基于结构拓扑优化的高速动力车转向架构架轻量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高铁路客运的经济和社会效益,长期以来世界各国一直把提高客运列车速度作为首选措施。而转向架轻量化技术作为高速列车关键技术之一,对机车车辆的提速起着重要的作用。
     本文首先依托结构优化设计理论及ANSYS参数化设计语言APDL(ANSYS Parametric Design Language),对ANSYS的单元生死功能进行了二次开发,用于转向架构架内部筋板的拓扑优化分析,从而定量的确定筋板位置;随后在拓扑优化最优拓扑的基础上,应用ANSYS的优化功能,对构架的板厚进行了尺寸优化,得到静强度和疲劳强度均满足要求的构架,同时,构架的质量得到了减轻。通过优化前、后构架相关参数的比较,得知优化后的构架整体的应力分布更加趋于均匀。在实现等强度设计的同时,达到了构架轻量化的目的。
     本文的结论为构架内部筋板的布置提供了可信的依据,优化方法为其他类型构架的轻量化设计提供了有益的借鉴,同时,对结构拓扑优化进行了初步的探讨。
     本文所有的分析运算、数据优化都是通过APDL语言来完成的,其参数化功能不仅易于修改模型,而且编写的宏程序也可以加快分析运算及后处理的速度,减小有限元模型所占用的磁盘空间。
In order to promote economical and social benefits of railway passenger transportation, improving speed of passenger trains was regarded as first method for a long time in the world. The bogie lightweight technology plays a important role on speed increasing of rolling stock, which is one of key technology of high-speed train.
     Firstly, the second development for element life and death function of ANSYS was done with structural optimization design theory and ANSYS Parametric Design Language (APDL) in this paper, which was used in topology optimization analysis for inner ribs of bogie frame. So that we can determines quantitatively the position of inner ribs. And then, on the basis of optimal topological structural, the dimension optimization for plate thickness of bogie frame was implemented with optimization function of ANSYS. As a result, the static strength and fatigue strength of frame can both meet requirement of standard. At the same time, its quality was also reduced. By the comparison of related parameters for the optimized frame and the original, it is shown that stress distribution of the whole optimized frame become more uniform. We achieved the goal of frame lightweight and equal strength design.
     The conclusion provides a scientific basis for inner ribs layout of frame and this method provides a profitable reference for lightweight design of other types of frame in this paper. On the other hand, structural topology optimization design was also discussed.
     In this paper, all of analysis operation and data optimization was completed with APDL. Its parametric function can not only modify easily model but also increase speed of analysis operation and post-processing with macro-program and reduce the disk space which was occupied by finite element model.
引文
[1]李芾,傅茂海.高速客车转向架发展及应用研究[J].铁道车辆.2004,42(10):1-7.
    [2]钱立新.世界高速机车车辆关键技术.轨道交通产业发展与创新论坛专刊.2007(3).
    [3]MASAYUKI MIYAMOTO等(日).日本高速列车先进技术的近期研究与发展[J].国外铁道车辆.2004,41(2):1-8.
    [4]俞展猷,李海川.日本九州新干线800系高速动车组[J].机车电传动.2006(1):57-60.
    [5]胡锡明.法国高速列车技术[EB/OL].中华铁道网.2007-5-12.
    [6]李瑞淳,王騃.德国高速列车综述[J].国外铁道车辆.2005,42(6):1-6.
    [7]傅小日等.我国铁路客车转向架技术发展的概述[J].铁道车辆.2005,43(9):9-16.
    [8]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报.2002,9(5):229-235.
    [9]GU Yuan-xian,CHENG Geng-dong.Research and applications of numerical methods of structural shape opthnization[J].Computational Structural Mechanics and Applications.1993,10(3):321-335.
    [10]GATES A A,ACCORSI M L.Automatic shape optimization of three-dimensional shell structures with large shape changes[J].Comput & Struct.1993,49(1):167-178.
    [11]KOETSU Yamazaki,JIRO Sakamoto,MASAMIKI Kitano.Three-dimensional shape optimization using the boundary element method[J].AIAA Journal.1994,32(6):1296-1301.
    [12]ZHANG Wen-yuan,WU Zhi-feng.Genetic algorithm for the design of structural optimization[J].Journal of Harbin University of C E & Architecture.1999,32(4):18-23.
    [13]刘惟信.机械最优化设计[M].第二版.北京:清华大学出版社.1994.
    [14]廖爱华.200km/h高速客车车体优化设计.大连铁道学院[硕士学位论 文].2002.
    [15]朱灯林等.结构拓扑优化设计的研究现状及应用[J].机械制造与自动化.2005,34(6):7-11.
    [16]陆金桂,肖世德.结构形状优化设计的研究[J].矿山机械.1995(9):19-21.
    [17]IMARN M H.Three-dimensional shape optimization[J].International Journal for Numerical Methods in Engineering.1982,18:661-673.
    [18]蔡新,郭兴文,张旭明.工程结构优化设计[M].北京:中国水利水电出版社.2003.
    [19]BENDSOE M P,KIKUCHI N.Generating optimal topologies in structural design using a homogenization method[J].Comput Appl Mech Engrg.1998,71:197-224.
    [20]XIE Y M,STEVEN G P.A simple evolutionary procedure for structural optimization[J].Comput & Struct.1993,49(5):885-896.
    [21]谢亿民,杨晓英,G.P.Steven,O.M.Querin.渐进结构优化法的基本理论及应用[J].工程力学.1999,16(6):70-81.
    [22]荣见华,姜节胜,颜东煌.基于人工材料的结构渐进拓扑优化设计[J].工程力学.2004,21(5):64-71.
    [23]VANDERPLAATS G N.Structural optimization past,present and future[J].AIAA Journal.1982,20(7):992-999.
    [24]DING Yun-liang.Shape optimization of structural:a literature survey[J].Comput &Struct.1986,24(6):985-1004.
    [25]ARORA J S,HUANG M W.Methods for optimization of nonlinear problems with discrete variables:a review[J].Structural Optimization.1994(8):69-85.
    [26]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社.2004.
    [27]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社.2004.
    [28]段进,倪栋,王国业.ANSYS10.0结构分析从入门到精通[M].北京:兵器工业出版社,北京科海电子出版社.2006.
    [29]郑鑫.大客车车架结构的有限元分析及优化设计.大连理工大学[硕士学位论文].2004.
    [30]刘寅东,卞钢.基于ANSYS的结构拓扑优化及其二次开发[J].船舶力学.2006,10(2):120-125.
    [31]Xie YM,Steven GP.Evolutionary structural optimization[M].Berlin,Heidelberg,New York:Springer,1997.
    [32]Dorn W S,Gomory R E,Greenberg H J.Automatic design of optimal structure[J].J de Mechnique.1964,3(1):25-52.
    [33]Cheng Gengdong,Olhoff N.Regularized formulation concerning optimal design of solid elastic plates[J],Int.J Solids Structure.1981,17:305-323.
    [34]Xie Y M,Steven G P.Optimal design of multiple load case structure using an evolutionary procedure[J].Engineering Computations.1994,11(5):295-302.
    [35]Zhou C,Hornby P,Steven G P,et al.A generalized evolutionary method for numerical topology optimization of structures under static loading conditions[J].Structural Optimization.1998,15(3):251-260.
    [36]Querin O M,Young V,Steven G P,et al.Computational efficiency and validation of bi-directional evolutionary structural optimization[J].Computer Methods in Applied Mechanics and Engineering.2000,189(2):559-573.
    [37]Liang Q Q,Xie Y M,Steven G P.Optimal topology selection of continuum structures with displacement constraints[J].Computers and Structures.2000,77(6):635-644.
    [38]周宇江.高速动力车转向架构架有限元分析.西南交通大学[硕士学位论文].2000.
    [39]米彩盈,李芾.高速动力车转向架焊接构架优化设计[J].机车电传动.2005(1):46-49.
    [40]肖守讷,张开林,王松.摆式列车动力车车体结构优化内燃机车.2007(7)1-9.
    [41]UIC615-4-1994.动车组转向架及走行部转向架构架强度试验[S].
    [42]曾正明主编.机械工程材料手册:金属材料[M].第六版.北京:机械工业出版社.2003.
    [43]刘志明.随机载荷下焊接构架疲劳寿命及可靠性研究北方交通大学[博士学位论文].2005
    [44]徐灏主编.机械设计手册,第2卷:疲劳强度设计[M].北京:机械工业出版 社.1991.
    [45]Forschungs-und Versuchsamt des Internationalen EisenbahnverbandesFrage B12/RP17-1982.Standardisierung der Qtterwagen[R].Utrecht:Banth Verlag,1982.
    [46]Wang C H,Brown M.W.Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue-Part 1:Theories.ASMEJ.of Engng.Mater.And Tech.1995118 pp367-370.
    [47]Wang C H,Brown M.W.Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue-Part 2:Comporision with Experimental Results.ASMEJ.of Engng.Mater.And Tech.1996 118 pp367-370.
    [48]Recommendation for the Fatigue Design of Steel Structures,European Convention for Constructional Steelworks(ECCS),Technical Committee 6-Fatigue,First Edition,No.43,1985.
    [49]张波,盛和太编著.ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社.2005.
    [50]王勖成,邵敏编著.有限元法基本原理和数值方法[M].北京:清华大学出版社.2000.
    [51]陈宝林编著.最优化理论与算法[M].北京:清华大学出版社.1989.
    [52]崛川 武等[日].转向架构架的疲劳寿命设计与可靠性评价[J].国外铁道车辆.1985(3):30-33.
    [53]秦国栋等.提速转向架焊接构架疲劳寿命的实用分析方法[J].中国铁道科学.2004,25(1):46-51.
    [54]刑国辰,房德馨.提高铁路客车转向架焊接构架疲劳寿命的研究[J].焊接学报.1990,11(3):181-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700