重心移动式步行矫形器的基础与临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     脊柱脊髓损伤(Spinal Cord Injury,SCI)是临床上较为常见的一种致残率及死亡率均较高的严重创伤,其中颈段的脊髓损伤常导致四肢瘫,而胸腰段的脊髓损伤多导致截瘫。几十年来,尽管医学家们在脊髓的损伤与修复方面做出了不懈的努力;但是,到目前为止,尚未有任何一种方法被确认为可以解决脊髓损伤后的神经再生与修复的难题。
     为了帮助SCI患者重新获得步行功能,从上个世纪六、七十年代起,国外一些科研机构开始致力于研究帮助截瘫病人重新站立、行走的步行矫形器。二十世纪八十年代,美国路易斯安那洲大学(Louisiana State University)的Douglas教授研制开发出一种能够帮助截瘫患者独立交替向前迈步的矫形器,称为LSURGO(Reciprocating Gait Orthosis)。RGO最初的设计是由一对髋膝踝足矫形器(HKAFO)和一条联接HKAFO的硬骨盆带构成,双侧髋铰链仅有屈伸功能,用两条带套管的牵引索相连接。矫形器的胸托上缘位于胸骨剑突下,当患者在站立位扶双拐或助行器将躯干向前方拉动时,RGO的一侧髋关节后伸,通过牵引索使另一侧髋关节屈曲,从而实现其双下肢的向前迈步和身体的向前移动。
     1987年,英国的Steeper公司在RGO的基础上,经过一番改进后推出了Steeper改良型RGO,称为ARGO(Advanced Reciprocating Gait Orthosis)。其特点是只用一条带套管的牵引索连接双侧髋铰链,它可以互相交替地控制屈伸,从而减少了摩擦阻力。经过三十多年的发展,目前已经有三、四种常见的截瘫步行矫形器应用于临床。在国内,步行矫形器的应用起步较晚,临床推广缓慢。究其原因,主要是进口步行矫形器的价格过高,国内多数截瘫患者无法承担;加之未形成一套完整、规范的康复训练程序,使得矫形器的安装与康复治疗脱节,不少患者即使装配了步行矫形器也无法发挥其实际效能。
     鉴于以上原因,我中心根据国人体型,并结合患者的实际需求,自行研制开发出国产重心移动式步行矫形器(RGO)。目前,国内尚未有关于RGO的生物力学测试标准以及针对RGO的各组件进行生物力学测试的相关报道;我们购买并翻译的假肢和矫形器的欧洲生物力学测试标准—《External limb prosthesesand external orthoses—Requirements and test methods》中,对RGO各组件的生物力学测试标准也不甚全面。在临床方面,我们在继续探索针对完全性SCI患者的规范化康复训练程序的同时,也希望能够通过更为精确客观的方法对此类患者步行功能的重建进行量化分析。因此,本研究旨在探讨RGO相关部件的生物力学性能及临床应用情况,并对SCI患者配戴RGO行走时的步态特征进行三维步态分析,以明确RGO的基础和临床性能及其应用前景。
     1材料与方法
     1.1使用S型拉力传感器测试18位完全性SCI病人配戴RGO行走时对后钢缆的拉力,并用关节角度计测量其行走时的髋关节摆动范围,取其均数作为力学测试的参考值。利用我校生物力学实验室的MTS 858测试机参照此力学参考值,模拟步行周期对3组18件RGO样品的后钢缆固定螺丝进行疲劳实验。采用两组变量的Spearman秩和相关性分析方法分别计算患者的体重与拉力之间的相关性,以P≤0.05为有显著性相关;若两者之间存在相关性,则对18例患者的体重进行分组,并计算每组拉力大小的平均值。采用正态性检验方法对18例髋关节摆动范围进行正偏态分布检验,以P>0.05为符合正态分布,并计算18例髋关节的平均摆动范围。分别求3组18件样品RGO的的后钢缆固定螺丝疲劳至断裂次数的均数,并计算每组平均值的上、下限值范围;采用单因素方差分析(One-Way ANOVA)的方法,对3组数据进行两两LSD检验,以P≤0.05为有显著性差异。
     1.2选择在广东省工伤康复中心住院并安装过RGO的18例C_6~T_(12)节段完全性SCI患者,于安装前对其进行关节活动度、肌肉力量、平衡转移、站立等综合康复训练,装配后再进行步行训练。于装配RGO并进行综合系统康复治疗及步行训练3个月后,对患者进行限时的步行功能检查和评定(包括平均步长的测量,6 min步行距离及10 m步行时间的测试等);并对所有患者在治疗后所达到的步行功能状态进行定性评估。
     1.3选择在广东省工伤康复中心住院的16例T_4~T_(12)节段完全性SCI患者,安装RGO前后的综合康复训练和步行功能训练同“材料与方法2”。分别在装配RGO前和装配后3个月,采用改良Barthel指数(Modified Barthel Index,MBI)和功能独立性测评(Functional Independence Measure,FIM)法对患者的日常生活活动能力进行评定。对装配RGO前后的检测结果进行配对t检验,以P≤0.05为有显著性差异。
     1.4选择在广东省工伤康复中心住院并装配RGO的12例T_4~T_(12)节段完全性SCI患者,并于安装前后对其进行综合系统的康复训练。分别于装配前和装配后3个月进行冷水试验、尿细菌培养,并检测患者的膀胱容量、残余尿量、膀胱充盈压及平均直肠压。对装配RGO前后的检测结果进行配对t检验,以P≤0.05为有显著性差异。
     1.5选择曾在广东省工伤康复中心住院且配戴RGO进行步行功能训练3个月以上的T_4~T_(12)节段完全性SCI患者10例;采用中山大学附属第一医院康复医学科的远红外线三维步态分析系统(Vicon Nexus System)进行步态检测与分析。经本系统分析软件自动数字化对所采集信息进行三维重建,可直接获得所需要的运动学和动力学参数(包括步频、步幅、骨盆旋转角度、髋关节运动角度范围、髋关节角速度、助行架对地面的作用力(压力峰值和压力均值))。应用Spearman秩和相关分析对完全性SCI患者的不同脊髓损伤平面与其RGO步态的运动学、动力学参数等相关性进行统计学检验,以P≤0.05为有统计学意义。
     1.6所有数据采用(?)±s表示,结果经SPSS 12.0统计软件分析。
     2结果
     2.1脊髓损伤平面在T_4~T_(12)之间的完全性SCI患者在行走时对RGO后钢缆所产生的拉力,随体重的增加而递增,两者之间存在正相关(r_s=0.934,P<0.001);18例病人的髋关节平均摆动范围是19.56±1.69°;3组RGO样品后钢缆固定螺丝的疲劳至断裂的次数呈方差齐性(F=2.581,P=0.109),每组疲劳至断裂的平均次数分别为(95450±2636)、(127171±27194)及(204620±7148)次,每组断裂次数平均值的上、下限值范围分别为92684<μ<98216、100756<μ<153586和196405<μ<212835,各组之间均有统计学差异(F=54.331,P<0.001)。
     2.2 18例患者的平均步长、6 min平均步行距离及10 m平均步行时间分别为44.24±5.13 cm,76.36±10.27 m及32.75±9.36 s。在18例完全性的SCI患者中,10例达到功能性家庭内步行;其中4例患者达到功能性社区内步行;其余8例可作治疗性步行。
     2.3 16例截瘫患者装配RGO前后MBI得分分别为29.98±3.95分和61.00±5.85分;FIM得分分别为51.06±3.53分和78.69±3.40分,其装配前后的MBI和FIM得分均有显著性差异(P<0.001)。10例患者达到功能性步行,6例患者可作治疗性步行。
     2.4 12例截瘫患者装配RGO前后的冷水实验均为阳性;但其尿细菌培养结果显示,在装配RGO之前,11例为阳性;而在装配后,仅4例患者为阳性。装配RGO 3个月后的膀胱容量和平均直肠压{368.42±28.50 ml,44.57±4.94 cmH_2O}较装配前{200.17±19.30 ml,25.91±4.80 cmH_2O}显著提高(P<0.001);而残余尿量及膀胱内压{41.42±7.39 ml,26.07±3.67 cmH_2O}较装配前{144.92±44.24 ml,46.95±5.39 cmH_2O}则显著降低(P<0.001)。
     2.5 10例患者的步频和跨步长分别为37.42±2.15 step/min和91.59±9.09 cm。髋关节摆动角度及髋关节伸展和屈曲时相的角速度分别为42.57±5.43°、22.34±1.96°/s和124.75±9.31°/s。SCI患者的步速(r_s=0.914,P<0.001),跨步长(r_s=0.926,P<0.001),助行架的压力均值(r_s=-0.877,P=0.001),骨盆的旋转角度(r_s=-0.926,P<0.001)和髋关节摆动角度(r_s=0.963,P<0.001);以及助行架的压力峰值(r_s=-0.693,P=0.026)和髋关节伸展的角速度(r_s=0.742,P=0.014)与SCI平面之间均存在着显著的相关性。
     3讨论
     3.1随着现代生物力学和康复医学的发展,矫形器的研制和装配都取得了很大进步。RGO的装配和应用可以帮助SCI患者重建站立和步行功能,促进他们恢复自信并回归社会。从本实验结果看,RGO最先发生断裂的部件是它的后钢缆固定螺丝;因此,我们认为RGO的后钢缆固定螺丝是其相对薄弱环节。另一方面,我们又通过统计分析得出SCI患者的体重与其RGO后钢缆所承受的拉力之间存在着正的直线相关关系。因而,我国T_4~T_(12)节段的完全性SCI患者在配戴RGO行走时,对RGO后钢缆所产生的拉力随着体重的增加而增大;所以,完全性SCI患者在行走时造成RGO后钢缆固定螺丝断裂的危险性也将随着体重的增加而增大。根据生物力学测试结果,我们建议55kg以下、55~70 kg及70kg以上的三组不同体重范围的完全性SCI患者,在配戴RGO行走分别达到196405、100756和92684步之前,应及时更换后钢缆的固定螺丝。
     3.2 RGO可以帮助SCI患者作实用性步行,步速快,耗能小,安全稳定,易为患者所接受。它不仅为截瘫患者提供了稳定支持及助动作用,还可利用残存的躯干及上肢的功能进行身体重心的转移,使其重新获得站立及行走功能。应用RGO站立和行走,可以有效预防肌肉萎缩,减少废用性骨质疏松的发生,改善膀胱和肠道功能,预防压疮和深静脉血栓形成,增强心肺功能,有助于患者参与社会生活,在心理上克服悲观、抑郁、失望、无助等情绪,达到与人平等交流、重返社会的康复目标。在判断患者可否应用RGO时,SCI的平面高低、脊柱的稳定性、患者的身体素质及精神状态等,都是需要加以考虑的因素。一般情况下,除颈段SCI的患者外,均可使用RGO;且损伤平面越低,使用效果越好。脊柱的稳定性是应用RGO的关键,而SCI的水平则是能否应用RGO的决定因素。
     3.3 SCI患者日常生活活动及步行能力的恢复还与其体型、脊髓反射、躯干控制及平衡能力等多种因素密切相关。合适的体型有利于患者的转移,而适度的牵张反射可改善体位性低血压,并加强患者躯干的稳定性及心肺储备能力。因此,影响截瘫患者日常生活活动能力提高的因素是多方面的,它不仅取决于损伤平面的高低,还与康复治疗的介入时间、训练方法以及患者的心理状态密切相关。我们要根据患者的具体情况进行有针对性的康复训练,还应注重心理康复治疗。由此可见,掌握正确的适应证,综合考虑患者的具体情况,全面系统的康复训练是成功应用RGO的前提条件。
     3.4临床实践表明,RGO还可有效地改善膀胱和直肠功能;使患者更好地参与社会生活。截瘫患者从终日卧床到逐步站立行走,不但可以有效预防泌尿系结石的形成和复发,降低泌尿系统感染率,逐渐达到平衡膀胱;还可促进肠蠕动,增强直肠排空功能。因此,截瘫患者利用RGO进行站立和步行训练,其本身也是一个促进膀胱和直肠功能恢复的过程。截瘫患者大小便功能的改善不仅能够激励患者继续坚持步行功能训练,还可以进一步增强他们站立和行走的信心,从而形成良性循环。我们发现,装配RGO并配合系统康复训练不仅能够提高SCI病人逼尿肌与膀胱括约肌的协同性,增加膀胱容量,减少残余尿量,有效地防治泌尿系感染;还可以提高其平均直肠压,因此对于排便功能的恢复也有较好的促进作用。此外,参与本组实验的病人大多能够自行穿脱并配戴RGO进行站立及行走训练,在常规的训练时间及强度范围内,无特殊不适的情况发生,日常生活基本达到了自理的程度。说明RGO不仅可以改善截瘫病人的膀胱和直肠功能,而且在提高患者的步行能力和生活质量等方面也发挥着非常重要的作用。
     3.5本研究显示,完全性SCI患者的脊髓损伤平面与其RGO步态之间存在着显著的相关性。参与测试的SCI患者的脊髓损伤节段范围在T_4~T_(12)之间;这个范围的脊髓平面包括支配躯干肌群的若干神经解剖平面,如支配腹部肌群和髂腰肌的脊髓节段。在脊髓T_(12)以下节段的SCI患者中,这些神经节段是保存完好的;但对于胸段SCI的病人,其支配躯干肌群的脊髓平面则是受损的。以往研究认为,完全性SCI患者的躯干及下肢残留运动功能的程度主要取决于脊髓损伤平面的高低。由本实验结果可知,完全性SCI患者在配戴RGO步行时,其骨盆的旋转角度与其SCI平面之间呈负相关;而其髋关节的摆动幅度则相反。由此可知,随着脊髓损伤平面的升高,完全性SCI患者步行时躯体的稳定性和协调性会逐渐下降,而其能量消耗也将逐渐上升。我们利用RGO髋关节联动器的杠杆作用,使患者在交替迈步时,其身体重心首先偏向并转移到一侧下肢,借助身体产生的运动势能带动对侧下肢向前迈步。因此,完全性SCI患者躯干肌肉的协调收缩及双上肢的代偿支撑运动对于促进髋关节的摆动运动起到了至关重要的作用;RGO步态的力学特征也可以很好地解释本结果。
     3.6国外有文献报道将能量消耗作为步态分析中的一个参考指标,用氧价(Oxygen Cost,OC)表示;氧价越低,说明步行运动的能量消耗越省,自然步态的标志就是最节约能量的步行方式。尽管由于设备条件的限制,我们还无法应用氧价分析的技术手段对本组SCI患者进行更为全面的步态能耗等方面的检测;但不可否认,氧价分析将成为未来十分有发展前景的步态分析技术手段之一。我们目前的研究包含了三维步态的运动学和动力学等指标的测试,相比国际前沿领域仍有不足之处;主要表现在缺少对SCI患者步行时的能量消耗(即氧价)以及心肺功能等方面的测试,这也是我们在后续的工作中需要进一步加以完善的方面。
     4结论
     4.1国产RGO后钢缆的钢缆固定螺丝是其相对薄弱环节,完全性SCI患者在配戴RGO行走时,其后钢缆的钢缆固定螺丝发生断裂的危险性随着体重的增加而增大;
     4.2体重在55 kg以下、55~70kg及70 kg以上的三组SCI患者,在配戴RGO行走分别达到各自的下限步数之前,应及时更换其后钢缆的固定螺丝;
     4.3完全性SCI患者可以应用RGO重建站立及步行功能,提高日常生活活动能力,并改善其膀胱与直肠功能。SCI平面的高低是决定患者能否应用RGO及使用效果的关键因素,综合系统的康复训练以及患者的个体差异亦是影响使用效果的重要因素;
     4.4骨盆的异常运动、髋关节摆动幅度的受限及上肢的过度负载是高位胸髓损伤的完全性SCI患者步行能力受限的主要原因;
     4.5完全性高位胸段SCI患者应接受一些能够降低其过度生理负荷的康复训练方法,从而改善其重建的步行功能。
Background
     The injury of backbone and spinal cord are very common in clinics these days, which can cause severe disabilities and mortalities in SCI patients. Cervical SCI often cause quadriplegia, while thoracic and lumbar SCI can lead to paraplegia. Although physicians have tried hard to solve this problem for many years, there is still not a single exact method for about how to fully repair and regenerate the injured nerves of spinal cord nowadays.
     From the 60-70s in the last century, foreign scientists had taken great efforts in developing a special assistant instrument in order to help the paraplegia stand and walk which was call an orthosis for ambulation(Reciprocating Gait Orthosis, RGO). In 1973, Pro. Douglas of Louisiana State University in America invented a sort of orthosis which could help the paraplegia to stand and their lower limb to reciprocate forwards. It was called an RGO (Reciprocating Gait Orthosis). The initial design of RGO was composed of a double of Hip Knee Ankle Foot Orthosis (HKAFO) and a hard pelvic girdle. Its double hip hinges could only achieve the function of flexion and extension which were connected by two traction ropes packaged by drive pipes. Its upper limb of chest request was located at the underneath of Breastbone sword suddenly. When patients held their double turns or mobility aids to move their trunk forwards at standing phase, one side of RGO's hip joint would extend backwards in order to make the other side flexure through their traction ropes. By this mean, the paraplegia could move forward.
     In 1987, Steeper Company of UK developed RGO to an advanced type by great efforts on the basis of RGO, which was called ARGO (Advanced Reciprocating Gait Orthosis). The characteristic of ARGO is that there is only one traction rope packaged by drive pipe which connects two sides of hip hinges. It could control its flexion and extension of hip joints alternately, so as to reduce the friction resistance. At present, there are three to four walking orthoses that have been used clinically undergone thirty to fourty years. However, RGO had undergone a slow development and promotion because of its lately starting to use in China. The reason why it had been used lately and slowly should be mainly due to its high price and their uncomprehensive systematic rehabilitation programme. Many patients couldn't acquire its full use although they had been fitted up with a set of RGO before.
     Because of the above reasons, our hospital has explored out self-manufactured domestic RGO based on the bodily form of native people and paraplegic's real acquisition. Until now, there aren't any tests and reports correlated with its biomechanical tests in China. So we bought the European biomechanical test standard of prostheses and orthoses-《External limb prostheses and external orthoses -Requirements and test methods》. After it had been translated into Chinese, we found that it is still not very comprehensive about the tests of RGO's each component in this standard. In clinics, we want to explore out the standardized rehabilitation training programme continuously for complete SCI patients. At the same time, we also hope to conduct quantification analysis about these patients' ambulation through more precise and objective methods. Thus, our research is aimed to explore the biomechanical characteristics of correlative discreteness of RGO and its theraputic effect in clinical application; we also conducted 3-D gait analysis for paraplegic patients to explore the gait model of paraplegic patients who wear RGO while walking to ensure the clinical capability and applying foreground of RGO.
     Materials and Methods
     1 We used S-type tensile force transducer to test the tensile force on the posterior wireropes of RGO that produced by 18 complete spinal cord injured patients when they were walking with the aid of RGO, and measured their ranges of hip joint motion by a joint goniometer. Then we took their average as a reference value. We set up MTS(Material test system 858) machine in our laboratory according to the reference value in order to carry out fatigue experiment on the posterior wireropes of 18 RGO samples. Finally, we took the acquired data into statistical analyze. We adopted pertinence analysis two group variables to analyze the spearman correlation cofficient between their bodymass and tensile forces, and regard "P<0.05" as significant difference. If it shows significant correlation, we will divide the tensile forces into several groups by bodymass, and then calculate their mean values in each group. We also calculated their mean hip range of motion(degree) and the fatigue circulation and their ranges of upper and lower values in each group. Finally, we used statistical methods of One-Way ANOVA and LSD to compare the data in three groups, and regard "P≤0.05" as significant difference.
     2 We chose eighteen paraplegic patients with complete spinal cord injury of lesion level between C_6 and T_(12) who had been fitted up with RGO in the Work Injury Rehabilitation Center of GuangDong Province as clinical test objects. Exercises such as ranges of joint motion, strength training, transferring and balance items were conducted and followed by walking exercises with the aid of reciprocating gait orthosis (RGO). After they have undergone the above walking exercises for 3 months, we examined their ambulation capacity(such as average step length, walking distance in 6 minutes and ambulation time for 10 meters). We also determined the nature of our examination by evaluating their ambulation function of all these patients.
     3 Sixteen paraplegic patients with complete spinal cord injury of lesion level between T_4 and T_(12) who had been fixed up with RGO in the Work Injury Rehabilitation Center of GuangDong Province were chosen as clinical test objects. Comprehensive rehabilitation training and walking exercises with the aid of RGO are the same as "Materials and Methods 2". We used the Modified Barthel Index and Functional Independence Measure Scale to examine their ADL (activity of daily living) of these 16 patients before and after being fixed up with RGO 3 months. All data were analysed by SPSS 12.0 statistical software, two-detailed T test was used to examine the differences between these two groups. We regard "P≤0.05" as a remarkable difference.
     4 We chose twelve paraplegic patients with complete spinal cord injury of lesion level between T_4 and T_(12) who had been fixed up with RGO in the Work Injury Rehabilitation Center of GuangDong Province as clinical test objects. Comprehensive rehabilitation training and walking exercises with the aid of RGO are the same as "Materials and Methods Two". We conducted cold water experiment and urine germiculture before and after being fixed up with RGO 3 months respectively, and we also examined their bladder volumn, remaining volumn, mean pressure of bladder and rectum, et al. All data were analysed by SPSS 12.0 statistical software, and two-detailed T test was used to examine the differences between these two groups. We regard "P≤0.05" as having remarkable difference.
     5 Ten paraplegic patients with complete spinal cord injury of lesion level between T_4 and T_(12) were selected into our study who had experienced RGO gait training for at least 3 months. We used 3-D gait analysis system of Vicon Nexus 1.2 in the rehabilitation department of Sun Yat-Sen Hospital to test these subjects and analyze the following data. We have examined such parameters as gait speeds, candences, stride lengths, pelvic angles of rotation, hip ranges of motion, crutch forces, angular velocities of hip flexion and extension phases, et al. We used Spearman rank correlation coefficient to analyse the relationship between the level of spinal cord injury and their kinematic and kinetic values, and we regard "P≤0.05" as a remarkable correlation.
     6 All data are expressed by (?)±s, and their outcomes were analyzed by SPSS 12.0 statistical software.
     Results
     1 The tensile force of complete spinal cord injury patients with lesion level between T_4 and T_(12) on the posterior wirerope of RGO were increasing by degrees along with the increase of body mass. There was a positive correlation between tensile force and body mass. Their range of hip joint motion was 19.56±1.69°. The average values of RGO's fatigue circulation of three groups were 95450±2636, 127171±27194 and 204620±7148 times respectively, and their ranges of upper and lower values were 92684<μ<98216, 100756<μ<153586 and 196405<μ<212835 separately. There was statistical differences among each group (F=54.331, P<0.001).
     2 The average step length, walking distance in 6 minutes and ambulation time for 10 meters of all patients were 44.24±5.13 cm, 76.36±10.27 m and 32.75±9.36 s respectively. In these eighteen paraplegic patients with complete spinal cord injury, ten cases had achieved household functional ambulation, four of which had achieved community functional ambulation. The other eight patients had achieved therapeutic ambulation.
     3 Before and after being fixed up with RGO 3 months, their MBI scores of these sixteen paraplegic patients were 29.98±3.95 and 61.00±5.85 points, and FIM scores 51.06±3.53 and 78.69±3.40 points respectively. There were significant differences between these data (P<0.001). There were ten cases who had achieved functional ambulation, and six had achieved therapeutic ambulation.
     4 Cold water experiments were all positive in these paraplegic patients. Eleven cases showed positive character in urine germiculture before being fixed up with RGO, and only four positive after being fixed three months later. Their mean bladder volumn and pressure of bowel (368.42±28.50 ml, 44.57±4.94 cmH_2O) were significantly enhanced (200.17±19.30 ml, 25.91±4.80 cmH_2O) (P<0.001), while remaining volumn and filling pressure of bladder (41.42±7.39 ml, 26.07±3.67 cmH_2O) significantly reduced (144.92±44.24 ml, 46.95±5.39 cmH_2O) (P<0.001).
     5 The mean candence and stride length of these ten subjects were 37.4±2.15 step/min and 91.6±9.09 cm. Their mean hip range of motion, angular velocities of hip flexion and extension phases were 42.57±5.43°, 22.34±1.96°/s and 124.75±9.31°/s respectively. The gait speed(r_s=0.914, P<0.001), stride length (r_s=0.926, P<0.001), peak crutch force(r_s=-0.693, P=0.026), pelvic rotation angle (r_s= -0.926, P<0.001), hip ROM (r_s=0.963, P<0.001), mean crutch force (r_s=-0.877, P=0.001) and angular velocity of hip extension phase (r_s=0.742, P=0.014) of SCI patients all had significant pertinences with their spinal cord injury level.
     Discussion
     1 Along with the development of modern biomechanics and rehabilitation medicine, the manufacture and assemblage of RGO have achieved prodigious progress. The application of RGO can help the paraplegics acquire the ability to stand and walk again, to boost their self-confidence and return to society at an early date. We found that the component of RGO which first ruptured is its posterior wirerope fixed screw according to the outcome of biomechanical test. Therefore, we consider posterior wirerope fixed screw of domestic RGO as its weak point. On the other hand, statistic analysis shows that there is a positive beeline correlation between SCI patients' body mass and spinal cord injury level. Thus, the tensile force of complete spinal cord injury patients with lesion level between T_4-T_(12) on the posterior wirerope of RGO will increase by degrees along with the increase of body mass. Accordingly, danger will also increase with the enhancement of their body mass. So, we recommend SCI patients of different body mass (<55 kg, 55-70 kg and >70 kg) replace their posterior wirerope fixed screws after achieving stated steps (196405, 100756 and 92684 paces) respectively.
     2 RGO can help complete SCI patients to achieve practical ambulation. The trait of RGO is its rapidness of walking speed, lower energy cost and safety for which it may be accepted by SCI patients. RGO not only provides the paraplegics with its effectiveness of support and aid action, but also make them move by their remaining function of trunk and upper limbs. Walking with the aid of RGO can help the paraplegics prevent muscle atrophy and osteoporosis effectively, improve the function of urinary bladder and bowel, prevent press tumefaction and deep vein thrombosis, boost up pulmonary and cardiovascular function; it can also administer to patients' psychological health and conduce them to participate in social life successfully. When we judge whether a patient can use a set of RGO, the level of spinal cord injury, stability of backbone and his physically or mentally wellbeing are all the factors that should be taken into consideration. In general, SCI patients except cervical spinal cord injury can all use a set of RGO to stand and walk. And the lower the injury level, the better its effect. The stability of vertebral column is the key of using RGO, and the level of spinal cord injury is the determinant factor if a patient could use it safely.
     3 Their comeback of activity of daily living and ambulation in SCI patients still has a close relationship to their bodily form, spinal cord reflection, control of vertebral column and balance ability, etc. Appropriate bodily form is propitious to the transfer of SCI patients, and measurable tension reflection can enhance their lower blood pressure due to body location and reinforce their stability of vertebral column and repertory capacity of pulmonary and cardiovascular. Therefore, the influencing factors that affect SCI patients of their ADL ability are omnifarious. It not only lies on the level of spinal core injury, but also on the intervention time of rehabilitation therapy, training technique and patients' psychological state closely. We should conduct pertinent rehabilitative training programme on the basis of each patient's idiographic condition and pay attention to their psychological rehabilitation. In a word, mastery of correct adaptable evidences and comprehensive rehabilitation are the premiss of using RGO successfully.
     4 Clinical practice also indicates that, RGO could effectively improve SCI patients' function of bladder and rectum. It can make them participate in social life and achieve the goal of equal communion with others and re-entry society. From laying up all day to standing and walking, paraplegic patients could not only prevent the calculus' coming into being and recrudescence in urinary system, reduce the infectious rate of urinary system so as to work up to balancing bladder, but accelerate the peristalsis of intestines and excretory function of rectum. So wearing RGO for paraplegic patients to be trained is also a stimulative process of enhancing the function of bladder and rectum. The improvement of the functions of bladder and rectum in paraplegia patients can prompt themselves to insist on ambulation training, thus form a good circulation. We found that RGO along with systematic rehabilitative therapy can not only increase bladder volumn and reduce remnant urine volume and infectious rate of urinary system availably; but also heighten mean rectum pressure, so it is also a better instrument for the recovery of rectum function. Thus it can be seen that, the successful premiss of using RGO to improve SCI patients' functions of bladder and rectum are to master the right adaptable evidences, to take patients' idiographic condition into consideration seriously and to put comprehensive rehabilitation measures into practice. In addition, most patients involved in our study can put on or take off their RGO by themselves, and can stand and walk wearing a set of RGO. They seldom feel discomfort within routine training periods and intensity, and their ability of ADL have achieved self-care level. This indicated that RGO can not only improve SCI patients' functions of bladder and rectum, but also enhance their ambulation function and quality of life.
     5 Our research has shown that, there is a remarkable correlation between their SCI level of complete SCI patients and the pattern of RGO gait. Their injury levels of SCI patients in our study vary from T_4 to T_(12). This range of spinal cord section includes several nerve anatomic planes which predominate trunk muscle clusters such as spinal cord planes of predominating abdominal muscle clusters and iliopsoas. These nerve sections are in good condition in lower injured levels below T_(12) spinal cord sections, but damaged in thoracic SCI levels. Former researches have found that, the reserved function of trunk and lower limb in complete SCI patients mostly lies on their injured level. According to the outcome of our study, when complete SCI patients are walking with the aid of RGO, it shows negative correlation between their pelvic rotation angles and injured level, but positive in the range of motion about their hip joints. By this token, while complete SCI patients are walking with RGO, their nature of stability and harmony will descend gradually with the hoist of SCI level; but their energy cost will ascend accordingly. We make use of RGO's leverage of its hip joint linkage implement to help patients walk ahead alternately. When they walk along, their body mass centers firstly lean and transfer to one side of lower limb, then they may drive the other side of lower limb to move forward by dint of locomotion potential energy. Hence, it is crucial important for complete SCI patients to promote hip joint movement by the aid of trunk muscle clusters and both upper limbs' support. The mechanical characteristics of RGO gait can also explain our experimental results commendably.
     6 Literatures from overseas have reported that energy cost is also a reference guide line of gait analysis which is denoted by OC (Oxygen Cost). The lower the OC, the more abstemious the energy cost in ambulation. The symbol of natural gait is a kind of walk fashion which may cost the lowest energy expenditure. Kawashima used Vicon three dimensional gait analysis system to test the kinematic,dynamic and OC of ten SCI patients with the lesion level of different spinal cord sections. He considered that the physiological intensity of SCI patients' gait mainly rests with their SCI level. Phillips has reported that the sub-target heart rates, respiratory quotients, ventilatory volume per minute and oxygenic intake of SCI patients had all reduced by various degrees. He advised SCI patients to take in some special rehabilitation methods in order to enhance thieir cardiorespiratory function. Although we couldn't use OC analysis technique to examine the energy cost of these SCI patients because of the restriction of technical and facility condition, OC analysis will nevertheless become one of the most valuable guide lines of gait analysis in the future. Presently, our study involves kinematic and dynamic test of gait analysis, but still remains insufficiency relative to Kawashima's research. On the whole, these deficiency include exploration about OC and cardiorespiratory function test, which are the most necessary continous work for us to investigate on.
     Conclusion
     1 The posterior wirerope fixing screw of domestic RGO is its weak point, and the danger of rupture will increase by degrees along with the increase of SCI patients' body mass;
     2 SCI patients of different body mass (<55 kg, 55-70 kg and >70 kg) should replace their posterior wirerope fixing screws of RGO after achieving stated paces respectively;
     3 With the aid of RGO, patients suffered from complete spinal cord injury can restore standing and walking. RGO can also help paraplegic patients with complete lesion level between T_4 and T_(12) to enhance bladder and rectum function, to prevent paraplegic complications and to improve their quality of life; SCI level is the key factor for patients that determines whether they can use a set of RGO or not, systematic rehabilitation and patients' single differenciation are the important factors that affect SCI patients of their usage outcome;
     4 The abnormal movement of pelvic, limitation of hip range of motion and excess upper limb load are the main reason that lead to ambulatory disorders in higher thoracic lesion of complete SCI patients;
     5 Higher thoracic SCI patients should be undertaken some rehabilitative training exercises to reduce excessive physiological load, and thus help to improve their acquired ambulatory capacity.
引文
[1] 候树勋.现代创伤骨科学[M].北京:人民军医出版社.2002:447-448.
    
    [2] 周天健,李建军.脊柱脊髓损伤现代康复与治疗[M].北京:人民卫生出版社. 2006:483-487.
    
    [3] Behrman AL, Harkema SJ. Physical rehabilitation as an agent for recovery after spinal cord injury[J]. Phys Med Rehabil Clin N Am, 2007,18(2): 183-202.
    
    [4] 张光铂.我国脊柱脊髓损伤基础研究、临床、康复的现状与展望[J].中国康 复医学杂志,2002,17(4):201-202.
    
    [5] Post MW, Bloemen J, de Witte LP, et al. Burden of support for partners of persons with spinal cord injuries[J]. Spinal Cord, 2005,43(5): 311-319.
    
    [6] Franceschni M, Baratta S, Zampolini M, et al. Reciprocating gait orthoses:a multicenter study of their use by spinal cord injured patients[J]. Arch Phys Med Rehabil, 1997,78(6): 582-586.
    
    [7] 武继祥,周贤丽,刘宏亮,等.新型互动截瘫行走器在截瘫患者中的应用[J]. 中华物理医学与康复杂志,2003,25(8):480-481.
    
    [8] 候树勋,陆云,候惠芳.往复式截瘫步行器在截瘫病人中的应用[J].中国脊 柱脊髓杂志,1999,9(5):211-213.
    
    [9] Solomonow M, Aguilar E, Reisin E, et al. Reciprocating gait orthosis powered with electrical muscle stimulation(RGO II). Part I : performance evaluation of 70 paraplegic patients[J]. Orthopedics, 1997,20(4): 315-324.
    
    [10] Plassat R, Perrouin-Verbe B, Stephan A, et al. Gait orthosis in patients with complete thoracic paraplegia. Review of 43 patients[J]. Ann Readapt Med Phys, 2005,48 (5): 240-247.
    
    [11]高怀民.使用助行器械和矫形器步行训练的最新进展[J].现代康复,2000,4 (7):315-317.
    
    [12]范晓华,宫艺,刘俊兰.早期康复对脊髓损伤患者步行功能恢复的临床观 察[J].中国康复理论与实践,2004,10(7):421-422.
    
    [13] Baardman G, Ijzerman MJ, Hermens PH,et al. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia[J]. Prothetics and Orthotics International, 1997, 21(3): 210.
    
    [14] Scivoletto G, Petrelli A, Lucente LD, et al. One year follow up of spinal cord injury patients using a reciprocating gait orthosis: preliminary report[J]. Spinal Cord, 2000, 38 (9): 555-558.
    
    [15]钟世镇.解剖与临床相结合科教新动向[J].解剖与临床,2002,7(1/2):3-4.
    
    [16]钟世镇.老学科的发展要有新的结合点—纪念《中国临床解剖学杂志》创 刊20周年[J].中国临床解剖学杂志,2003,21(6):535-536.
    
    [17]丁自海,徐达传,原林.钟世镇院士从教55周年暨80华诞庆典纪要[J].中 国临床解剖学杂志,2005,23(5):450.
    
    [18]孙嘉利,唐丹,曹宝云,等.交互式步态矫形器在脊髓损伤患者康复中的应 用[J].中华物理医学与康复杂志,2007,29(10):697-699.
    
    [19]苏强,赵正全.新型截瘫行走器在临床中的应用[J].中国康复,2001,16(3): 176-177.
    
    [20]孙嘉利,唐丹,钟世镇.三维步态分析的研究与应用[J].中国组织工程研究 与临床康复,2007,11(5):944-948.
    
    [21]British Standard:《External limb prostheses and external orthoses- Requirements and test methods》.BS EN 12523:1999.Incorporating Corrigendum No.1.
    
    [22]关骅.步行矫形器在脊髓损伤中的应用[J].中国脊柱脊髓杂志,1998,6(8): 341-343.
    
    [23]杨俊玲,魏毅,张建国,等.下肢矫形器对脊髓损伤患者日常生活活动能力??和步行能力恢复的辅助作用[J].中国临床康复,2005,9(42):68-69.
    
    [24] To CS, Kirsch RF, Kobetic R, et al. The feasibility of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking[J]. Conf Proc IEEE Eng Med Biol Soc, 2004, 6: 4041-4044.
    
    [25] Cywinska-Wasilewska G, Warzecha D. Evaluation of functionality in patients with traumatic spinal cord injury[J]. Ortop Traumatol Rehabil, 2002, 4(6): 747-751.
    
    [1] Franceschni M, Baratta S, Zampolini M, et al. Reciprocating gait orthosesramulticenter study of their use by spinal cord injured patients[J]. Arch Phys MedRehabil, 1997,78(6): 582-586.
    
    [2] Scivoletto G, Mancini M, Fiorelli E, et al. A prototype of an adjustableadvanced reciprocating gait orthosis (ARGO) for spinal cord injury (SCI)[J].Spinal Cord, 2003, 41 (3): 187-191.
    
    [3] Plassat R, Perrouin-Verbe B, Stephan A, et al. Gait orthosis in patients withcomplete thoracic paraplegia. Review of 43 patients[J]. Ann Readapt Med Phys, 2005,48(5): 240-247.
    [4] Ohta Y, Yano H, Suzuki R, et al. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients[J]. Proc Inst Mech Eng, 2007, 221(6):629-639.
    [5] Scivoletto G, Romanelli A, Mariotti A, et al. Clinical factors that affect walking level and performance in chronic spinal cord lesion patients[J]. Spine, 2008,33(3): 259-264.
    [6] To CS, Kirsch RF, Kobetic R, et al. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking[J].IEEE Trans Neural Syst Rehabil Eng, 2005,13(2): 227-235.
    [7] Haisma JA, van der Woude LH, Stam HJ, et al. Prognostic models for physical capacity at discharge and 1 year post discharge from rehabilitation in persons with spinal cord injury[J]. Arch Phys Med Rehabil, 2007, 88 (12): 1694-1703.
    [8] Johnson GR, Ferrarin M, Harrington M, et al. Performance specification for lower limb orthotic devices[J]. Clin Biomech, 2004,19(7): 711-718.
    [9] British Standard: 《 External limb prostheses and external orthoses —Requirements and test methods》 . BS EN 12523:1999. Incorporating Corrigendum No. 1.
    [10] Kawashima N, Taguchi D, Nakazawa K, et al. Effect of lesion level on the orthotic gait performance in individuals with complete paraplegia[J]. Spinal Cord, 2006,44(8): 487-494.
    [11] Stallard J, McLeod N, Woollam PJ, et al. Reciprocal walking orthosis with composite material body brace: initial development[J]. Proc Inst Mech Eng,2003,217(5): 385-392.
    
    
    [1] 候树勋.现代创伤骨科学[M].北京:人民军医出版社.2002:447-450.
    
    [2] 吴军发,胡永善,吴毅.脊髓损伤的康复治疗进展[J].中国康复医学杂志, 2001,16(6):377-379.
    
    [3] 尤春景,黄杰,黄国荣.步行矫形器在截瘫患者康复中的应用[J].中华物理 医学与康复杂志,2002,24(1):435-436.
    
    [4] Baardman G, IJzerman MJ, Hermens HJ, et al. The influence of the reciprocalhip joint link in the Advanced Reciprocating Gait Orthosis on standingperformance in paraplegia[J]. Prosthet Orthot Int, 1997,21(3): 210-221.
    
    [5] Franceschni M, Baratta S, Zampolini M, et al. Reciprocating gait orthoses:amulticenter study of their use by spinal cord injured patients[J]. Arch Phys MedRehabil, 1997,78(6): 582-586.
    
    [6] Scivoletto G, Mancini M, Fiorelli E, et al. A prototype of an adjustableadvanced reciprocating gait orthosis (ARGO) for spinal cord injury (SCI)[J].Spinal Cord, 2003,41(3): 187-191.
    
    [7] Bryce TN, Budh CN, Cardenas DD, et al. Pain after spinal cord injury: anevidence-based review for clinical practice and research. Report of the NationalInstitute on Disability and Rehabilitation Research Spinal Cord Injury Measuresmeeting[J]. J Spinal Cord Med, 2007,30(5): 421-440.
    
    [8] Jensen MP, Kuehn CM, Amtmann D, et al. Symptom burden in persons withspinal cord injury[J]. Arch Phys Med Rehabil, 2007,88(5): 638-645.
    
    [9] Winthrop AL, Brasel KJ, Stahovic L, et al. Quality of life and functionaloutcome after pediatric trauma[J]. J Trauma, 2005,58(3): 468-473.
    
    [10]卓大宏.中国康复医学(第二版)[M].北京:华夏出版社.2003:887-888.
    
    [11]缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000:318.
    
    [12]缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000:1445.
    
    [13]金大地.现代脊柱外科手术学[M].北京:人民军医出版社.2001:130-133.
    
    [14] Devillard X, Rimaud D, Roche F, et al. Effects of training programs for spinal cord injury[J]. Ann Readapt Med Phys, 2007,50(6): 490-498.
    
    [15] Nash MS, van de Ven I, van Elk N, et al. Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia [J]. Arch Phys Med Rehabil, 2007,88(1): 70-75.
    
    [16]周天健,李建军.脊柱脊髓损伤现代康复与治疗[M].北京:人民卫生出版社. 2006:623-627.
    
    [17]胡永善.新编康复医学[M].上海:复旦大学出版社.2005:186-193.
    
    [18]候树勋.现代创伤骨科学[M].北京:人民军医出版社.2002:448-450.
    
    [19] Shimada Y, Hatakeyama K, Minato T, et al. Hybrid functional electrical stimulation with medial linkage knee-ankle-foot orthoses in complete paraplegics[J]. Tohoku J Exp Med, 2006,209(2): 117-123.
    
    [20] Wirz M, van Hedel HJ, Rupp R, et al. Muscle force and gait performance: relationships after spinal cord injury[J]. Arch Phys Med Rehabil, 2006,87(9): 1218-1222.
    
    [21] Katz DE, Haideri N, Song K, et al. Comparative study of conventional hip-knee-ankle-foot orthoses versus reciprocating-gait orthoses for children with high-level paraparesis[J]. J Pediatr Orthop, 1997,17(3): 377-386.
    
    [22] Solomonow M, Aguilar E, Reisin E, et al. Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part I: Performance evaluation of 70 paraplegic patients[J]. Orthopedics, 1997,20 (4): 315-324.
    
    [23] Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury [J]. Nat Rev Neurosci, 2006,7(8): 628-643.
    
    [24] Katz-Leurer M, Weber C, Smerling-Kerem J, et al. Prescribing the reciprocal gait orthosis for myelomeningocele children: a different approach and clinical??outcome[J]. Pediatr Rehabil, 2004,7(2):105-109.
    
    [25] Kawashima N, Taguchi D, Nakazawa K, et al. Effect of lesion level on theorthotic gait performance in individuals with complete paraplegia[J]. SpinalCord, 2006,44(8): 487-494.
    
    [26] Scivoletto G, Petrelli A, Lucente LD, et al. One year follow up of spinal cordinjury patients using a reciprocating gait orthosis: preliminary report[J]. SpinalCord, 2000,38(9): 555-558.
    
    [27] Haisma JA, Bussmann JB,Stam HJ, et al. Changes in physical capacity duringand after inpatient rehabilitation in subjects with a spinal cord injury[J]. ArchPhys Med Rehabil, 2006,87(6):741-748.
    
    [28] Sutbeyaz ST, Koseoglu BF, Gokkaya NK. The combined effects of controlledbreathing techniques and ventilatory and upper extremity muscle exercise oncardiopulmonary responses in patients with spinal cord injury [J]. Int J RehabilRes, 2005,28(3): 273-276.
    
    [29]梁红英,候树勋,陆耘.应用往复式截瘫步行器重建完全性截瘫病人的步 行功能[J].中华创伤骨科杂志,2004,6(3):319-322.
    
    [30] Alon G, McBride K. Persons with C_5 or C_6 tetraplegia achieve selectedfunctional gains using a neuroprosthesis[J]. Arch Phys Med Rehabil, 2003,84(1):119-124.
    
    [31] Pachalska M, Talar J, Fra(?)czuk B, et al. A strategic approach to therehabilitation of patients with cervical SCI[J]. Ortop Traumatol Rehabil, 2001,3(1): 89-99.
    
    [32] Melchiorri G, Andreoli A, Padua E, et al. Use of vibration exercise in spinalcord injury patients who regularly practise sport[J]. Funct Neurol, 2007,22(3):151-154.
    
    [33] To CS, Kirsch RF, Kobetic R, et al. Simulation of a functional neuromuscular??stimulation powered mechanical gait orthosis with coordinated joint locking[J]. IEEE Trans Neural Syst Rehabil Eng, 2005,13(2): 227-235.
    
    [34]于洋.早期康复治疗对脊髓损伤患者日常生活活动能力的影响[J].中国康 复医学杂志,2006,21(3):247-248.
    
    [35] Kroll T, Neri MT, Ho PS. Secondary conditions in spinal cord injury: results from a prospective survey[J]. Disabil Rehabil, 2007, 29(15): 1229-1237.
    
    [36]孙嘉利,欧阳亚涛,唐丹,等.截瘫步行器对截瘫患者日常生活活动能力的 影响[J].中国康复医学杂志,2007,22(7):609-611.
    
    [37]缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000: 333-348.
    
    [38]周士枋,范振华.实用康复医学[M].修订版.南京:东南大学出版社.1998: 233-237.
    
    [39] Post M, Noreau L. Quality of life after spinal cord injury[J]. J Neurol Phys Ther,2005,29(3): 139-146.
    
    [40] Dahlgren A, Karlsson AK, Lundgren-Nilsson A, et al. Activity performance andupper extremity function in cervical spinal cord injury patients according to theKlein-Bell ADL Scale[J]. Spinal Cord, 2007,45(7): 475-484.
    
    [41] Lapointe R, Lajoie Y, Serresse O, et al. Functional community ambulationrequirements in incomplete spinal cord injured subjects[J]. Spinal Cord, 2001,39(6): 327-335.
    
    [42] Thomas SS, Buckon CE, Melchionni J, et al. Longitudinal assessment ofoxygen cost and velocity in children with myelomeningocele: comparison ofthe hip-knee-ankle-foot orthosis and the reciprocating gait orthosis[J]. J PediatrOrthop, 2001, 21(6): 798-803.
    
    [43] Marciniak C, Rader L, Gagnon C. The use of botulinum toxin for spasticityafter spinal cord injury[J]. Am J Phys Med Rehabil, 2008,87(4): 312-317.
    
    [44] Plassat R, Perrouin-Verbe B, Stephan A, et al. Gait orthosis in patients with complete thoracic paraplegia. Review of 43 patients[J]. Ann Readapt Med Phys, 2005,48(5): 240-247.
    
    [45]赵正全,黄洁,陆敏,等.截瘫患者装配行走器后的训练与日常生活活动能 力分析[J].中华物理医学与康复杂志,2003,25(3):172-173.
    
    [46]纪树荣.脊髓损伤的康复医疗[J].中国康复医学杂志,2002,17(4):203-204.
    
    [47] Benevento BT, Sipski ML. Neurogenic bladder,neurogenic bowel, and sexualdysfunction in people with spinal cord injury[J]. Phys Ther, 2002, 82(6):601-612.
    
    [48] Frankel HL, Coll JR, Charlifue SW, et al. Long-term survival in spinal cordinjury: a fifty year investigation[J]. Spinal Cord, 1998, 36(4): 266-274.
    
    [49] Yim SY, Yoon SH, Lee IY, et al. A comparison of bowel care patterns onpatients with spinal cord injury[J]. Spinal Cord, 2001, 39(4): 204-207.
    
    [50] Looze DD, Laere VM, Muynck DM, et al. Constipation and other chronicgastrointestinal problems in spinal cord injury patients[J]. Spinal Cord, 1998,36(1): 63-66.
    
    [51] Johnston TE, Betz RR, Smith BT, et al. Implantable FES system for uprightmobility and bladder and bowel function for individuals with spinal cordinjury[J]. Spinal Cord, 2005,43(12): 713-723.
    
    [52]马诚,成鹏.实用康复治疗技术[M].上海:第二军医大学出版社.2005: 208-210.
    
    [53] Francis K. Physiology and management of bladder and bowel continencefollowing spinal cord injury[J]. Ostomy Wound Manage, 2007,53(12): 18-27.
    
    [54]张小东.尿动力学[M].北京:人民卫生出版社.1999:57-58.
    
    [55]吴阶平.泌尿外科[M].济南:山东科学技术出版社.2001:69-70.
    
    [56] Game X, Karsenty G, Chatier-Kastler E, et al. Treatment of neurogenic detrusor??hyperactivity:enterocystoplasty[J].Prog Urol,2007,17(3):584-596.
    
    [57]周荣祥.膀胱外科[M].北京:人民卫生出版社.1996:246-248.
    
    [58] Stiens SA, Bergman SB, Goetz LL. Neurogenic bowel dysfunction after spinalcord injury:clinical evaluation and rehabilitative management[J]. Arch PhysMed Rehabil, 1997,78(3): 86-102.
    
    [59] Han TR, Kim JH, Kwon BS. Chronic gastrointestinal problems and boweldysfunction in patients with spinal cord injury[J]. Spinal Cord, 1998, 36(7):485-490.
    
    [60] Gordon PH. Anorectal anatomy and physiology[J]. Gastroenterol Clin NorthAm, 2001,30(1): 1-13.
    
    [61]李建军,吴娟,廖利民.完全性脊髓损伤患者大便控制能力的研究[J].中华 物理医学与康复杂志,2003,25(6):354-357.
    
    [62] Glickman S, Kamm MA. Bowel dysfunction in spinal cord injury patients[J].Lancet, 1996,347(9016): 1651-1653.
    
    [63] Satish SC, Rao MD, Sheila RN, et al. Manometric tests of anorectal function onhealthy adults[J]. Am J Gastroenterol, 1999, 94(3): 773-779.
    
    [64] Katz-Leurer M, Weber C, Smerling-Kerem J, et al. Prescribing the reciprocalgait orthosis for myelomeningocele children: a different approach and clinicaloutcome[J]. Pediatr Rehabil,2004,7(2): 105-109.
    
    [65] Ho CH, Linsenmeyer TA, Millis SR. The reproducibility of urodynamic studiesof neurogenic bladders in spinal cord injury[J]. J Spinal Cord Med, 2000,23(4):276-283.
    
    [66] Giannantoni A, Di Stasi SM, Scivoletto G, et al. Urodynamics in spinal cordinjured patients walking with reciprocating gait orthosis[J]. J Uro, 2000,164(1):115-117.
    
    [1] Bernardi, M, Canale I, Castellano V, et al. The efficiency of walking ofparaplegic patients using a reciprocating gait orthosis[J]. Paraplegia, 1995,33(7): 409-415.
    
    [2] Winchester PK, Carollo JJ, Parekh RN, et al. A comparison of paraplegic gaitperformance using two types of reciprocating gait orthoses[J]. Prosthet OrthotInt, 1993,17(2): 101-106.
    
    [3] IJ Zerman MJ, Baardman G, van't Hof A, et al. Validity and reproducibility ofcrutch force and heart rate measurements to assess energy expenditure ofparaplegic gait[J]. Arch Phys Med Rehabil,1999,80(9):1017-1023.
    
    [4] Kawashima N, Taguchi D, Nakazawa K, et al. Effect of lesion level on theorthotic gait performance in individuals with complete paraplegia[J]. SpinalCord, 2006,44(8): 487-494.
    
    [5] 卓大宏.中国康复医学(第二版)[M].北京:华夏出版社.2003:887-888.
    
    [6] 缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000:318.
    
    [7] 缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000:1445.
    
    [8] 金大地.现代脊柱外科手术学[M].北京:人民军医出版社.2001:130-133.
    
    [9] Franceschni M, Baratta S, Zampolini M, et al. Reciprocating gait orthoses: a multicenter study of their use by spinal cord injured patients[J]. Arch Phys Med Rehabil, 1997, 78(6): 582-586.
    
    [10] Nouri BM, Zaidan A. Computer control of a powered two degree freedom reciprocating gait orthosis[J]. ISA Trans, 2006,45(2): 249-258.
    
    [11]励建安,孟殿怀.步态分析的临床应用[J].中华物理医学与康复杂志,2006, 28(7): 500-503.
    [12] Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: relationship with muscle strength[J].Spinal Cord, 2004,42(3): 156-162.
    
    [13] 陈景藻.康复医学[M].北京:高等教育出版社. 2001: 51-53.
    [14] Giaquinto S, Galli M, Nolfe G. A polynomial function of gait performance[J].Funct Neurol, 2007,22(l):43-46.
    [15] Shemmell J, Johansson J, Portra V, et al. Control of interjoint coordination during the swing phase of normal gait at different speeds[J]. J Neuroeng Rehabil,2007, 27(4): 10.
    [16] To CS, Kirsch RF, Kobetic R, et al. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking[J].Trans Neural Syst Rehabil Eng, 2005,13 (2): 227-235.
    [17] Gorman, PH. An update on functional electrical stimulation after spinal cord injury[J]. Neurorehabil Neural Repair, 2000,14(4): 251-263.
    [18] Mushahwar VK, Jacobs PL, Norman RA, et al. New functional electrical stimulation approaches to standing and walking[J].J Neural Eng, 2007,4(3):181-197.
    [19] Bonaroti D, Akers JM, Smith BT, et al. Comparison of functional electrical stimulation to long leg braces for upright mobility for children with complete thoracic level spinal injuries[J]. Arch Phys Med Rehabil, 1999, 80(9): 1047-1053.
    [20] Creasey GH, Ho CH, Triolo RJ, et al. Clinical applications of electrical stimulation after spinal cord injury[J].J Spinal Cord Med,2004,27(4): 365-375.
    [21] Behrman AL, Harkema SJ. Physical rehabilitation as an agent for recovery after spinal cord injury[J]. Phys Med Rehabil Clin N Am, 2007,18(2): 183-202.
    
    
    [22]缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000: 269-270.
    
    [23] Bereket S. Effects of anthropometric parameters and stride frequency onestimation of energy cost of walking[J].J Sports Med Phys Fitness,2005,45(2):152-161.
    
    [24] Phillips WT, Kiratli BJ, Sarkarati M, et al. Effect of spinal cord injury on theheart and cardiovascular fitness[J]. Curr Probl Cardiol, 1998,23(11): 641-716.
    
    [25] Kawashima N, Nakazawa K, Ishii N, et al. Potential impact of orthotic gait onnatural killer cell activities in thoracic level of spinal cord-injured patients[J].Spinal Cord, 2004,42(7): 420-424.
    
    [26] Ulkar B, Yavuzer G, Guner R, et al. Energy expenditure of the paraplegic gait:comparison between different walking aids and normal subjects[J]. Int JRehabil Res, 2003,26(3): 213-217.
    
    [27] Le Foll-de Moro D, Tordi N, Lonsdorfer E, et al. Ventilation efficiency andpulmonary function after a wheelchair interval-training program in subjectswith recent spinal cord injury[J]. Arch Phys Med Rehabil, 2005,86(8):1582-1586.
    
    [28] Krawetz P, Nance P. Gait analysis of spinal cord injured subjects: effects ofinjury level and spasticity [J]. Arch Phys Med Rehabil, 1996,77(7): 635-638
    
    [1] 戴红.康复医学[M].北京:人民卫生出版社.1998:81-83.
    
    [2] Kerrigan DC, Glenn MB. An illustration of clinical gait laboratory use to improve rehabilitation managemen[J]. Am J Phys Med Rehabil, 1994,73(6): 421-427.
    
    [3] 卓大宏.中国康复医学(第二版)[M].北京:华夏出版社.2003:162.
    
    [4] 白跃宏,周俊,梁娟.步态分析在临床中应用[J].中国矫形外科杂志, 2006,14(10):70-72.
    
    [5] Suzuki N, Hattori A, Hayashibe M, et al. Development of Dynamic SpatialVideo Camera (DSVC) for 4D observation, analysis and modeling of humanbody locomotion[J]. Stud Health Technol Inform, 2003,94: 346-348.
    
    [6] Lam WK, Leong JC, Li YH, et al. Biomechanical and electromyographicevaluation of ankle foot orthosis and dynamic ankle foot orthosis in spasticcerebral palsy[J]. Gait Posture, 2005,22 (3): 189-197.
    
    [7] Gage JR. Surgical treatment of knee dysfunction in cerebral palsy [J]. ClinOrthop, 1990,25(3): 45-54.
    
    [8] Lajoie Y, Teasdale N, Cole JD, et al. Gait of a deafferented subject without largemyelinated sensory fibers below the neck[J]. Neurology, 1996,47(1): 109-115.
    
    [9] Cantor CR. Gait disorder[J]. Clin Podiatr Med Surg, 1999, 16(1): 141-151.
    
    [10] Perry J, Burnfield JM, Newsam CJ, et al. Energy expenditure and gaitcharacteristics of a bilateral amputee walking with C-leg prostheses compared??with stubby and conventional articulating prostheses. Arch Phys Med Rehabil,2004,85(10):1711-1717.
    
    [11] Collen FM, Baer GD, Ashburn AM. Stepping onto a single step: a kinematicstudy[J]. Physiother Res Int, 2005,10(2): 81-92.
    
    [12] Baker R. Gait analysis methods in rehabilitation[J]. J Neuroengineering Rehabil,2006,2(3):4.
    
    [13] Paolini G, Delia Croce U, Riley PO, et al. Testing of a tri-instrumented-treadmillunit for kinetic analysis of locomotion tasks in static and dynamic loadingconditions[J]. Med Eng Phys, 2007,29(3): 404-411.
    
    [14] Fairbum PS, Parmer R, Whybrow J, et al. A prototype system for testing forceplatform dynamic performance [J]. Gait Posture, 2000,12(1):25-33.
    
    [15] Besier TF, Lloyd DG, Ackland TR, et al. Anticipatory effects on knee jointloading during running and cutting maneuvers[J]. Med Sci Sports Exerc, 2001,33(7): 1176-1181.
    
    [16] Krebs DE, Edelstein JE, Fishman S. Reliability of observational kinematic gaitanalysis[J]. Phys Ther, 1985, 65(7):1027-1033.
    
    [17]戴克戎.步态分析及其应用[J].中国骨科杂志,1991,11:207.
    
    [18]伍勰,陆爱云,庞军.健康老年人常速行走的步态分析[J].上海体育学院学 报,2000,24(2):52-55.
    
    [19] Riener R, Rabuffetti M, Frigo C. Stair ascent and descent at differentinclinations [J]. Gait Posture, 2002,15(1): 32-44.
    
    [20] Taylor D, Stretton CM, Mudge S, et al. Does clinic-measured gait speed differfrom gait speed measured in the community in people with stroke[J]? ClinRehabil, 2006,20(5): 438-444.
    
    [21] Knoll Z, Kocsis L, Kiss RM. Gait patterns before and after anterior cruciateligament reconstruction[J]. Knee Surg Sports Traumatol Arthrosc, 2004,12(1):7-14.
    
    [22] Theoret D, Lamontagne M. Study on three-dimensional kinematics andelectromyography of ACL deficient knee participants wearing a functional knee??brace during running[J]. Knee Surg Sports Traumatol Arthrosc, 2006,14(6):555-563.
    
    [23] Brunner R, Romkes J. Abnormal EMG muscle activity during gait in patientswithout neurological disorders[J]. Gait Posture, 2008,27(3): 399-407.
    
    [24] Wakeling J, Delaney R, Dudkiewicz I, et al. A method for quantifying dynamicmuscle dysfunction in children and young adults with cerebral palsy [J]. GaitPosture, 2007,25(4): 580-589.
    
    [25] Bereket S. Effects of anthropometric parameters and stride frequency onestimation of energy cost of walking[J]. J Sports Med Phys Fitness, 2005,45(2):152-161.
    
    [26]缪鸿石.康复医学理论与实践[M].上海:上海科学技术出版社.2000: 269-270.
    
    [27] Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation inpeople with Parkinson's disease[J]. Clin Rehabil, 2006,20(1): 36-45.
    
    [28] Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supportedtreadmill training in individuals following motor incomplete spinal cord injury[J]. Phys Ther, 2005,85(1): 52-66.
    
    [29] Olney SJ, Carol Richards. Hemiparetic gait following stroke. Part I :Characteristics[J]. Gait posture, 1996,4(11):136-148.
    
    [30] Kwolek A, Zuber A. Gait characteristics in hemiparetic patients after stroke[J].Neurol Neurochir Pol, 2002, 36(2): 337-347.
    
    [31] AlZahrani KS, Baheit AM. A study of the gait characteristics of patients withchronic osteoarthritis of the knee[J]. Disabil Rehabil, 2002, 24 (5) :275-280.
    
    [32] Deluca PA, Davis RB 3rd, Ounpuu S, et al. Alternations in surgical decisionmaking in patients with cerebral palsy based on three-dimensional gait analysis[J]. J Pediatr Orthop, 1997,17(5): 608-614.
    
    [33] Kay RM, Dennis S, Rethlefsen S, et al. The effect of preoperative gait analysison orthopaedic decision making [J]. Clin Orthop, 2000, 3(372) :217-222.
    
    [34] Graubert C, Song KM, Mclaughlin JF, et al. Changes in gait at 1 year PostSelective Dorsal Rhizotomy: results of a prospective randomized study [J]. J??Pediatr Orthop, 2000, 20 (4) :496-500.
    
    [35] Ounpuu S, Deluca P, Davis R, et al. Long-term effects of femoral derotationosteotomies: an evaluation using three-dimensional gait analysis[J]. J PediatrOrthop, 2002, 22(2): 139-145.
    
    [36] Saraph V, Zwick EB, Zwick G, et al. Multilevel surgery in spastic diplegia :evaluation by physical examination and gait analysis in 25 children[J]. J PediatrOrthop, 2002, 22 (2): 150-157.
    
    [37] Inman VT. Human locomotion[J]. Clin Orthop Relat Res, 1993,3(288):3-9.
    
    [38] Field-Fote EC, Fluet GG, Schafer SD, et al. The Spinal Cord Injury FunctionalAmbulation Inventory (SCI-FAI) [J]. J Rehabil Med, 2001,33(4): 177-181.
    
    [39] Morganti B, Scivoletto G, Ditunno P, et al. Walking index for spinal cord injury(WISCI): criterion validation[J]. Spinal Cord, 2005,43(1): 27-33.
    
    [40]励建安.神经疾病的步态分析[J].中国康复医学杂志,2005,20(4):304-306.
    
    [41] Kim CM, Eng JJ, Whittaker MW. Effects of a simple functional electric systemand/or a hinged ankle-foot orthosis on walking in persons with incompletespinal cord injury[J]. Arch Phys Med Rehabil, 2004,85(10): 1718-1723.
    
    [42] Waters R, Adkins R, Yakura J, et al. Prediction of ambulatory performancebased on motor scores derived from standards of the American Spinal InjuryAssociation[J]. Arch Phys Med Rehabil, 1994,75(7): 756-760.
    
    [43] Burns SP, Golding DG, Rolle WA Jr, et al. Recovery of ambulation inmotor-incomplete tetraplegia[J]. Arch Phys Med Rehabil, 1997,78(11):1169-1172.
    
    [44] Krawetz P, Nance P. Gait analysis of spinal cord injured subjects: effects ofinjury level and spasticity[J]. Arch Phys Med Rehabil, 1996,77(7): 635-638.
    
    [45] Kawashima N, Nakazawa K, Ishii N, et al. Potential impact of orthotic gait onnatural killer cell activities in thoracic level of spinal cord injured patients[J].Spinal Cord, 2004,42(7): 420-424.
    
    [46] Kawashima N, Taguchi D, Nakazawa K, et al. Effect of lesion level on theorthotic gait performance in individuals with complete paraplegia[J]. SpinalCord, 2006,44(8): 487-494.
    [47] Phillips WT, Kiratli BJ, Sarkarati M, et al. Effect of spinal cord injury on the heart and cardiovascular fitness[J]. Curr Probl Cardiol,1998,23(11): 641-716.
    [48] Ulkar B, Yavuzer G, Guner R, et al. Energy expenditure of the paraplegic gait:comparison between different walking aids and normal subjects[J]. Int J Rehabil Res, 2003,26(3): 213-217.
    [49] Le Foll-de Moro D, Tordi N, Lonsdorfer E, et al. Ventilation efficiency and pulmonary function after a wheelchair interval-training program in subjects with recent spinal cord injury[J]. Arch Phys Med Rehabil, 2005, 86(8):1582-1586.
    [50] Ferris DP, Gordon KE, Beres-Jones JA, et al. Muscle activation during unilateral stepping occurs in the nonstepping limb of humans with clinically complete spinal cord injury[J]. Spinal Cord, 2004,42(1): 14-23.
    [51] Kawashima N, Nakazawa K. Characteristics of the locomotor-like muscle activity during orthotic gait in paraplegic persons[J]. Neurol Res, 2007, 10(2).[Epub ahead of print]
    [52] IJzerman MJ, Baardman G, Hermens HJ, et al. The influence of the reciprocal cable linkage in the advanced reciprocating gait orthosis on paraplegic gait performance[J]. Prosthet Orthot Int, 1997,21(1): 52-61.
    [53] Thomas SS, Buckon CE, Melchionni J,et al. Longitudinal assessment of oxygen cost and velocity in children with myelomeningocele: comparison of the hip-knee-ankle-foot orthosis and the reciprocating gait orthosis[J]. J Pediatr Orthop,2001,21(6): 798-803.
    [54] To CS, Kirsch RF, Kobetic R, et al. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking[J].IEEE Trans Neural Syst Rehabil Eng, 2005,13(2): 227-235.
    [55] Chang HA, Chuang TY, Lee SJ, et al. Temporal differences in relative phasing of gait initiation and first step length in patients with cervical and lumbosacral spinal cord injuries[J]. Spinal Cord,2004,42(5): 281-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700