肉鸡肌纤维特性与肉质性状的形成规律及日粮营养调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌纤维及其类型是评价肉品质的重要指标,为了揭示肉鸡肌纤维特性和肉质性状形成的组织学基础以及日粮营养浓度对其调控机制,本研究共设计了4个试验。
     试验一以两个品种的肉鸡(爱拔益加-AA,商用鸡种;北京油鸡-BJY,中国地方鸡种)为试验材料,探讨了肌纤维特性在肉质性状形成过程中的变化规律。两个品种雄性雏鸡共240只(每个品种120只),分别被随机分为6个重复,每个重复20只鸡。在0、7、21、35、42、63和91日龄,每个品种每个重复随机选取2只鸡屠宰取样。结果表明,两个品种机体发育模式存在较大差异,AA鸡比BJY鸡具有更好的蛋白质和脂肪沉积能力。肌肉核酸浓度变化影响肉鸡的蛋白质代谢过程,可被用来预测肌肉发育潜力,但其实用价值和准确度需要进一步验证。肌纤维特性(肥大和类型转化)的变化因日龄而异,其对肉质性状的影响具有品种特异性。
     试验二探讨了能蛋比相同的不同日粮营养浓度对AA鸡和BJY鸡生长性能、胴体特征和血液反应的影响。试验日粮含高、中、低3种养分浓度,分期配制。前期料(1-21天)分别含有23%、21%和19%的粗蛋白和3059、2793和2527 kcal/kg的代谢能,中期料(22-35天)分别含有21%、19%和17%的粗蛋白和3150、2850和2550 kcal/kg的代谢能,后期料(AA,36-42天;BJY,36-91天)分别含有19%、17%和15%的粗蛋白和3230、2890和2550 kcal/kg的代谢能。432只雄性雏鸡(每个品种216只)随机分为6个处理,每个处理6个重复,每个重复12只鸡。AA鸡具有较好的体增重(P < 0.001)、饲料转化率和胴体产出,但腹脂和胴体脂肪沉积较多(P < 0.001)。在两个品种中,高日粮营养浓度提高了日增重、蛋白和能量利用效率,降低了采食量和饲料转化率(P < 0.05)。此外,高营养浓度日粮分别增大了品种之间的前期采食量、蛋白和能量利用效率差异,缩小了胴体化学组成差异。这些结果表明:(1)遗传选择显著影响肉鸡对于日粮养分浓度的反应;(2)在饲喂低营养浓度日粮时,两个鸡种之间的生产性能差异最小;(3)在饲喂高营养浓度日粮时,两个鸡种之间的胴体品质差异最小;(4)胴体组成几乎不受日粮营养水平影响,两个鸡种对于日粮养分浓度的血浆代谢物反应类似;(5)两个鸡种在三个饲养阶段内的适宜日粮可以根据以上结果判断。
     试验三通过对AA鸡和BJY鸡饲喂具有恒定能蛋比的不同营养浓度的日粮,研究了营养诱导的生长速度差异对于它们的肌肉特性和品质的影响。试验日粮与试验二相同,根据3个饲养阶段分别配制,两两之间相差2%的粗蛋白。试验测定了胸大肌(PM)和股二头肌(BF)中的肌纤维组织特性变化、早期肌肉代谢和肌肉品质。结果表明,在各自的上市日龄,与BJY鸡相比,AA鸡具有显著较高的血浆蛋白质和脂类代谢物浓度、白肌与红肌和中间型纤维比率、pH值、L*和b*值,较低的血浆葡萄糖代谢物浓度、肌纤维直径、肌肉能量储备、a*值、滴水损失(DL)和剪切力(SF)(P < 0.01)。高营养浓度日粮提高了AA鸡的肌纤维大小,降低了糖原含量,减小了肌肉酸化的速率和幅度;同时,促进了BJY鸡红肌和中间型纤维向白肌纤维的转化,增加了能源储备,加快了宰后肌肉pH值的下降(P < 0.05)。在每一品种内,大多数肌肉品质指标(如剪切力、滴水损失和肉色)的变化与日粮处理引起的组织学和生物化学变化一致。总之,日粮营养浓度能够通过改变肌肉组织结构和最初代谢变化影响肌肉品质,其中,许多反应具有品种和组织特异性。
     试验四以试验一、二和三为基础,采用实时荧光定量方法,研究了不同品种肉鸡不同类型肌球蛋白重链基因mRNA相对表达丰度的变化,探讨了日粮营养浓度对肌肉发育影响的作用途径。结果表明,肉鸡反映肌纤维类型组成的MyHC基因表达具有明显的发育性变化规律,不同品种之间差异巨大,尤其是在生长的拐点期。AA鸡快白肌纤维含量的增加和快红肌纤维比例的下降与其快速生长(肌肉快速发育)有关,BJY鸡肌肉中较高的慢红肌纤维含量是其优良的肉质性状形成的基础。日粮营养浓度通过改变生长轴基因表达,能够影响不同品种肉鸡的不同纤维特性,具体机理尚需深入研究。
The hypertrophy and type conversion of muscle fibers is an important physiological process, being a link among all meat quality traits. With an aim to expose the formation mechanism of muscle fiber characteristics and meat quality traits and their nutritional modulation by dietary nutrient density in different broiler breeds, this comprehensive study includes 4 expeiments.
     Trial 1 investigated the developmental chages of muscle fiber characteristics underlying the formation of meat quality traits in 2 distinct broiler breeds of male chickens (Arbor Acres, AA, a commercial line, and Beijing-You, BJY, a Chinese nonimproved line). Male hatchlings (120 of each breed) were randomly assigned to 6 pens of 20 birds in each breed. The zootechnical parameters were recorded at 0, 7, 21, 35, 42, 63 and 91 d of age, and a muscle sample was obtained from 12 birds of each group, respectively, in the pectoralis major (PM) and biceps femoris (BF). Results showed that genetic improvement resulted in large differences of developmental pattern between breeds. AA broilers had better deposit capacity of protein and fat than did BJY chickens, leading to the allometric growth (overgrowth) of muscular mass and abdominal fat at the cost of internal organs. Altered nucleic acid concentrations of skeletal muscles were involved in the protein metabolism from different genotype challenges, although their value and accuracy in prediction of muscle development needed to be validated further. Muscle fiber properties were changed with age, whose impact on meat quality traits was breeds dependent.
     Trial 2 was conducted to evaluate the effects of varying nutrient density with constant ME:CP ratio on growing performance, carcass characteristics and blood responses in AA broilers and BJY chickens. Experimental diets were formulated with high, medium or low nutrient densities for 3 growing phases. Starter diets (1 to 21 d) contained 23, 21 and 19% CP with 3,059, 2,793 and 2,527 kcal/kg of ME; grower diets (22 to 35 d) were 21, 19 and 17% CP with 3,150, 2,850 and 2,550 kcal/kg of ME; and finisher diets (36 to 42 d for AA and 36 to 91 d for BJY) diets had 19, 17 and 15% CP with 3,230, 2,890 and 2,550 kcal/kg of ME. Male hatchlings (216 of each breed) were randomly assigned to 6 replicates of 12 birds in each treatment. Arbor Acres broilers had better (P < 0.001) body weight gain (BWG), feed conversion ratio (FCR) and carcass yield, but had greater (P < 0.001) abdominal and carcass fat deposition. In both breeds, the higher nutrient density increased (P < 0.05) BWG, protein efficiency ratio (PER) and energy efficiency ratio (EER), while decreasing (P < 0.05) feed intake and FCR. The breed differences were increased for FCR, PER and EER in the starter period and decreased for carcass chemical composition respectively by higher nutrient density. These findings indicate that: 1. genetic improvement has a significant effect on broiler responses to dietary nutrient density; 2. performance differences between breeds are lessened with diets of low nutrient density; 3. carcass quality differences are less when birds were fed diets of high nutrient density; 4. carcass composition are hardly modified by nutrient density and both breeds exhibit similar metabolite responses to dietary concentrations; 5. optimal diets are deduced for these breeds for the 3 growing phases.
     Trail 3 has evaluated the effects of varying growth rate, by feeding at different planes of nutrition with constant ME:CP ratio, on muscle characteristics and meat quality in AA broilers and BJY chickens. Experimental diets, differing on average by 2% CP, were formulated as trial 2 with high, medium, or low nutrient densities for 3 growing phases. Male hatchlings (216 of each breed) were randomly assigned to 6 pens of 12 birds in each treatment. Altered histological characteristics of muscle fibers, early postmortem muscle metabolism and meat quality were investigated in the PM and BF muscles. At their market age, AA broilers had significantly higher concentrations of plasma protein and lipid metabolites, ratios of white to red and intermediate fibers, pH, L* and b* values, and lower concentrations of plasma glucose metabolites, muscle fiber diameter, muscle contents of energy stores, a* value, drip loss (DL) and shear force (SF) than did the BJY (P < 0.01). Higher nutrient density increased size of the muscle fibers, decreased glycogen reserve and reduced the rate and extent of acidification in the AA, while accelerating transformation of red and intermediate to white fibers, enhancing energy stores and hastening the decrease in pH in the BJY (P < 0.05). In each breed, most meat quality variables (e.g. SF, DL and color) were consistent with the histological and biochemical changes caused by the feeding strategy. Together, dietary nutrient density can influence meat quality as a result of altered histological and initial energy/metabolic characteristics of the muscle. Many of the responses to diet differed between AA and BJY and between the 2 muscles studied.
     Based on previous experiments, trail 4 describes the long-term changes of mRNA expression levels for different myosin heavy chain (MyHC) genes using real-time quantitative PCR in AA broilers and BJY chickens, and explores the possible mechanism underlying the effect of dietary nutrient density on muscle development. Results suggested that the relative expressions of MyHC genes, reflecting the type composition of muscle fibers, exhibited a clear temporal-spatial dynamics. Significant differences were observed between breeds, especially at the inflection stages in growth curve. The remarkably decreased MyHC I fibers and inereased MyHC IIB fibers contributed to the fast muscle deposition as well as the accelerated body growth in AA broilers, while the higher proprtion of MyHC I and IIA fibers corresponded to better meat quality in BJY chickens. Dietary nutritional levels could affect muscle fiber characteristics of different broiler breeds as a result of altered expressions of growth axis genes, yet the causal mechanism needed to be investigated further.
引文
1. Acar, N., Moran, E. T., & Bilgili, S. F. (1991). Live performance and carcass yield of male broilers from two commercial strain crosses receiving rations containing lysine below and above the established requirement between six and 8 weeks of age. Poultry Science, 70, 2315-2321.
    2. Agri Stats. (2002). Agri Stats, Inc., Fort Wayne, IN.
    3. Aguilar, C., Friedli, C., & Canas, R. (1983). The growth curve of animals. Agricultural System, 10, 133-147.
    4. Albuquerque, R., Faria, D. E., Junqueira, O. M., Salvador, D., Faria Filho, D. E., & Rizzo, M. F. (2003). Effects of energy levels in finisher diets and slaughter age of on performance and carcass yield in broiler chickens. Brazilian Journal of Poultry Science, 5, 99-104.
    5. Anthony, N. B., Jones, D. E., Dunnington, E. A., Emmerson, D. A., & Siegel, P. B. (1988). DNA, RNA, and total protein content of leg and breast muscles of White Rock chickens selected for
    56-day body weight. Growth Development and Aging, 52, 177-184.
    6. Association of Official Analytical Chemists. (1990). Official Methods of Analysis. Arlington, VA.
    7. Baker, D. H., Batal, A. B., Parr, T. M., Augspurger, N. R., & Parsons, C. M. (2002). Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine, and valine for chickens during the second and third weeks posthatch. Poultry Science, 81, 485-494.
    8. Bartov, I., Bornstein, S., & Lipstein, B. (1974). Effect of calorie to CP ratio on the degree of fatness in broilers fed on practical diets. British Poultry Science, 15, 107-117.
    9. Barbut, S. (1997). Problem of pale soft exudative meat in broiler chickens. British Poultry Science, 38, 355-358.
    10. Beilharz, R. G. (1998). The problem of genetic improvement when environments are limiting. In Proceedings of the 6th World Congress on Genetics Applied to Livestock Production (pp 26). Armidale, Australia.
    11. Bendall, J. R. (1973). Post mortem changes in muscle. In G. H. Bourne (Eds.), Structure and Function of Muscle (pp. 243). New York, NY: Acad. Press.
    12. Berri, C., Wacrenier, N., Millet, N., & Le Bihan-Duval, E. (2001). Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poultry Science, 80, 833-838.
    13. Berri, C., Debut, M., Le Bihan-Duval, E., Santé-Lhoutellier, V., Haj Hattab, N., Jehl, N., et al. (2004). Technological quality of broiler breast meat in relation to muscle hypertrophy. In 50th International Congress of Meat Science and Technology (pp. 93-96). Helsinki, Finland.
    14. Berri, C., Debut, M., Santé-Lhoutellier, V., Arnould, C., Boutten, B., Sellier, N., et al. (2005a). Variations in chicken breast meat quality: implications of struggle and muscle glycogen content at death. British Poultry Science, 46, 572-579.
    15. Berri, C., Le Bihan-Duval, E., Bae′za, E., Chartrin, P., Millet, N., & Bordeau, T. (2005b). Effect ofselection for or against abdominal fatness on muscle and meat characteristics of broilers. In Proceedings of 17th European Symposium on Quality of Poultry Meat (pp. 266-270). WPSA, Beekbergen, the Netherlands.
    16. Berri, C., Le Bihan-Duval, E., Debut, M., Santé-Lhoutellier, V., Baéza, E., Gigaud, V., et al. (2007). Consequence of muscle hypertrophy on characteristics of Pectoralis major muscle and breast meat quality of broiler chickens. Journal of Animal Science, 85, 2005-2011.
    17. Boden, G., Chen, X. Ruiz, J., White, J. V., & Rossetti, L. (1994). Mechanisms of fatty acid-induced inhibition of glucose uptake. Journal of Clinical Investigation, 93, 2438-2446.
    18. Brickett K. E., Dahiya, J. P., Classen, H. L., & Gomis, S. (2007). In?uence of dietary nutrient density, feed form, and lighting on growth and meat yield of broiler chickens. Poultry Science, 86, 2172-2181.
    19. Brooke, M. H., & Kaiser, K. (1969). Some comments on the histochemical characterization of muscle adenosine triphosphatase. Journal of Histochemistry and Cytochemistry, 17, 431-432.
    20. Burke, W. H., & Henry, M. H. (1997). Characteristics of the Pectoralis superficialis and Semimembranosus of broiler strain chickens, bantam chickens, and the reciprocal crosses. Poultry Science, 76, 767-773.
    21. Calkins, C. R., Dutson, T. R., Smith, G. C., & Carpenter, Z. L. (1982). Concentration of creatine phosphate, adenine nucleotides and their derivatives in electrically stimulated and non-stimulated beef muscle. Journal of Food Science, 47, 1350-1353.
    22. Chambers, J. R., Gavora, J. S., & Fortin, A. (1981). Genetic changes in meat-type chickens in the last twenty years. Canadian Journal of Animal Science, 21, 555-563.
    23. Charpentier, J. (1968). Glycogenolyse postmortem du muscle longissimus dorsi du porc. Annals of Zootechnology, 17, 429-443.
    24. Chen, X. D., Ma, Q. G., Tang, M. Y., & Ji, C. (2007). Development of breast muscle and meat quality in Arbor Acres broilers, Jingxing 100 crossbred chickens and Beijing fatty chickens. Meat Science, 77, 220-227.
    25. Cheek, D. B., & Hill, D. E. (1970). Muscle and liver cell growth: role of hormones and nutritional factors. Federal Process, 29, 1503-1509.
    26. Chen J. L., Zhao, G. P., Zheng, M. Q., Wen, J., & Yang, N. (2008). Estimation of genetic parameters for contents of intramuscular fat and inosine-5′-monophosphate and carcass traits in Chinese Beijing-You chickens. Poultry Science, 87, 1098-1104.
    27. Collin, A., Malheiros, R. D., Moraes, V. M. B., Van As P., Darras, V. M, Tauois, M., et al. (2003). Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. British Journal of Nutrition, 90, 261-269.
    28. Debut, M., Berri, C., Baeza, E., Sellier, N., Arnould, C., Guemene, D., et al. (2003). Variation of chicken technological meat quality in relation to genotype and preslaughter stress conditions.Poultry Science, 82, 1829-1838.
    29. Debut, M., Berri, C., Arnould, C., Guémené, D., Santé-Lhoutellier, V., Sellier, N., et al. (2005). Behavioural and physiological response of three chicken breeds to pre-slaughter shackling and acute heat stress. British Poultry Science, 46, 527-535.
    30. Decupere, E., Onagbesan, O., Swennen, Q., Buyse, J., & Bruggeman, V. (2007). The endocrine and metabolic interface of genotype-nutrition interactions in broilers and broiler breeders. World’s Poultry Science Journal, 3, 115-128.
    31. Ding, H., Xu, R. J., & Chan, D. K. O. (1999). Identification of broiler chicken meat using a visible/near-infrared spectroscopic technique. Journal of the Science of Food and Agriculture, 79, 1382-1388.
    32. Dozier, W. A. III, Thaxton, J. P., Purswell, J. L., Olanrewaju, H. A., Branton, S. L., & Roush, W. B. (2006). Stocking density effects on male broilers grown to 1.8 kilograms of body weight. Poultry Science, 85, 344–351.
    33. Dransfield, E. (1994). Modelling post-mortem tenderization. V. Inactivation of calpains. Meat Science, 37, 391-409.
    34. Dransfield, E. (1997a). When the glue comes unstuck. In Proceedings of the 43rd International Congress of Meat Science and Technology (pp. 52-61), Auckland, New Zealand.
    35. Dransfield, E. (1997b). Monitoring poultry quality. In Poultry Symposium, Poznan, Poland.
    36. Edwards, M. R., McMurtry, J. P., & Vasilatos-Younken, R. (1999). Relative insensitivity of avian skeletal muscle glycogen to nutritive status. Domestic Animal Endocrinology, 16, 239-247.
    37. El Rammouz, R., Berri, C., Le Bihan-Duval, E., Babile′, R., & Fernandez, X. (2004). Breed differences in the biochemical determinism of ultimate pH in breast muscles of broiler chickens-A key role of AMP deaminase? Poultry Science, 83, 1445-1451.
    38. Emmerson, D. A., Anthony, N. B., Nestor, K. E., & Saif, Y. M. (1991). Genetic association of selection for increased leg muscle and increased shank diameter with body composition and walking ability. Poultry Science, 70, 739-745.
    39. Emmans, G. C. (1994). Effective energy: A concept of energy utilization applied across species. British Journal of Nutrition, 71, 801-821.
    40. Fanatico, A. C., Pillai, P. B., Cavitt, L. C., Owens, C. M., & Emmert, J. L. (2005). Evaluation of slower growing broiler genotypes grown with and without outdoor access: growth performance and carcass yield. Poultry Science, 84, 1321-1327.
    41. Firmam, J. D., & Boling, S. D. (1998). Ideal protein in turkeys. Poultry Science, 77, 105-110.
    42. Fletcher, D. L. (1999). Broiler breast meat color variation, pH and meat texture. Poultry Science, 78, 1323-1327.
    43. Fowler, S. P., Campion, D. R., Marks, H. L., & Reagan, J. O. (1980). An analysis of skeletal muscle response to selection for rapid growth in Japanese quail (Coturnix coturnix japonica).Growth, 44, 235-252.
    44. Froning, G. W., Babji, A. S., & Mather, F. B. (1978). The effect of preslaughter temperature, stress, struggle and anesthetization on color and textural characteristics of turkey muscle. Poultry Science, 57, 630-633.
    45. Gardzielewska, J., Kortz, J., & Jakubowska, M. (1995). Post-mortem kinetics of muscle pH fall in relation to strain crosses of chicken broilers. In XII European Symposium on the Quality of Poultry Meat (pp. 37-39), Zaragoza, Spain.
    46. Gao, J., Lin, H., Song, Z. G., & Jiao, H. C. (2008). Corticosterone alters meat quality by changing pre- and postslaughter muscle metabolism. Poultry Science, 87, 1609-1617.
    47. George, J. C., & Berger, A. J. (1966). Avian Mycology. Academic Press, New York, NY.
    48. Giles, K. W., & Myers, A. (1965). An improved method for the estimation of deoxyribonucleic acid. Nature, 4979, 4993.
    49. Goldberg, A. L., Akopian, T. N., Kisselev, A. F., Lee, D. L., & Rohrwild, M. (1997). New insights into mechanisms and importance of the proteasome in intracellular protein degradation. Biological Chemistry, 378, 131-140.
    50. Goll, D. E., Thompson, V. F., Taylor, R. G., & Christiansen, J. A. (1992). Role of the calpain system in muscle growth. Biochimie, 74, 225-237.
    51. Gonzales E., & Macari, M. (2000). Enfermidades metabólicas em frangos decorte. In Berchieri Júnior A., Macari M. (Eds.), Doen?as das aves (pp.449-464). Jaboticabal: FUNEP-UNESP.
    52. Gordon, S. H., & Charles, D. R. (2002). Niche and Organic Chicken Products. Nottingham, Nottingham University Press.
    53. Griffiths, L., Leeson, S., & Summers, J. D. (1977). Influence of energy system and level of various fat sources on performance and carcass composition of broilers. Poultry Science, 56, 1018-1026.
    54. Grondret, F. (1991). Towards understanding skeletal muscle regeneration. Pathology, Research and Practice, 187, 1-22.
    55. Guernec, A., Berri, C., Chevalier, B., Wacrenier-Cere′, N., Le Bihan-Duval, E., & Duclos, M. J. (2003). Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield. Growth Hormone and IGF Research, 13, 8-18.
    56. Habets, P. E. M. H., Franco, D., Ruijter, J. M, & Sargeant, A. J. (1999). RNA content differs in slow and fast muscle fibers: implications for interpretation of changes in muscle gene expression. Journal of Histochemistry and Cytochemistry, 47, 995-1004.
    57. Halevy, O., Geyra, A., Barak, M., Uni, Z., & Sklan, D. (2000). Early posthatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. Journal of Nutrition, 130, 858-864.
    58. Han, Y., & Baker, D. H. (1991). Lysine requirements of fast- and slow-growing broiler chicks. Poultry Science, 70, 2108-2114.
    59. Han Y., & Baker, D. H. (1993). Effects of sex, heat stress, body weight, and genetic strain on thedietary lysine requirement of broiler chicks. Poultry Science, 72, 2701-2708.
    60. Havenstein, G. B., Ferket, P. R. & Qureshi, M. A. (2003). Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82, 1509-1518.
    61. Havenstein, G. B., Ferket, P. R., & Qureshi, M. A. (2003). Growth, livability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 82, 1500-1508.
    62. Havenstein, G. B., Ferket, P. R., Scheideler, S. E., & Rives, D. V. (1994). Carcass composition and yield of 1991 vs 1957 broilers when fed“typical”1957 and 1991 broiler diets. Poultry Science, 73, 1795-1804.
    63. Hayashi, K., Tomita, Y., Maeda, Y., Shinagawa, Y., Inoue, K., & T. Hashizume. (1985). The rate of degradation of myofibrillar proteins of skeletal muscle in broiler and layer chickens estimated by NT-methylhistidine in excreta. British. Journal of Nutrition, 54, 157-163.
    64. Henckel, P. (1996). Physiology and biochemistry of muscle fibres in poultry. In P. Sorensen (Eds.), Proceedings of 2nd European Poultry Breeders Roundtables (pp. 79-89). Foulum, Denmark.
    65. Hidalgo, M. A., Dozier, III W. A., Davis, A. J., & Gordon, R.W. (2004). Live performance and meat yield responses of broilers to progressive concentrations of dietary energy maintained at a constant metabolizable energy-to-crude protein ratio. Journal of Applied Poultry Research, 13, 319-327.
    66. Hoving-Bolink, A. H., Kranen, R. W., Klont, R. E., Gerritsen, C. L. M., & de Greef K, H. (2000). Fibre area and capillary supply in broiler breast muscle in relation to productivity and ascites. Meat Science, 66, 397-402.
    67. Hurling, R., Rodel, J. B., & Hunt, H. D. (1996). Fiber diameter and fish texture. Journal of Texture Studies, 27, 679-685.
    68. Iwamoto, H., Hara, Y., Ono, Y., & Takahara, H. (1992). Breed differences in the histochemical properties of the M. iliotibialis lateralis myofibre of domestic cocks. British Poultry Science, 33, 321-328.
    69. Jaturasitha, S., Srikanchai, T., Kreuzer, M., & Wicke, M. (2008). Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-Boned and Thai Native) and imported extensive breeds (Bresse and Rhode Island Red). Poultry Science, 87, 160-169.
    70. Jeacocke, R. E. (1977). Continuous measurement of the pH of beef muscle in intact beef carcasses. Journal of Food Technology, 12, 375-386.
    71. Julian R. J. (1998). Rapid growth problems, ascites and skeletal deformities in broilers. Poultry Science, 77, 1773-1780.
    72. Jurie, C., Robelin, J., Picard, B., & Gray, Y. (1995). Postnatal changes in the biological characteristics of semitendinosus muscle in male Limousine cattle. Meat Science, 41, 125-153.
    73. Kamran, Z., Sarwar, M., Nisa, M., Nadeem, M. A., Ahmad, S., Mushtaq, T., et al. (2008). Effect of lowering dietary protein with constant energy to protein ratio on growth, body composition and nutrient utilization of broiler chicks. Asian-Australasian Journal of Animal Sciences, 21, 1629-1634.
    74. Kamran, Z., Sarwar, M., Nisa, M., Nadeem, M. A., Mahmood, S., Babar, M. E., et al. (2008a). Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age. Poultry Science, 87, 468-474.
    75. Kamran, Z., Sarwar, M., Nisa, M., Nadeem, M. A., Ahmad, S., Mushtaq, T., et al. (2008b). Effect of lowering dietary protein with constant energy to protein ratio on growth, body composition and nutrient utilization of broiler chicks. Asian-Australian Journal of Animal Sciences, 21, 1629-1634.
    76. Kang, C. W., Sunde, M. L., & Swick, R. W. (1985). Growth and protein turnover in the skeletal muscle of broiler chicks. Poultry Science, 64, 370-379.
    77. Karlsson, A. H., Klont, R. E., & Fernandez, X. (1999). Skeletal muscle fibres as factors for pork quality. Livestock Production Science, 60, 255-269.
    78. Klosowska, D. B., Rosinski, A., & Elminowska-Wenda, G. (1993). Microstructural characteristics of the pectoralis muscle of white Italian geese. In Proceedings of the XI European Symposium on the Quality of Poultry Meat (pp. 144-148). Tours, France.
    79. Larzul, C., Leroy, P., Lefaucheur, L., Ecolan, P., Sellier, P., & Monin, G. (1999). Selection for reduced muscle glycolytic potential in Large White pigs. II. Correlated responses in meat quality and muscle compositional traits. Genetics Selection Evolution, 31, 61-76.
    80. Latta, M., & Eskin, M. (1980). Phytate phosphorus determination. Journal of Agricultural and Food Chemistry, 28, 1313-1315.
    81. Laurent, G. J., & M. P. Sparrow. (1977). Changes in RNA, DNA and protein content and the rates of protein synthesis and degradation during hypertrophy of the anterior latissimus dorsi muscle of the adult fowl (Gallus domesticus). Growth, 41, 249-262.
    82. Lawrie, R. A. (1991). The eating quality of meat. In R. A. Lawrie (Eds.), Meat Science (pp. 184-224). Oxford, UK: Pergamon Press.
    83. Le Bihan-Duval E., Millet, N., & Remignon, H. (1999). Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poultry Science, 78, 822-826.
    84. Lepore, P. D., Siegel, P. B., & Siegel, H. S. (1965). Nucleic acid composition of chicks and chick tissues from growth selected lines of White Rocks. Poultry Science, 44, 126-130.
    85. Leveille, G. A. (1969). In vitro hepatic lipogenesis in the hen and chick. Comparative Biochemistry and Physiology, 28, 431-435.
    86. Liu, A., Nishimura, T., & Takahashi, K. (1996). Relationship between structural properties of intramuscular connective tissue and toughness of various chicken muscles. Meat Science, 43,43-49.
    87. Lorenz, M. D., & Cornelius, L. M. (1993). Small Animal Medical Diagnosis. Philadelphia, PA, Lippincott, Williams and Wilkins.
    88. Lykkeboe, G., & Johansen, K. (1975). Comparative aspects of buffering capacity in muscle. Respiratory Physiology, 25, 353-361.
    89. Macleod, M. G. (1997). Effects of amino acid balance and energy:protein ratio on energy and nitrogen metabolism in male broiler chickens. British Poultry Science, 38, 405-411.
    90. Malheiros, R. D., Moraes, V. M. B., Collin, A., Decuypere, E., & Buyse, J. (2003). Free diet selection by broilers as influenced by dietary macronutrient ratio and corticosterone supplementation. 1. Diet selection, organ weights, and plasma metabolites. Poultry Science, 82, 123-131.
    91. Mannion, A. F., Jakeman, P. M., & Willan, P. L. (1993). Determination of human skeletal muscle buffer value by homogenate technique: Method of measurement. Journal of Applied Physiology, 75, 1412-1418.
    92. Marks, H. L. (1985). Direct and correlated responses to selection for growth. In Poultry Genetics and Breeding (pp. 47-57).
    93. Marks, H. L. (1993). The influence of dietary protein level on body weight of Japanese quail lines selected under high and low protein diets. Poultry Science, 72, 1012-1017.
    94. Maruyama, K., Sunde, M. L., & Swick, R. W. (1978). Growth and muscle protein turnover in the chick. Biochemical Journal, 176, 573-582.
    95. McKeith, F. K., Ellis, M., Miller, K. D., & Sutton, D. S. (1998). The effect of RN genotype on pork quality. In Proceedings of the 51th Reciprocal Meat Conference (pp. 118-124). Storrs, CN.
    96. McKee, S. R., & Sams, A. R. (1997). The effect of seasonal heat stress on rigor development and the incidence of pale, exudative turkey meat. Poultry Science, 76, 1616-1620.
    97. Millward, D. J., Garlick, P. J., James, W. P. T., Nnanyelugo, D. O., & Ryatt, J. S. (1973). Relationship between protein synthesis and RNA content in skeletal muscle. Nature, 241, 204-205
    98. Ministry of Agriculture, P. R. China. (2004). Nutrient Requirements of Yellow-feathered Broiler. In Feeding standard of chickens, NY/T 33-2004. Beijing: China Agriculture Press.
    99. Mirsky, A. E., & Ris, H. (1949). Variable and constant components of chromosomes. Nature, 163, 666-667.
    100. Mitchell, M. A., & Sandercock, D. A. (1995). Creatine kinase isoenzyme profiles in the plasma of the domestic fowl (Gallus domesticus): Effects of acute heat stress. Research in Veterinary Science, 59, 30-34.
    101. Monin, G., & Sellier, P. (1985). Pork of low technological quality with a normal rate of muscle pH fall in the immediate postmortem period: The case of the Hampshire breed. Meat Science, 13, 49-63.
    102. Moore, D. T., Ferket, P. R., & Mozdziak, P. E. (2005). Early post-hatch fasting induces satellite cell self-renewal. Comparative Biochemistry and Physiology, Part A, Moecularl Integrative Physiology, 142, 331-339.
    103. Moran, E. T. (1996). Broiler feeding regimen and yield. In Proceedings of the Western Canada Nutrition Conference (pp. 5-13). Edmonton, Canada.
    104. Moran, E. T., & Todd, M. C. (1994). Continuous submarginal phosphorus with broilers yields and tibia-femur integrity. Poultry Science, 73, 1448-1457.
    105. Morris T. R., & Njuru, D. M. (1990). Protein requirement of fast- and slow-growing chicks. British Poultry Science, 31, 803-809.
    106. Moss, F. P., Simmons, R. A., & McNary, H. W. (1964). The growth and composition of skeletal muscle in the chicken: the relationship between muscle weight and the number of nuclei. Poultry Science, 43, 1086-1091.
    107. Munro, H. N., & Fleck, A. (1969). Analysis of tissues and body fluids for nitrogenous constituents. In H. N. Munro (Eds.), Mammalian Protein Metabolism (pp. 424-525). Academic Press, New York.
    108. Nestor, K. E. (1977). Genetics of growth and reproduction in the turkey. 9. Selection for increased body weight alone and in combination with increased egg production. Poultry Science, 56, 337-347.
    109. Nestor, K. E., Bacon, W. L., Havenstein, G. B., Saif, Y. M., & Renner, P. A. (1988). Carcass traits of turkeys from lines selected for increased growth rate or increased shank width. Poultry Science, 67, 1660-1667.
    110. Nielsen, B. L. (2004). Behavioural aspects of feeding constraints: Do broilers follow their gut feelings? Applied Animal Behavior Science, 86, 251-260.
    111. Nowsad, A. A. K. M., Kanoh, S., & Niwa, E. (2000). Thermal gelation characteristics of breast and thigh of spent hen and broiler and their surimi. Meat Science, 54, 169-175.
    112. NRC. (1994). Nutrient Requirements of Poultry. National Academy Press, Washington, DC.
    113. Offer, G. (1991). Modelling the formation of pale, soft and exudative meats: effects of chilling regime and rate and extent of glycolysis. Meat Science, 30, 157-184.
    114. Okamoto, K., Ueda, U., Maeda, R., Mizutani, A., & Sugiyama, T. (1976). Microscopic Histochemistry (Vol. 1, pp. 322-330). Tohoku: Igaku Shoin.
    115. Olkowski, A. A., Duke, T., & Wojnarowicz, C. (2005). The aetiology of hypoxaemia in chickens selected for rapid growth. Comparative Biochemistry and Physiology, Part A, 141, 122-131.
    116. Padykula, H. A., & Herman, E. (1955). Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. Journal of Histochemistry and Cytochemistry, 3, 161-169.
    117. Picard, B., Lefaucheur, L., Berri, C., & Duclos, M. J. (2002). Muscle fibre ontogenesis in farm animal species. Nutrition and Development, 42, 415-431.
    118. Pingel, H., & Knust, U. (1993). Review on duck meat quality. In Proceedings of the XI European Symposium on the Quality of Poultry Meat (Vol 1, pp. 26-38). Tours, France.
    119. Pitts, G. C. (1986). Cellular aspects of growth and catch-up growth in the rat: a reevaluation. Growth, 50, 419-436.
    120. P?s?, A. R., & Puolanne, E. (2005). Carbohydrate metabolism in meat animals. Meat Science, 70, 423-434.
    121. Prentis, P. F., Penney, R. K., & Goldspink, G. (1984). Possible use of an indicator muscle in future breeding experiments in domestic fowl. British Poultry Science, 25, 33-41.
    122. Quentin, M., Bouvarel, I., Berri, C., Le Bihan-Duval, E., Baéza, E., Jégo, Y., et al. (2003). Growth, carcass composition and meat quality response to dietary concentrations in fast-, medium-and slow-growing commercial broilers. Animal Research, 52, 65-77.
    123. Reeds, J., Hay, S. M., Dorwood, M., & Palmer, R. M. (1986). Stimulation of muscle growth by clenbuterol: Lack of effect on muscle protein synthesis. British Journal of Nutrition, 56, 249-258.
    124. Re′mignon, H., Marche′, G., & Richard, F. H. (1993). Consequences de la selection sur la vitesse de croissance sur lesproprie′te′s des fibres musculaires chez le poulet. In Proceedings of the XI European Symposium on the Quality of Poultry Meat (Vol 1, pp. 59-65). Tours, France.
    125. Re′mignon, H., Gardahaut, M. F., Marche, G., & Ricard, F. H. (1995). Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. Journal of Muscle Research and Cell Motility, 16, 95-102.
    126. Richardson, R. I. (1995). Poultry meat for further processing. In Proceedings of the XII European Symposium on the Quality of Poultry Meat (pp. 351-361). Zaragoza, Spain.
    127. Rosa, P. S., Faria Filho, D. E., Dahlke, F., Vieira, B. S., Macari, M., & Furlan, R. L. (2007). Effect of energy intake on performance and carcass composition of broiler chickens from two different genetic groups. Brazil Journal of Poultry Science, 9, 117-122.
    128. Rosebrough, R. W., Mitchell, A. D., & Mcmurtry, J. P. (1996). Dietary crude protein changes rapidly alter metabolism and plasma insulin-like growth factor I concentrations in broiler chickens. Journal of Nutrition, 126, 2888-2898.
    129. Rosebrough, R. W., & Begin, J. J. (1975). The effect of non-protein energy source and age on the blood glucose level and the muscle glycogen content of young chicks. Poultry Science, 54, 1327-1329.
    130. Roy, B. C., Oshima, I., Miyachi, H., Shiba, N., Nishimura, S., Tabata, S., et al. (2006). Effects of nutritional level on muscle development, histochemical properties of myofibre and collagen architecture in the pectoralis muscle of male broilers. British Poultry Science, 47, 433-442.
    131. Saadoun, A. & Leclercq, B. (1987). In vivo lipogenesis of genetic lean and fat chickens: Effect of nutritional state and dietary fat. Journal of Nutrition, 117, 428-435.
    132. Sams, A. R. (1999). Meat quality during processing. Poultry Science, 78, 798-803.
    133. Sante′, V., A. A., Sosnicki, M. I. Greaser, M. Pietrzak, E. Pospiech, & A. Ouali. (1995). Impact of turkey breeding and production on breast meat quality. In Proceedings of the XII European Symposium on the Quality of Poultry Meat (pp. 151-156). Zaragoza, Spain.
    134. SAS Institute. (1998). User’s Guide: Statistics. SAS Institute Inc., Cary, NC
    135. Savenije, B., Lambooij, E., Gerritzen, M. A., Venema, K., & Korf, J. (2002). Effects of feed deprivation and transport on preslaughter blood metabolites, early postmortem muscle metabolites, and meat quality. Poultry Science, 81, 699-708.
    136. Scott, T. A. (2002). Evaluation of lighting programs, diet density, and short-term use of mash as compared to crumbled starter to reduce incidence of sudden death syndrome in broiler chicks to 35 days of age. Canadian Journal of Animal Science, 82, 375-383.
    137. Scanes, C. G. (1987). The physiology of growth, growth hormone, and other growth factors in poultry. CRC Critical Reviews in PoultryBiology, 1, 51-105.
    138. Schiaffino, S., & Reggiani, C. (1994). Myosin isoforms in mammalian skeletal muscle. Journal of Applied Physiology, 77, 493-501.
    139. Schreurs, F. J. G., van der Heide, D., Leenstra, F. R., & de Wit, W. (1995). Endogenous proteolytic enzymes in chicken muscle. Differences among strains with different growth rates and protein efficiencies. Poultry Science, 74, 523-537.
    140. Sherwood, D. H. (1977). Modern broiler feeds and strain: what two decades of improvement have done? Feedstuffs, 49, 70.
    141. Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. Journal of Clinical Investigation, 106, 171-176.
    142. Si, J., Fritts, C. A., Burnham, D. J., & Waldroup, P. W. (2001). Relationship of dietary lysine level to the concentration of all essential amino acids in broiler diets. Poultry Science, 80, 1472-1479.
    143. Sizemore, F. G., & Barbato, G .F. (2002). Correlated responses in body composition to divergent selection for exponential growth rate to 14 or 42 days of age in chickens. Poultry Science, 81, 932-938.
    144. Sizemore, F. G., & Siegel, H. S. (1993). Growth, feed conversion, and carcass composition in females of four broiler crosses fed starter diets with different energy levels and energy to CP ratios. Poultry Science, 72, 2216-2228.
    145. Smith, J. H. (1963). Relation of body size to muscle cell size and number in the chicken. Poultry Science, 42, 283-290.
    146. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76-85.
    147. Sosnicki, A. A., & Wilson, B. W. (1991). Pathology of turkey skeletal muscle: Implications for the poultry industry. Food Structure, 10, 317-326.
    148. Sterling, K. G., Vedenov, D. V., Pesti, G. M., & Bakalli. R. I. (2005). Economically optimal crudeprotein and lysine levels for starting broiler chicks. Poultry Science, 84, 29-36.
    149. Stickland, N. C. (1995). Microstructural aspects of skeletal muscle growth. In 2nd Dummerdorf Muscle Workshop-Muscle Growth and Meat Quality (pp. 1-9). Rostock, Germany.
    150. Summers J. D., Spratt, D., & Atkinson, J. L. (1992). Broiler weight gain and carcass composition when fed diets varying in amino acid balance, dietary energy, and protein level. Poultry Science, 71, 263-273.
    151. Swatland, H. J. (1990). A note on the growth of connective tissues binding turkey muscle fibers together. Canadian Institute of Food Science and Technology Journal, 23, 239-241.
    152. Swennen, Q., Janssens, G., Collin, A., Le Bihau-Duval, E., Verkebe, K., Decuypere, et al. (2006). Diet-induced thermogenesis and glucose oxidation in broiler chickens: Influence of genotype and diet composition. Poultry Science, 85, 731-742.
    153. Swennen, Q., Janssens, G. P. J. , Millet, S., Vansant, G., Decuypere, E., & Buyse, J. (2005). Effects of substitution between fat and protein on food intake and its regulatory mechanisms in broiler chickens: Endocrine functioning and intermediary metabolism. Poultry Science, 84, 1051-1057.
    154. Swennen, Q., Laroye, C., Janssens, G. P. J., Verbeke, K., Decuypere, E., & Buyse, J. (2007). Rate of metabolic decarboxylation of leucine as assessed by a L-[1-13C1] leucine breath test combined with indirect calorimetry of broiler chickens fed isocaloric diets with different protein: fat ratio. Journal of Animal Physiology and Animal Nutrition, 91, 347-354.
    155. Tesseraud, S., Maaa, N., Peresson, R., & Chagneau, A. M. (1996a). Relative responses of protein turnover in three different muscles to dietary lysine deficiency in chicks. British Poultry Science, 37, 641-650.
    156. Tesseraud, S., Peresson, R., & Chagneau, A. M. (1996b). Age related changes of protein turnover in specific tissues of the chick. Poultry Science, 75, 627-631.
    157. Tidyman, W. E., Moore, L. A., & Bandman, E. (1997). Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Development Dynamics, 208, 491-504.
    158. Touraille P. C., Kopp, J. Valin, C., & Ricard, F. H. (1981a). Chicken meat quality. 1. Influence of age and growth rate and physico-chemical and sensory characteristics of the meat. Archives of Geflügelkd, 45, 69-76.
    159. Touraille P. C., Kopp, J. Valin, C., & Ricard, F. H. (1981b). Chicken meat quality. 2. Change with age of some physico-chemical and sensory characteristics of the meat. Archives of Geflügelkd, 45, 97-104.
    160. Trenkle, A. (1986). Regulation of protein synthesis in animals. In R. H. Dutt (Eds.), Symposium on Food Animal Research. University of Kentucky, Lexington, KY.
    161. von Lengerken, G., Maak, S., & Wicke, M. (2002). Muscle metabolism and meat quality of pigs and poultry. Veterinarija ir Zootechnika, 20, 82-86.
    162. Wakefield, D. K., Dransfield, E., Down, N., & Taylor, A. A. (1989). Influence of postmortem treatments on turkey and chicken meat texture. International Journal of Food Science and Technology, 24, 81-92.
    163. Waldroup, P. W., Jiang, Q., & Fritts, C. A. (2005). Effects of supplementing broiler diets low in crude protein with essential and nonessential amino acids. International Journal of Poultry Science, 4, 425-431.
    164. Warris, P. D., & Brown, S. N. (1987). The relationship between initial pH, reflectance and exudation in pig muscle. Meat Science, 20, 65-72.
    165. Warriss, P. D., Kestin, S. C., Brown, S. N., & Bevis, E. A. (1988). Depletion of glycogen reserves in fasting broiler chickens. British Poultry Science, 29, 149-154.
    166. Warriss, P. D., Kestin, S. C., Brown, S. N., Knowles, T. G., Wilkins, L. J., Edwards, J. E, et al. (1993). The depletion of glycogen stores and indices of dehydration in transported broilers. British Veterinary Journal, 149, 391-398.
    167. Wattanachant, S., Benjakul, S., & Ledward, D. A. (2005). Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poultry Science, 84, 328-336.
    168. Weston, A. R., Wilson, G. R. Noakes, T. D., & Myburgh, K. H. (1996). Skeletal muscle buffering capacity is higher in the superficial vastus than in the soleus of spontaneously running rats. Acta Physiologica Scandinavica, 157, 211-216.
    169. Wilson, B. W. (1990). Developmental and maturational aspects of inherited avian myopathies. Proceedings of the Society for Experimental Biology and Medicine, 194, 87-96.
    170. Young, J. F., Karlsson, A. H., & Henckel, P. (2004). Water-holding capacity in chicken breast muscle is enhanced by pyruvate and reduced by creatine supplementation. Poultry Science, 83, 400-405.
    171. Yuan, L., Lin, H., Jiang, K. J., Jiao, H. C., & Song, Z. G. (2008). Corticosterone administration and high energy feed result in enhanced fat accumulation and insulin resistance in broiler chickens. British Poultry Science, 49, 487-495.
    172. Yunis, R., Ben-David, A., Heller, E. D., & Cahaner, A. (2000). Immunocompetence and viability under commercial conditions of broiler group differing in growth rate and in antibody response to Escherichia coli vaccine. Poultry Science, 79, 810-816.
    173. Zaman, Q. U., Mushtaq, T., Nawaz, H., Mirza, M. A., Mahmood, S., Ahmad, T., et al. (2008). Effect of varying dietary energy and protein on broiler performance in hot climate. Animal Feed Science and Technology, 146, 302-312.
    174. Zhao, R. Q., Decuypere, E., & Grossmann, R. (1996). Secretory patterns of plasma GH and IGF-1 concentrations in meat-type and laying-type chickens during early posthatch development. Poultry and Avian Biology Reviews, 6, 270.
    175. Zhao, R. Q., Muehlbauer, E., Decuypere, E., & Grossman, R. (2004). Effect of genotype-nutritioninteraction on growth and somatotropic gene expression in the chicken. General and Comparative Endocrinology, 136, 2-11.
    176. Zhao, J. P., Chen, J. L., Zhao, G. P., Zheng, M. Q., Jiang, R. R. & J. Wen. (2009). Live performance, carcass composition, and blood metabolite responses to dietary nutrient density in two distinct broiler breeds of male chickens. Poultry Science, 88, 2575-2584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700