure. Science,1986,233:532
    [18]Michael B. S, Anita B. R, Lalage M. W, et al. Some recent advances in the chemistry and biology of transforming growth factor-beta. The journal of cell biology.1987,105:1039-1045
    [19]Le.Y.Y, YuX.J, Ruan L. F, et al. The immunopharmacological properties of transforming growth factor deta. International Immunopharmacology.2005,5:1771-1782
    [20]Menetrey J, Kasemkijwattana C,Day CS,et al.Growth factor improve muscle healing invivo. J Bone Joint Surg Br,2000,82(1):131-137.
    [21]KirkS, Oldham J, Kambadur R, et al. Myostatin regulation during skeletal muscle regeneration. J Cell Physiol,2000,184(3):356-363.
    [22]Robertson TA, Papadimitrious JM, Grounds MD, et al. Fusio of myogenic cells to the newly sealed region of damaged myofibers in skeletal muscle regeneration. Neuropathol Appl Neurobiology,1993,19:350-358.
    [23]Hume T, Kalimo H. Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc,1992,24(2):199-205.
    [24]Trippel SB, Coutts RD, Einhorn T,et al. Growth factors as therapeutic agents. J Bone Joint Surg Am,1996,78-A:1272-1286.
    [25]Allen RE, Boxhorn LK. Regulation of skeletal muscle satellit cell proliferation by transforming growth factor-beta, insulin-like growth factorl and fibroblast growth factor. J Cell Phys Iol,989,138:311-315
    [26]Li ST. Biological biomaterial:tissue-derived biomaterials (collagen). In:Park JB and Brongino J. Biomaterials principlesand applications. Marcel Dekker. Inc.USA,2003.117-140.
    [27]蒋挺大,张春萍,主编.胶原蛋白.北京:化学工业出版社2001.1-140.
    [28]顾其胜,侯春林,徐政,主编.实用生物医用材料学.上海:上海科学技术出版社,2005.140-147,273-286.
    [29]Orgel JP,Miller A,Irving TC,et al.The in situ supermolecular structure of type I collagen. Structure,2001,9(11):1061-1069.
    [30]Hulmes DJ. Building collagen molecules, fibril,and suprafibrillar structures. J Struct Biol, 2002,137(1-2):2-10.
    [31]Jerome AW, John AMR1. Immunology of collagen-based biomaterials. In:Donald LW. Biomaterials and bioengineering handbook.Marcel Dekker. Inc.USA,2000.739-760.
    [32]Frederick HS, David LC. Collagen scaffolds for tissue regeneration. In:Donald LW. Biomaterials and bioengineering handbook.Marcel Dekker. Inc.USA,2000.761-772.
    [33]Matthew JB, Kelly JS,Robert FD. Collagen. In:Gary EW,Gary LB. Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker. Inc.USA,2004.324-334.
    [34]Thomas JK. Collagen fixation. In:Gary EW, Gary LB. Encyclopedia of biomaterials and biomedical engineering.Marcel Dekker. Inc.USA,2004.335-347.
    [35]Gelse K, Poschl E,Aigner T.Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev,2003,55(12):1531-1546.
    [36]Frederick HS, David LC. Collagen scaffolds for tissue regeneration. In:Donald LW. Biomaterials and bioengineering handbook.Marcel Dekker. Inc.USA,2000.761-772.
    [37]林炜,穆畅道,王坤余,等.皮革固体废弃物资源化(Ⅱ)胶原的性质及其在医药和化妆品工业中的应用[J].中国皮革,2001,30(15):8 11.
    [38]杨志明.组织工程基础与临床[M].成都:四川科学技术出版社,2000.46 47.
    [39]但卫华,曾睿.生物质与生物质工程[J].中国皮革,2002,31(11):3135.
    [40]LINDBLAD WJ. KORMOSA AI. Collagen:A multifunctional family of proteins. J Reconstr Micosurg.1991,7(1):37-43.
    [41]DIEGELMANN RF. Collagen formation by the hepatocyte in primary monolayer culture and in vivo. Sci,1983,219:1145.
    [42]MADRI JA. MATTHISSON M, KOCH M, et al. Regulation of extracellular matrix synthesis by mechanical stress. Biochem Cell Biol.1996,74(6):737-744
    [43]罗丽,张健,董宇,等.大鼠骨骼肌纤维化形成过程中IGF-1、TGF-β1的表达[J].体育科学,2011,31(11):61-70.
    [44]Bhatnagar S, Kumar A, Makonchuk DY, Li H, Kumar A.Transforming growth factor-beta-activated kinase 1 is an essential regulator of myogenic differentiation[J]. J Biol Chem,2010, 285(9):6401-6411.
    [45]Chan YS, Li Y, Foster W, Horaguchi T, Somogyi G, Fu FH, Huard J.Antifibrotic effects of suramin in injured skeletal muscle after laceration [J]. J Appl Physiol,2003,95(2):771-780.
    [46]高凌云,李福平,何作云.转化生长因子-β 1在心房颤动纤维化中的作用研究进展[J].中国微循环,2009,13(3):213-215.
    [47]Huard J, Li Y, Fu FH.Muscle injuries and repair:current trends in research[J]. J Bone Joint Surg Am,2002,84-A(5):822-832.
    [48]Bataller R, Brenner DA.Liver fibrosis[J].J Clin Invest,2005,115(2):209-218.
    [49]王尉,朴英杰,何恢绪.转化生长因子-β1对人胚肌腱细胞增殖和胶原及内源性Smads基因表达的影响[J].中华实验外科杂志,2001,18(5):461-463.
    [50]张庆国,陈疾忤,陈世益,等.Y干扰素对小鼠骨骼肌钝挫伤后转化生长因子-β-Smad信号通路表达的影响[J].中华实验外科杂志,2011,28(7):1065-1068.
    [51]聂铭博,陈振兵TGF-β1及其下游因子CTGF与骨骼肌纤维化[J].国际骨科学杂志,2006,27(5):306-308.
    [52]曾惠芬,王庆文.转化生长因子-β及其Smad信号转导的研究进展[J].中国药物与临床,2010,10(10):1145-1147.
    [1]余家阔,吴毅文,戴先进,等.颈椎病生物力学发病机制实验研究[J].安徽医科大学学报,1990;25(1):47-50
    [2]应航,陈立.实验性无创兔颈椎间盘退变模型的建立[J].中国骨伤,2004,17(8):466
    [3]李忠仁.实验针灸学[M].北京:中国中医药出版社,2003:316.
    [4]张军、孙树椿.神经根型颈椎病(急性期)动物模型的建立[J].中国中医骨伤科杂志,2000;8(1):12-14
    [5]蔡钦林、黄云钟等.慢性压迫性颈脊髓病超微病理变化的实验研究.中国脊柱脊髓杂志[J].1996;6(6):254-256
    [6]王欢、李雷等.椎动脉受压动物模型.中国医科大学学报[J].1997;26(2)156-157
    [7]齐越峰、张军等.颈椎失稳所致心肌缺血家兔心肌超微结构的观察.中国骨伤杂志.2004;17(1):7-9
    [8]Simons DG,Travell JG,Simons LS.Myofascial pain and dysfunction:the trigger point manual [M].Upper Half of Body.2nd ed. Baltimore:Williams&Wikins USA,1999:25.
    [9]高魏魏.冈下肌肌筋膜疼痛症与相关经筋关系研究及针刀治疗机理探索.[D].南京中医药大学硕士研究生论文,2011:23-25.
    [10]杨鱼昆飞.肩臂若干肌筋膜疼痛症及相关经筋比较研究与针刀治疗机理探讨.南京中医药大学博士研究生论文,2009:57-60.
    [11]伍安严.细胞因子和苦参碱等药物对ECM产生细胞增殖和Ⅰ型胶原启动子活性的调控[M]2000:18
    [12]Bissell DM, Roulot D, George J, et al. Transforming growth factor β and liver [J]. Hepatology,2001,34:859-867
    [13]JimenezSA, VargaJ, olsenA, et al. Functional analysis of human a I (Ⅰ) procollagen gene promoter. J Biol Chem,1994:269(17):12684-91
    [14]ChungKY, Agarwal A, Uitto J.et al An AP-1binging sequence is essential for regulation of the human a 2 (Ⅰ) collagen promoter activity by transforming growth factor-β. J Bio Chem, 1996;271(6):3272-3278
    [15]沈若武,季爱玉,夏玉军.腺病毒介导hTGF-β1基因体内转染兔椎间盘对髓核细胞Ⅰ型、Ⅱ型胶原的影响[J].中国临床解剖杂志,2005,23(5):529-531.
    [16]祁少海、利天增等.Ⅰ型胶原基因反义核酸对增生性瘢痕动物模型的抑制作用[J].中华整形外科杂志,2000,16(5):295-297.
    [17]Aronen JG, Chronister R. Quadriceps contusions:Hastening the return to play. Phys Sports Med,1992,20:130-136.
    [18]JarvinenM. Healing of a crush injury in rat striated muscle.2. A histological study of effect of early mobilization and immobilization on the repair processes. Acta Path Microbiol Scand,1975, 83:269-282.
    [19]Albrook D. Skeletal muscle regeneration. Muscle Nerve,1961,4:234-45.
    [20]Thomas M., Samuel E. et al. Analysis of changes in mRNA levels of myoblast and fibroblast derived gene products in healing skeletal muscle using quantitative reverse transcription polymerase chain reaction. J Orthop Res,2001,19:565-572.
    [21]Nedelec B,Shankowsky H,Scott P G,et al.Myofibroblasts and apoptosis in human hypertrophic scars:the effect of interferon-alpha2b [J].Surgery,2001,130(5):798-808.
    [22]陈诗书,杨雪明.医学细胞与分子生物学[M].上海上海医科大学出版社,1995:313
    [23]Grande JP, Melder DC, Zinsmeister AR. Modulation of collagen gene expression by cytokines:Stimulatory effect of transforming growth factor-beta 1, with divergent effects of epidermal growth factor and tumor necrosis factor-alpha on collagen type I and collagen type IV. J Lab Clin Med,1997,130:476-486
    [24]Tsushima H.Kawata S.Tamura S,et al.High levels of transforming growth factor betal in patients with colorectal cancer. Gastroeterology.1996,110(2):375-382;
    [25]Cutroneo KR,White SL.Phan SH,et al.Therapies for bleomycin induced lung fibrosisthrough regulation of TGF-β1 induced collagen gene expression [J].J Cell physiol,2007;211(3):585-589.
    [26]李才,张一宁,牛俊奇,等.器官纤维化-基础与临床[M].北京:人民卫生出版社,2003;8:194.
    [27]Allen RE, Boxhorn LK. Regulation of skeletal muscle satellit cell proliferation by transforming growth factor-beta, insulin-like growth factorl and fibroblast growth factor. J Cell Phys Iol,1989,138:311-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700