胚胎干细胞与蚕丝—胶原支架促进肌腱再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中文摘要
     背景:
     随着国民素质的提高以及人们对健康的追求,体育锻炼和竞赛活动明显增加,以及由于意外事故不断发生和社会老龄化趋势日益明显,运动损伤也越来越多,其中韧带肌腱损伤占50%以上。统计表明,每年至少有3000万的肌腱损伤病例。目前,临床上对肌腱损伤的治疗主要停留在理疗、手术缝合以及自体或异体移植阶段,虽有一定效果,但是疗效有限,即使是自体肌腱移植修复也只能达到正常肌腱力学性能的40%左右,且伴随有大量疤痕组织增生。这主要是因为成体肌腱不具备完全再生能力,所以修复后肌腱的质量远不如正常肌腱,易出现肌腱粘连,肌腱结构和力学性能低下,常重复断裂。因此,寻找新型的、可促进肌腱生理性再生修复的方法具有极其重要的临床意义。
     随着最近10年组织工程和干细胞研究的兴起,使临床医学步入了“再生医学”的新阶段。通过利用干细胞复合支架材料的组织工程手段,促使身体自主再生已损伤组织,为提高肌腱等软组织的修复质量带来了全新的机会。肌腱组织工程技术中包含三个重要的迫切需要解决的关键问题:1)获得足够分化成熟的肌腱种子细胞;2)能够提供足够生长空间的生物支架材料;3)种子细胞分化的力学刺激以及其他转录因子的调控。然而,目前这些问题尚未解决,影响了肌腱组织工程的发展,从而制约了组织工程肌腱在临床用于肌腱缺损再生修复治疗。本研究针对目前这些现状,旨在系统的研究组织工程肌腱所面临的三个迫切问题,最终目的为复合诱导后的胚胎干细胞与蚕丝-胶原海绵支架构建组织工程肌腱并促进肌腱损伤的再生。研究内容包含:在种子细胞选择、分化和调控方面,拟采用分子生物学手段调控诱导人胚胎干细胞阶段性向肌腱细胞分化以提供足够的种子细胞,并阐明力学和转录因子因素调控干细胞肌腱分化的机理和协同效果,获得有效的肌腱分化条件;本方向的进一步研究将为肌腱分化及再生提供全新的思路和知识,为认知肌腱再生的生物机理提供实验基础和理论数据,为运用特定分化后肌腱干细胞用于肌腱再生打下基础。在组织工程支架方面,拟研发一个既符合组织工程支架需要,又具有生理承载功能的可抗拉力的功能性肌腱支架--蚕丝-胶原海绵复合支架,使之更符合肌腱生物学特性和力学特性。最终将利用研发的支架复合诱导的人胚胎干细胞,构建组织工程肌腱,通过动物模型评估组织工程肌腱对肌腱损伤修复的再生作用。本研究课题,将最终为组织工程肌腱应用于临床打下基础,为肌腱损伤治疗带来新的方向。
     由于肌腱与韧带在结构与功能上类似,因此,在本课题中肌腱组织工程泛指肌腱与韧带组织工程。
     本研究分为四个部分:(1)人胚胎干细胞(hESCs)诱导成为间质干细胞(MSCs),并应用于肌腱组织工程研究,探索hESCs促进肌腱再生的可行性和功效性;(2)研究肌腱发育特征转录因子SCX对hESCs来源MSCs的肌腱分化影响。阐明SCX对hESC-MSCs的肌腱分化调控,并获得SCX+的肌腱祖细胞。在获得SCX+肌腱祖细胞的基础上研究外加力学刺激与转录因子对肌腱分化的协同效应以及对相关信号通路的协同调控机理,明确肌腱祖细胞向肌腱分化调控机制;(3)构建网状蚕丝-胶原海绵复合支架,评估该支架用于肌腱/韧带组织工程的可行性与优势。(4)支架复合诱导后的胚胎干细胞构建组织工程肌腱,在动物模型中评估工程化的细胞与支架构成的组织工程肌腱对肌腱损伤修复的促进作用。
     第一章人胚胎干细胞的阶段性分化通过分泌胚胎肌腱基质和分化因子促进肌腱再生
     目的:人胚胎干细胞(hESCs)是组织再生的理想种子细胞,但是至今尚未有研究报道人胚胎干细胞用于肌腱再生的可能性。本课题主要研究人胚胎干细胞用于肌腱再生的策略和功效,以及相关的机理。
     方法与结果:首先,将人胚胎干细胞诱导分化成间充质干细胞(MSC),这种MSC具有三系分化潜能并且表达MSC的表面标记。通过肌腱特异性基因的表达和肌腱结构鉴定证明人胚胎干细胞来源的间充质干细胞(hESC-MSCs)不仅在体外组织工程模型还是在体内异位肌腱再生模型中都可以再生肌腱组织。在大鼠原位髌腱修复实验中,用hESC-MSCs处理组与对照组相比具有较好的组织结构和力学性能。另外,hESC-MSCs可以在肌腱损伤区域存活至少4周,并且分泌人胚胎肌腱特异的胞外基质成分和分化因子,这些因子进一步激活肌腱内源的再生过程。并且,在所有样本中均未发现畸胎瘤形成。
     结论:本研究开创了一种安全有效的将胚胎干细胞用于肌腱再生的方法,并有助于发展未来应对肌腱疾病的手段。
     第二章转录因子scleraxis与力学刺激协同调控干细胞腱系分化机理和效应研究
     目的:缺乏肌腱分化调控知识是实现肌腱再生的根本性难题。发育生物学是分化研究的线索。已有肌腱发育分化研究发现:1)SCX是肌腱祖细胞的标志,TGF, FGF是肌腱发育的关键通路,而目前从SCX+祖细胞到肌腱的分化调控知识缺乏;2)SCX是肌腱发育的必要但不充分条件,敲除SCX出现严重的肌腱缺失;3)肌腱发育过程提示存在力学刺激促肌腱成熟现象。而力学与SCX在肌腱成熟和分化中的协同作用及相应机制仍未清楚。本章主要研究SCX+祖细胞向成熟肌腱细胞分化调控机制,即以SCX+干细胞为起点复合力学刺激诱导肌腱分化,明确SCX与力学刺激对肌腱分化是否有协同作用并探索其机制。
     方法与结果:第一阶段将肌腱发育特征转录因子SCX转入hESC来源MSCs,获得SCX+的肌腱祖细胞。第二阶段将在SCX+肌腱祖细胞构建的细胞片的基础上研究外加周期性力学刺激(1Hz),并揭示力学与转录因子对肌腱分化的协同效应以及对相关信号通路的协同调控机理,明确肌腱祖细胞向肌腱分化调控机制。第三阶段,评估SCX复合力学分化的肌腱细胞修复再生修复肌腱的效率。实验表明:1)SCX可增加肌腱细胞外基质(胶原Ⅰ,ⅩⅣ)表达,并降低胶原Ⅱ表达及BMP活性。然而,SCX亦能增加runx2表达及骨诱导效果。2)在力学协同刺激下,SCX可增加肌腱特异性基因表达而诱导肌腱分化。3)体内异位种植及原位修复结果显示,SCX与力学有协同诱导分化及修复作用,可诱导胶原纤维成熟,并促进肌腱修复。
     结论:该研究表明SCX与力学不仅在肌腱分化中有重要作用,并且能够协同作用诱导肌腱分化与修复。SCX与力学刺激的协同作用部分是通过调控BMP-Smad通路及runx2的功能。该研究发现将为肌腱分化调控提控新知识,并将可能通过更准确调控干细胞腱系分化为肌腱再生的新的种子细胞和手段。
     第三章网状蚕丝-胶原海绵复合支架促肌腱再生研究
     目的:本课题致力于发明一种力学性能和生物学性能良好的生物材料,为肌腱韧带组织工程提供一种同时具备有良好力学性能和足够相通的细胞组织容纳空间的支架,即网状蚕丝复合胶原海绵支架。
     方法与结果:该支架用于韧带肌腱组织工程的功效性通过体外和动物体内进行评估。在胶原基质上培养的细胞与生长在蚕丝上的细胞高表达肌腱韧带的胞外基质基因。小鼠皮下移植实验结果显示蚕丝支架有很好的生物相容性,并会缓慢的降解。兔内侧副韧带损伤模型显示,将网状蚕丝复合胶原海绵支架用于内侧副韧带的修复得到更多的胶原沉积和更好的力学性能,与未修复和单纯蚕丝支架修复效果相比,实验组超微结构的胶原直径更大且支架和肌腱的交界点修复更强。
     结论:本研究结果证明了网状蚕丝复合胶原海绵支架通过调控肌腱韧带胞外基质基因的表达和胶原纤维的聚合促进了肌腱结构和功能的修复。这些发现第一次强调了生物材料在肌腱韧带再生生物学中的重要角色。另外,“内部空间预留”的支架概念的提出有利于处于力学张力下组织的修复。
     第四章基因工程化hESC-MSC与蚕丝-胶原海绵复合支架构建组织工程肌腱研究
     目的:我们之前的研究中已证明复合了胶原的蚕丝支架在肌腱再生中拥有良好的潜能,并证实hESC-MSCs及SCX+hESC-MSCs在肌腱分化及促进修复肌腱再生中的潜能。本研究旨在应用支架复合诱导后的胚胎干细胞构建组织工程肌腱,在动物模型中评估工程化的细胞与支架构成的组织工程肌腱对肌腱损伤修复的促进作用。
     方法与结果:体外实验将hESC-MSC及工程化SCX+hESC-MSC种在复合支架上在体外施以动态力学刺激(DM)或无力学刺激(NM)达14天。体内异位种植则埋入裸鼠皮下4周,部分通过将构建物缝合在裸鼠背部脊上韧带施以天然的力学刺激(DM),其他的则不受力(NM)。原位跟腱修复分别于固定后2周,4周,进行大体、组织学、超微结构、生化组成、生物力学检测。力学刺激诱导了复合胶原蚕丝支架上的hESC-MSC及SCX+hESC-MSC向肌腱方向分化,体内异位移植肌腱的组织学、生化组成和胶原表达、胶原纤维大小均大于无力学组,两种细胞间差异并不明显。肌腱修复结果显示细胞促进形成更成熟的胶原纤维,并促进损伤肌腱的修复。另外SCX+hESC-MSC可促进修复肌腱的力学性能,并增加胶原纤维成熟。
     结论:hESC-MSC及工程化SCX+hESC-MSC复合网状蚕丝-胶原海绵支架可构建组织工程肌腱,并促进损伤肌腱修复。SCX+hESC-MSC可进一步促进肌腱修复及胶原纤维成熟。
Introduction
     Tendon and ligament damage are frequently encountered in sports injuries, which often result in suboptimal healing and cause significant dysfunction and disability. Presently, the main therapeutic options to treat tendon and ligament injuries include prosthetic scaffold devices and tissue grafting. Until now, no prosthetic devices have been able to adequately restore the long term function of tendons. Tissue grafting methods, including autografts, allografts, xenografts, are limited by the major disadvantages such as quality and availability of autograft tissues, compromising normal healthy tissue, and the risk of disease transmission and immune response from allografts and xenografts. Moreover, injured tendon which repaired by autograft could only reach 40% of normal mechanical strength, due to the lack of regeneration potential. It is clinically important to search for a new promising tendon regeneration methods.
     Recently, a novel tissue-engineering technique has emerged, which combines biodegradable biomaterials, cell, growth factors, and gene transfer methods. It has shown great potentials for tendon and ligament repairment. However, none of the key components of this technique has not been optimized. The cell source is vital for tendon and ligament tissue engineering, yet……(major problem associated with cell source) Another key issue of tendon tissue engineering is scaffold, which under optimal conditions should possesses optimal strength, a porous structure and a biocompatible microenvironment. So far, the optimal scaffold has not been developed.
     To provide enough seed cells, we stepwise induce hESC into tenocytes to provide seed cells. We also investigate the mechanism involve in the differentiation to provide a theoretical basis between differentiation. This study also aimed to design a new practical tendon scaffold by the synergistic incorporation of silk fibers, a knitted structure, and a collagen matrix. Silk fibers provided mechanical strength. The knitted structure provided internal connective space. Collagen matrix initially occupied the internal space of the knitted scaffold for neoligament tissue ingrowth as well as the capacity to modulate neoligament regeneration by regulating matrix gene expression and the assembly of collagen fibrils? The combination of scaffold and induced embryonic stem cells thus fomed a novel tendon tissue engineering product. We further evaluated the role of engineered tendon in promoting tendon regeneration in animal models. Our work will make tendon tissue engineering closer to the bedside and bring a new direction for treatment of tendon injuries.
     The current study include four stages:stage 1 to induce hESC into MSCs and investigate the potential of hESC-MSCs in the tendon tissue engineering; stage 2 to investigate the synergetic function of scleraxis and mechanical stress on the teno-lineage induction; stage 3 to fabricate scaffold that compose of the knitted silk scaffold combined with collagen matrix and evaluate the feasibility and advantages for the tendon tissue engineering; stage 4 to fabricate engineered tendon that compose of scaffold and induced embryonic stem cells and evaluate the role of engineered tendon in promoting tendon regeneration in animal model
     Stage 1 Stepwise Differentiation of Human Embryonic Stem Cells Promotes
     Tendon Regeneration by Secreting Fetal Tendon Matrix and Differentiation Factors
     Aim:Human embryonic stem cells (hESCs) are ideal seed cells for tissue regeneration, but no research has yet been reported concerning their potential for tendon regeneration. This study investigated the strategy and efficacy of using hESCs for tendon regeneration as well as the mechanism involved.
     Methods and results:hESCs were first induced to differentiate into mesenchymal stem cells (MSCs), which had the potential to differentiate into the three mesenchymal lineages and were positive for MSC surface markers. hESC-derived MSCs (hESC-MSCs) regenerated tendon tissues in both an in vitro tissue engineering model and an in vivo ectopic tendon regeneration model, as confirmed by the expression of tendon-specific genes and structure. In in-situ rat patellar tendon repair, tendon treated with hESC-MSCs had much better structural and mechanical properties than did controls. Furthermore, hESC-MSCs remained viable at the tendon wound site for at least 4 weeks and secreted human fetal tendon-specific matrix components and differentiation actors, which then activated the endogenous regeneration process in tendon.
     Conclusion:These findings demonstrate a safe and practical strategy of applying ESCs for tendon regeneration and may assist in future strategies to treat tendon diseases. Moreover, no teratoma was found in any samples.
     Stage 2 Overexpression of Scleraxis and Dynamic Mechanical Stress Regulate Tendon-lineage Differentiation of Human Embryonic Stem Cells for Tendon Repair
     Aim:Until now no optimal induction for tenocytes differentiation and tendon regeneration has yet been achieved. In embryo development, TGF, FGF signal and ectoderm signal and mechanical stress is critical for tendon development and associate with tenocytes differentiation. Scleraxis, a bHLH transcription factor, is a highly specific marker of tendons and Scleraxis knockout cause the severe force-transmitting tendon defects suggest that the mechanical stress and scleraxis may play a synergic role in the tendon development. The signaling mechanisms that mediate force-induced tenocytes differentiation and collagen expression are not defined. In this study, we tested the hypothesis that mechanical stress interacts with the transfer growth factor-beta (TGF-beta) pathway and scleraxis transcription factor to stimulate tendon-lineage differentiation and tendon regeneration.
     Methods and results:Human ESCs were first induced to differentiate into mesenchymal stem cells (MSCs). The immuno-phenotype of hESC-derived MSCs (hESC-MSCs) was identified by flow cytometry. Then the hESC-MSCs were transfer with the tendon-lineage specific transcription factor scleraxis. hESC-MSCs formed cell sheet after 14 days culture and engineered tendon were formed in vitro. The engineered tendon was subjected to a dynamic mechanical stress of 1HZ for 2h/day. Then the regeneration potential of the engineered tendon tissues was evaluated in both an in vitro tissue engineering model and an in-situ rat patellar tendon window repair model.
     Scleraxis overexpression increased the expression of collagen I, III, XIV, reduced collagen II promoter activation and BMP induced smad activation. However, ALP activity and alizarin red staining showed scleraxis also increase the bone induction. The expression of tendon-specific genes was significantly higher in scleraxis transfected hESC-MSCs under mechanical stimulus when compare to the scleraxis transfected hESC-MSCs without mechanical stimulus or the native hESC-MSCs under mechanical stimulus. In vivo ectopic implantation also shows the synergetic function of scleraxis and mechanical stress in tendon differentiation. Tendon treated with scleraxis hESC-MSCs had much better structural and mechanical properties than did controls. Furthermore, hESC-MSCs remained viable at the tendon wound site for at least 4 week. Moreover, no teratoma was found in any samples.
     Conclusion:The present study demonstrates that both mechanical stress and scleraxis are not only important for the tendon differentiation but also have synergetic function on tendon regeneration. The role of scleraxis on tendon differentiation is partially by changing the activation of BMP-smad pathway. These findings may have considerable importance on understanding the roles of mechanical stress and scleraxis on tendon differentiation as well as developing therapeutics for tendon regeneration.
     Stage 3 Ligament Regeneration Using a Knitted Silk Scaffold Combined with Collagen Matrix
     Aim:This study aimed to develop a new practical ligament scaffold by synergistic incorporation of silk fibers, a knitted structure, and a collagen matrix. The efficacy for ligament tissue engineering was investigated in vitro and in animal models.
     Methods and results:Cells cultured on a collagen substrate expressed higher levels of ligament matrix genes than those on a silk substrate. The silk scaffold elicited little inflammatory reaction and degraded slowly after subcutaneous implantation in a mouse model. In the rabbit MCL defect model, MCLs treated with a silk+collagen scaffold deposited more collagen, had better mechanical properties, and showed more native microstructure with larger diameter collagen fibrils and stronger scaffold-ligament interface healing than untreated MCLs and those treated with silk scaffolds.
     Conclusion:These results demonstrated that the knitted silk+collagen sponge scaffold improves structural and functional ligament repair by regulating ligament matrix gene expression and collagen fibril assembly. The findings are the first to highlight the important roles of biomaterials in ligament regeneration biology. Also, the concept of an "internal-space-preservation" scaffold is proposed for the tissue repair under physical loading.
     Stage 4 Experimental Study on Engineered hESC-MSC-Silk-Collagen
     Sponge Tissue Engineered Tendon
     Aim:This study aimed to engineer tendon by the combination of engineered hESC-MSCs with knitted silk scaffold combined with collagen matrix.
     Methods and results:hESC-MSCs and SCX-hESC-MSCs were induced into teno-lineage on knitted silk scaffold combined with collagen matrix under mechanical stress in vitro and in vivo. In in situ repair study, hESC-MSCs-scaffold engineered tendon were used for rat AT regeneration. The repaired tendon was used for histological examination, mechanical properties and transmission electron microscopy analysis.
     Tendon-like tissue was formed in vitro in the constructs with mechanical stress. And tendon-specific genes expressions were significantly higher. The results of in vivo heterotypic transplantation showed spindle-shaped and regularly aligned cells, larger collagen fibers and more deposited collagen in the mechanical stress group. These results demonstrated that engineered tendon was successfully fabricated by human ESC combine with mechanical stress and the collagen sponge-knitted silk scaffolds. Engineered tendon improve
     Conclusion:The engineered tendon developed in this study is promising in restoring or replacing the damaged tendon in future clinical trial.
引文
Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J and Kaplan DL 2003. Silk-based biomaterials. Biomaterials 24(3):401-16.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J and Kaplan DL (2003). Silk-based biomaterials. Biomaterials.24:401-416.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC and Kaplan DL 2002. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131-41.
    Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G and Kaplan DL 2002. Cell differentiation by mechanical stress. FASEB J 16(2):270-2.
    Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, Stark P, Martin I, Richmond JC and Vunjak-Novakovic G 2002. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124(6):742-9.
    Androjna C, Spragg RK and Derwin KA 2007. Mechanical Conditioning of Cell-Seeded Small Intestine Submucosa:A Potential Tissue-Engineering Strategy for Tendon Repair. Tissue Eng.
    Athanasiou KA, Niederauer GG and Agrawal CM 1996. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93-102.
    Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG and Butler DL 2003. Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21(3):420-31.
    Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI.1999. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng.5(3):267-77.
    Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, Kadiyala S, Boivin GP. 2000. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair:effects of initial seeding density on contraction kinetics. J Biomed Mater Res.51(2):233-40.
    Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. 2003. Regenerative versus reparative healing in tendon:a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng.31(10):1143-52.
    Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP and Dunn MG 1998. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16(4):414-20.
    Bershadsky AD, Balaban NQ, Geiger B.2003. Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol.19:677-95.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF.2007. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med.
    Butler DL and Awad HA 1999. Perspectives on cell and collagen composites for tendon repair. Clin Orthop Relat Res(367 Suppl):S324-32.
    Butler DL, Hunter SA, Chokalingam K, Cordray MJ, Shearn J, Juncosa-Melvin N, Nirmalanandhan S, Jain A.2009. Using functional tissue engineering and bioreactors to mechanically stimulate tissue-engineered constructs. Tissue Eng Part A.15(4):741-9.
    Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H.2008. Functional tissue engineering for tendon repair:A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res.26(1):1-9.
    Calve S, Dennis RG,2nd KPE, Baar K, Grosh K, Arruda EM.2004. Engineering of functional tendon. Tissue Eng.10(5-6):755-61.
    Cao D, Liu W, Wei X, Xu F, Cui L and Cao Y 2006. In vitro tendon engineering with avian tenocytes and polyglycolic acids:a preliminary report. Tissue Eng 12(5):1369-77.
    Cao Y, Liu Y, Liu W, Shan Q, Buonocore SD and Cui L 2002. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg 110(5):1280-9.
    Cao Y, Vacanti JP, Ma X, Paige KT, Upton J, Chowanski Z, Schloo B, Langer R and Vacanti CA 1994. Generation of neo-tendon using synthetic polymers seeded with tenocytes. Transplant Proc 26(6):3390-2.
    Cao Y, Liu Y, Liu W, Shan Q, Buonocore SD, Cui L.2002. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg.110(5):1280-9.
    Caruso AB and Dunn MG 2004. Functional evaluation of collagen fiber scaffolds for ACL reconstruction:cyclic loading in proteolytic enzyme solutions. J Biomed Mater Res A 69(1): 164-71.
    Caruso AB and Dunn MG 2005. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. J Biomed Mater Res A 73(4): 388-97.
    Chan BP, Fu S, Qin L, Lee K, Rolf CG, Chan K.2000. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing:a rat patellar tendon model. Acta Orthop Scand. 71(5):513-8.
    Chen, Gp U and T T (2000). A hybrid network of synthetic polymer mesh and collagen sponge. Chem. Commun. C. COMMUNICATIONS, ROYAL SOC CHEMISTRY:1505-1506.
    Chen GP, Sato T, Sakane M, Ohgushi H, Ushida T, Tanaka J and Tateishi T 2004. Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Mater Sci Eng C 24(6-8 SPEC ISS):861-866.
    Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T and Kaplan DL 2003. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67(2):559-70.
    Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, Ouyang HW.2008. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials.29(27): 3683-3692.
    Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, Cao T, Zheng M, Ouyang HW.2009. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells.27(6):1276-87.
    Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, Cao T, Zheng M, Ouyang HW.2009. Stepwise Differentiation of Human Embryonic Stem Cells Promotes Tendon Regeneration by Secreting Fetal Tendon Matrix and Differentiation Factors. Stem Cells.27(6):1276-1287.
    Chen X, Zou XH, Yin GL, Ouyang HW.2009. Tendon tissue engineering with mesenchymal stem cells and biografts:an option for large tendon defects. Front Biosci (Schol Ed).1:23-32.
    Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH.2008. Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res.49(1):7-14.
    Chong AK, Ang AD, Goh JC, Hui JH, Lim AY, Lee EH and Lim BH 2007. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am 89(1):74-81.
    Coons DA, Alan BF.2006. Tendon graft substitutes-rotator cuff patches. Sports Med Arthrosc.14(3):185-90.
    Cooper JA, Jr., Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK and Laurencin CT 2006. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27(13):2747-54.
    Cooper JA, Jr., Sahota JS, Gorum WJ,2nd, Carter J, Doty SB and Laurencin CT 2007. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A 104(9):3049-54.
    Cooper JA, Lu HH, Ko FK, Freeman JW and Laurencin CT 2005. Fiber-based tissue-engineered scaffold for ligament replacement:design considerations and in vitro evaluation. Biomaterials 26(13):1523-32.
    Cristino S, Grassi F, Toneguzzi S, Piacentini A, Grigolo B, Santi S, Riccio M, Tognana E, Facchini A and Lisignoli G 2005. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A 73(3): 275-83.
    Daamen WF, Nillesen ST, Hafmans T, Veerkamp JH, van Luyn MJ and van Kuppevelt TH 2005. Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials 26(1):81-92.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. 2007. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater.6(12):997-1003.
    Derwin K, Androjna C, Spencer E, Safran O, Bauer TW, Hunt T, Caplan A and Iannotti J 2004. Porcine small intestine submucosa as a flexor tendon graft. Clin Orthop Relat Res(423): 245-52.
    Dunn MG, Liesch JB, Tiku ML and Zawadsky JP 1995. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29(11):1363-71.
    Durselen L, Dauner M, Hierlemann H, Planck H, Ignatius A and Claes LE 2003. Control of material stiffness during segradation for constructs made of absorbable polymer fibers. J Biomed Mater Res B Appl Biomater 67:697-701.
    Engler AJS, S. Sweeney HLD, D. E.2006. Matrix elasticity directs stem cell lineage specification. Cell.126(4):677-89.
    Evans MJ, Kaufman MH.1981. Establishment in culture of pluripotential cells from mouse embryos. Nature.292(5819):154-6.
    Fan H, Liu H, Wong EJ, Toh SL, Goh JC.2008. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials.29(23):3324-37.
    Farng E, Urdaneta AR, Barba D, Esmende S, McAllister DR.2008. The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin Orthop Relat Res.466(8): 1930-7.
    Favata M, Beredjiklian PK, Zgonis MH, Beason DP, Crombleholme TM, Jawad AF, Soslowsky LJ.2006. Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. J Orthop Res.24(11):2124-32.
    Fini M, Torricelli P, Giavaresi G, Rotini R, Castagna A and Giardino R 2007. In vitro study comparing two collageneous membranes in view of their clinical application for rotator cuff tendon regeneration. J Orthop Res 25(1):98-107.
    Forslund CA, P.2002. CDMP-2 induces bone or tendon-like tissue depending on mechanical stimulation. J Orthop Res.20(6):1170-4.
    Forslund CR, D. Aspenberg P.2003. A comparative dose-response study of cartilage-derived morphogenetic protein (CDMP)-1,-2 and-3 for tendon healing in rats. J Orthop Res.21(4): 617-21.
    Frank C, McDonald D, Shrive N.1997. Collagen fibril diameters in the rabbit medial collateral ligament scar:a longer term assessment. Connect Tissue Res.36(3):261-9.
    Freeman JW, Woods MD, Laurencin CT.2006. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech.
    Funakoshi T, Majima T, Iwasaki N, Suenaga N, Sawaguchi N, Shimode K, Minami A, Harada K and Nishimura S 2005. Application of tissue engineering techniques for rotator cuff regeneration using a chitosan-based hyaluronan hybrid fiber scaffold. Am J Sports Med 33(8): 1193-201.
    Garvin J, Qi J, Maloney M and Banes AJ 2003. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-79.
    Ge Z, Goh JC and Lee EH 2005. The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant 14(10):763-73.
    Ge Z, Goh JC, Wang L, Tan EP and Lee EH 2005. Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering. J Biomater Sci Polym Ed 16(9):1179-92.
    Ge Z, Yang F, Goh JC, Ramakrishna S and Lee EH 2006. Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res A 77(3):639-52.
    Goh JC, Ouyang HW, Teoh SH, Chan CK, Lee EH.2003. Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng.9 Suppl 1:S31-44.
    Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA and Dee KC 2003. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24(21):3805-13.
    Gentleman E, Livesay GA, Dee KC and Nauman EA 2006. Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726-36.
    Gilbert TW, Stewart-Akers AM, Simmons-Byrd A and Badylak SF 2007. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am 89(3):621-30.
    Hantash BM, Zhao L, Knowles JA, Lorenz HP.2008. Adult and fetal wound healing. Front Biosci.13:51-61.
    Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C and Van Griensven M 2005. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2:potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1-2):41-9.
    Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ.2004. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res.22(5):998-1003.
    Heckmann L, Schlenker HJ, Fiedler J, Brenner R, Dauner M, Bergenthal G, Mattes T, Claes L and Ignatius A 2006. Human mesenchymal progenitor cell responses to a novel textured poly(L-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B Appl Biomater.
    Helm GAL, J. Z. Alden TDH, S. B. Beres EJC, M. Mikkelsen MMP, D. D. Kerns KMK, D. F. 2001. A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein-13 adenoviral gene therapy. J Neurosurg.95(2):298-307.
    Henshaw DRA, E. Bhargava MH, J. A.2006. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res. 24(3):481-90.
    Hermes AC, Davies RJ, Greiff S, Kutzke H, Lahlil S, Wyeth P, Riekel C.2006. Characterizing the decay of ancient Chinese silk fabrics by microbeam synchrotron radiation diffraction. Biomacromolecules.7(3):777-83.
    Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, Gross G, Gazit D. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest.116(4). United States,2006. 940-52.
    Horan RLC, A. L. Lee, C. Antle, K. Chen, J. Altman, G. H.2006. Yarn design for functional tissue engineering. J Biomech 39:2232-2240.
    Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, Fu X, Zhang J, Yu C.2009. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing. Matrix Biol.28(6):324-35.
    Hui JH, Li L, Teo YH, Ouyang HW and Lee EH 2005. Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit. Tissue Eng 11(5-6):904-12.
    Itoh S, Aubin JE.2009. A novel purification method for multipotential skeletal stem cells. J Cell Biochem.108(2):368-77.
    Jelinsky SA, Archambault J, Li L, Seeherman H.2009. Tendon-selective genes identified from rat and human musculoskeletal tissues. J Orthop Res.
    Jin HJ, Chen J, Karageorgiou V, Altman GH and Kaplan DL 2004. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25(6):1039-47.
    Jin HJ, Park J, Valluzzi R, Cebe P and Kaplan DL 2004. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 5(3):711-7.
    Juncosa-Melvin N, Boivin GP, Galloway MT, Gooch C, West JR, Butler DL.2006. Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair. Tissue Eng.12(4): 681-9.
    Juncosa-Melvin N, Boivin GP, Gooch C, Galloway MT, West JR, Dunn MG, Butler DL. 2006. The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair. Tissue Eng.12(2):369-79.
    Juncosa-Melvin N, Boivin GP, Galloway MT, Gooch C, West JR, Sklenka AM and Butler DL 2005. Effects of cell-to-collagen ratio in mesenchymal stem cell-seeded implants on tendon repair biomechanics and histology. Tissue Eng 11(3-4):448-57.
    Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G and Butler DL 2006. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng 12(8):2291-300.
    Kannus P.2000. Structure of the tendon connective tissue. Scand J Med Sci Sports.10(6): 312-20.
    Kryger GS, Chong AK, Costa M, Pham H, Bates SJ and Chang J 2007. A Comparison of Tenocytes and Mesenchymal Stem Cells for Use in Flexor Tendon Tissue Engineering. J Hand Surg [Am] 32(5):597-605.
    Kuo CK, Tuan RS.2008. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A.14(10):1615-27.
    Laitinen O, Pohjonen T, Tormala P, Saarelainen K, Vasenius J, Rokkanen P and Vainionpaa S 1993. Mechanical properties of biodegradable poly-L-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 112(6):270-4.
    Laurencin CT and Freeman JW 2005. Ligament tissue engineering:an evolutionary materials science approach. Biomaterials 26(36):7530-6.
    Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD and Shin JW 2005. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-70.
    Lee CH, Singla A and Lee Y 2001. Biomedical applications of collagen. Int J Pharm 221(1-2): 1-22.
    Lenhert S, Meier MB, Meyer U, Chi L, Wiesmann HP.2005. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials.26(5):563-70.
    Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X.2007. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol.211(1):36-44.
    Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H, Xiao L.2008. Generation of Induced Pluripotent Stem Cell Lines from Adult Rat Cells. Cell Stem Cell.
    Lin VS, Lee MC, O'Neal S, McKean J and Sung KL 1999. Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng 5(5):443-52.
    Liu H, Ge Z, Wang Y, Toh SL, Sutthikhum V and Goh JC 2007. Modification of sericin-free silk fibers for ligament tissue engineering application. J Biomed Mater Res B Appl Biomater.
    Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y.2006. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng.12(4):775-88.
    Lou J, Tu Y, Ludwig FJ, Zhang J, Manske PR.1999. Effect of bone morphogenetic protein-12 gene transfer on mesenchymal progenitor cells. Clin Orthop Relat Res. (369):333-9.
    Lutolf MP, Gilbert PM, Blau HM.2009. Designing materials to direct stem-cell fate. Nature. 462(7272):433-41.
    Lu HH, Cooper JA, Jr., Manuel S, Freeman JW, Attawia MA, Ko FK and Laurencin CT 2005. Anterior cruciate ligament regeneration using braided biodegradable scaffolds:in vitro optimization studies. Biomaterials 26(23):4805-16.
    Lutolf MP and Hubbell JA 2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47-55.
    Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D and Vunjak-Novakovic G 2006. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27(36):6138-49.
    Ma PX.2008. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev.60(2): 184-98.
    Maffulli NM, H. D. Evans CH.2002. Tendon healing:can it be optimised. Br J Sports Med. 36(5):315-6.
    Martin GR.1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A.78(12):7634-8.
    Mendias CL, Bakhurin KI, Faulkner JA.2008. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci U S A.105(1):388-93.
    Moreau JE, Bramono DS, Horan RL, Kaplan DL, Altman GH.2008. Sequential Biochemical and Mechanical Stimulation in the Development of Tissue-Engineered Ligaments. Tissue Eng Part A.
    Moreau JE, Chen J, Horan RL, Kaplan DL and Altman GH 2005. Sequential growth factor application in bone marrow stromal cell ligament engineering. Tissue Eng 11(11-12):1887-97.
    Murray MM.2009. Current status and potential of primary ACL repair. Clin Sports Med. 28(1):51-61.
    Murray MM, Bennett R, Zhang X and Spector M 2002. Cell outgrowth from the human ACL in vitro:regional variation and response to TGF-beta1. J Orthop Res 20(4):875-80.
    Murray MM and Spector M 2001. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials 22(17):2393-402.
    Nakamura NS, K. Natsuume TH, S. Matsumoto NK, Y. Ochi T.1998. Early biological effect of in vivo gene transfer of platelet-derived growth factor (PDGF)-B into healing patellar ligament. Gene Ther.5(9):1165-70.
    Nirmalanandhan VS, Levy MS, Huth AJ and Butler DL 2006. Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng 12(7):1865-72.
    Nirmalanandhan VS, Rao M, Sacks MS, Haridas B and Butler DL 2007. Effect of length of the engineered tendon construct on its structure-function relationships in culture. J Biomech: doi:10.1016/j.jbiomech.2006.11.016.
    Nho SJ, Delos D, Yadav H, Pensak M, Romeo AA, Warren RF, Macgillivray JD.2009. Biomechanical and Biologic Augmentation for the Treatment of Massive Rotator Cuff Tears. Am J Sports Med.
    Ouyang HW, Cao T, Zou XH, Heng BC, Wang LL, Song XH, Huang HF.2006. Mesenchymal stem cell sheets revitalize nonviable dense grafts:implications for repair of large-bone and tendon defects. Transplantation.82(2):170-4.
    Ouyang HW, Goh JC, Lee EH.2004. Use of bone marrow stromal cells for tendon graft-to-bone healing:histological and immunohistochemical studies in a rabbit model. Am J Sports Med.32(2):321-7.
    Ouyang HW, Goh JC, Lee EH.2004. Viability of allogeneic bone marrow stromal cells following local delivery into patella tendon in rabbit model. Cell Transplant.13(6):649-57.
    Ouyang HW, Goh JC, Mo XM, Teoh SH, Lee EH.2002. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair. Ann N Y Acad Sci.961: 126-9.
    Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH.2003. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng.9(3):431-9.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR.1999. Multilineage potential of adult human mesenchymal stem cells. Science.284(5411):143-7.
    Qin TW, Yang ZM, Wu ZZ, Xie HQ, Qin J and Cai SX 2005. Adhesion strength of human tenocytes to extracellular matrix component-modified poly(DL-lactide-co-glycolide) substrates. Biomaterials 26(33):6635-42.
    Ratner BD and Bryant SJ 2004. Biomaterials:where we have been and where we are going. Annu Rev Biomed Eng 6:41-75.
    Recknor JB, Sakaguchi DS, Mallapragada SK.2006. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials. 27(22):4098-108.
    Rolfe KJ, Irvine LM, Grobbelaar AO, Linge C.2007. Differential gene expression in response to transforming growth factor-betal by fetal and postnatal dermal fibroblasts. Wound Repair Regen.15(6):897-906.
    Sahoo S, Ouyang H, Goh JC, Tay TE and Toh SL 2006. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 12(1): 91-9.
    Schulze-Tanzil G, Mobasheri A, Clegg PD, Sendzik J, John T and Shakibaei M 2004. Cultivation of human tenocytes in high-density culture. Histochem Cell Biol 122(3):219-28.
    Suckow MA, Hodde JP, Wolter WR and Hiles MC 2007. Repair of experimental Achilles tenotomy with porcine renal capsule material in a rat model. J Mater Sci Mater Med.
    Stone KR, Abdel-Motal UM, Walgenbach AW, Turek TJ, Galili U.2007. Replacement of human anterior cruciate ligaments with pig ligaments:a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation.83(2):211-9.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S.2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell.131(5): 861-72.
    Tamada Y 2005. New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6(6):3100-6.
    Torres DS, Freyman TM, Yannas IV and Spector M 2000. Tendon cell contraction of collagen-GAG matrices in vitro:effect of cross-linking. Biomaterials 21(15):1607-19.
    Teixeira AI, McKie GA, Foley JD, Bertics PJ, Nealey PF, Murphy CJ.2006. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials.27(21):3945-54.
    Tsuchiya K, Chen G, Ushida T, Matsuno T and Tateishi T (2001). Effects of cell adhesion molecules on adhesion of chondrocytes, ligament cells and mesenchymal stem cells. Mat Sci Eng C-Bio S, Elsevier Ltd, Oxford, OX5 1GB, United Kingdom.17:79-82.
    Unger RE, Peters K, Wolf M, Motta A, Migliaresi C and Kirkpatrick CJ 2004. Endothelialization of a non-woven silk fibroin net for use in tissue engineering:growth and gene regulation of human endothelial cells. Biomaterials 25(21):5137-46.
    Unger RE, Wolf M, Peters K, Motta A, Migliaresi C and James Kirkpatrick C 2004. Growth of human cells on a non-woven silk fibroin net:a potential for use in tissue engineering. Biomaterials 25(6):1069-75.
    Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ and Dhert WJ 2004. Tissue engineering of ligaments:a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 10(5-6):893-903.
    Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL.2004. Tissue engineering of ligaments. Annu Rev Biomed Eng.6:131-56.
    Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL.2004. Tissue engineering of ligaments. Annu Rev Biomed Eng.6:131-56.
    Wang XTL, P. Y. Tang JB.2004. Tendon healing in vitro:genetic modification of tenocytes with exogenous PDGF gene and promotion of collagen gene expression. J Hand Surg [Am].29(5): 884-90.
    Wang Y, Blasioli DJ, Kim H-J, Kim HS and Kaplan DL (2006). Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, Elsevier Ltd, Oxford, OX5 1GB, United Kingdom.27:4434-4442.
    Wang Y, Kim H-J, Vunjak-Novakovic G and Kaplan DL (2006). Stem cell-based tissue engineering with silk biomaterials. Biomaterials and Stem Cells;Biomaterials, Elsevier Ltd, Oxford, OX5 1GB, United Kingdom.27:6064-6082.
    Wang Y, Kim HJ, Vunjak-Novakovic G and Kaplan DL 2006. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36):6064-82.
    Watabe T, Miyazono K.2009. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res.19(1):103-15.
    Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, Tresco PA.2006. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech.39(6):1136-44.
    Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V.1997. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5,6, and 7, members of the TGF-beta gene family. J Clin Invest.100(2):321-30.
    Yang Y, Chen X, Ding F, Zhang P, Liu J and Gu X 2006. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials.
    Yao L, Bestwick CS, Bestwick LA, Maffulli N and Aspden RM 2006. Phenotypic drift in human tenocyte culture. Tissue Eng 12(7):1843-9.
    Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW.2010. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials.31(6):1299-306.
    Yin Z, Chen X, Chen JL, Shen WL, Hieu NTM, Gao L, Ouyang HW.2010. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials.31(8):2163-75.
    Yin Z, Chen X, Chen JL, Shen WL, Hieu NTM, Gao L, Ouyang HW.2010. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials.31(8):2163-75.
    Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ.1998. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res.16(4): 406-13.
    Yu J, Thomson JA.2008. Pluripotent stem cell lines. Genes Dev.22(15):1987-97.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA.2007. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science.
    Zantop T, Gilbert TW, Yoder MC, Badylak SF.2006. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res.24(6):1299-309.
    Zantop T, Weimann A, Wolle K, Musahl V, Langer M and Petersen W 2007. Initial and 6 Weeks Postoperative Structural Properties of Soft Tissue Anterior Cruciate Ligament Reconstructions With Cross-Pin or Interference Screw Fixation:An In Vivo Study in Sheep. Arthroscopy:The Journal of Arthroscopic & Related Surgery 23(1):14-20.
    Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D.2005. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA:possible implications in human implantation. J Biomed Mater Res B Appl Biomater.73(1):61-7.
    李宏,魏娴,刘伟,崔磊,曹谊林.2004.组织工程化肌腱体外构建的环境优化及系统设计.中华创伤骨科杂志.6(7):778-780.
    秦廷武,杨志明.2004.工程化肌腱修复肌腱缺损后力学特性的组织学基础.生物医学工程学杂志.(04):521-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700