深埋长隧洞岩爆灾害机理及判据研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对处于较高初始地应力场环境深埋长隧洞,易于发生特有的岩爆灾害,以新疆齐热哈塔尔水电站引水隧洞岩爆问题为研究对象,片麻状花岗岩卸荷力学特性变化为研究核心,对该工程岩爆机理及判据开展了系统性研究分析。基于复杂应力路径卸荷力学试验,研究了高地应力环境下岩石卸载强度、变形、裂隙发展、融合及破坏机理。采用理论分析、数值仿真技术,归纳总结了引水隧洞岩爆孕育及发生机理,提出了可用于该工程岩爆判别的判据及基于硬脆性岩体剥落性状的初始地应力场评估方法。自多个方面对岩爆的影响因素及现场岩爆表征现象进行了研究分析。对引水隧洞洞段是否发生岩爆及等级进行了预测分析,并提出岩爆区不同等级岩爆支护思路。主要研究工作与成果如下:
     (1)齐热哈塔尔水电站引水隧洞所发生岩爆的主要类型为应变型岩爆,破坏形式主要为片、板状剥落,基本无弹射现象。岩爆的主要声响特征为噼啪爆裂声,多数发生于临近河谷拱顶一侧,具有明显的滞后性现象,一般发生于II类围岩中,III类围岩发生次数相对较少;
     (2)卸荷速度对于破坏特征具有一定的影响,试样基本表现出宏观剪切破坏局部张拉破坏模式,这一规律与现场所发现的岩爆宏观破坏形式较为吻合,即存在片、板状剥落的同时,存在弯曲鼓折剪切破坏断面规律较为一致;
     (3)结合室内试验、数值模拟分析结果及岩爆宏观表征规律,提出洞壁围岩应力不同演化模式,从力学角度阐述了齐热哈塔尔水电站应变型岩爆孕育发生机制;
     (4)《水力发电工程地质勘察规范》(GB50287-2006)、《水利水电工程地质勘察规范》(GB50487-2008)中所推荐强度应力比法可作为齐热哈塔尔水电站引水隧洞岩爆判别宏观标准,Martin等人所提出的m-0计算方法可作为岩爆爆坑深度预测标准。引水隧洞剩余洞段岩爆主要以轻微岩爆为主,局部洞段具有发生中等岩爆的可能性,弹射现象在该工程引水隧洞中发生的可能性较小;
     (5)系统地研究了埋深、侧压系数、地层岩性、洞室形状等因素对岩爆的影响,揭示了一系列有价值的规律。在归纳已有岩爆支护措施的基础上,结合现场岩爆洞段所采用支护方式,提出了齐热哈塔尔水电站引水隧洞岩爆洞段低等级岩爆(片帮和剥落区)采用锚杆或灌浆螺纹钢筋+金属网(喷射混凝土)支护系统,对于较大范围或等级较高岩爆,可适当加密锚杆间距的支护思路。
For buried long tunnel at a higher initial stress field environment, rockburst issues uniqueto high in-situ stress areas, the rockburst of diversion tunnel in Qirehataer power station inXinjiang Uygur Autonomous Region is studied. Gneissic granite unloading mechanicalproperties change is research and analysised systematically. Based on the complex mechanicsof unloading stress path tests, the rock unloading strength under high stress environment,deformation, cracks and damage development and failure mechanism are studied. Based ontheory analysis, using numerical simulation technology, the mechanism of rock burst ofdiversion tunnel is summarized. The criterion of rock burst and initial stress field assessmentare determined. The influencing factors of rock burst and characterize are studied and analyzedfrom many aspects. The possibility of rockburt is predicted, the method of supporting ispresented. The main research works are as following:
     (1) The rockburst in the diversion tunnel is mainly partial strain rockbust. The break stylesinclude spalling, plate flaking and collapsing with long time. The main features of rock burst iscrackling sound crackle and most occured in the near side of the valley. Rock burst has obviouslag which occurred in the II rockmass generally.
     (2) Gneissic granite is hard brittle, which in the unloading test is more obviously. The peakstrength of granite of unloading is lower often of the the triaxial conmression test. The failurecharacteristic is affecting of the unloading speed. The basic performance of the macroscopic isshear failure mode, and tension failure locally.
     (3) Acoustic emission is intense to the uniaxial and triaxial compression test, which showthe brittle failure of unloading is easy to reach. Combining the results of the experimentresearch, field monitoring and numerical simulation, the stress change model of surroundingrock mass is proposed. The mechanism of rockburst preparation and development are proposedfrom the mechanical point.
     (4) The criterion of rock burst of Code for hydropower engineering geologicalinvestigation (GB50287-2006) and Code for engineering geological investigation of waterresources and hydropower (GB50487-2008)and m-0criterion are suitable to predicte thepossibility of rockburst of diversion tunnel. Based on the criteria of rockburst, the probability ofrockburst in the residual drainage tunnel was analyzed and predicted. The results illustrateexcess section of diversion tunnel will occur I level rockburst, locally section will occur II levelrock burst and the others section will occur II level.
     (5) The influence on the rockburst by buried depth, side pressure coefficient, formationlithology, excavation shape has been analyzed. Based on the study conclusion mentioned above, some valuable laws are derived. Finally, the designs of supporting of rockburst section withdifferent rockburst level were presented.
引文
[1] Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support.International Journal of Rock Mechanics and Mining Sciences,1974,6(4):189-236.
    [2] Brown E T, Hoek E. Technical note trends in relationships bwtween measured in-situ stress and depth[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1978,15(4):211-215.
    [3] Carter B J. Size and stress gradient effect on fracture around cavities[J]. Rock Mechanics and RockEngineering,1992,23(3):167-86.
    [4] Cho N, Martin C D, Sego D C. A clumped particle model for rock[J]. International Journal of RockMechanics&Mining Sciences,2007,44:997-1010.
    [5] Diederichs M S, Kaiser P K, Eberhardt E. Damage initation and propagation in hard rock duringtunneling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics andMining Sciences,2004,41(5):785-812.
    [6] Diederichs M S. Instability of hard rockmass: the role of tensile damage and relaxation[D]. Universityof Waterloo,2000.
    [7] Eberhardt E. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnelface[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:499-518.
    [8] Edelbro C. Numerical modeling of observed fallouts in hard rock masses using an instantaneouscohesion-softening friction-hardening model[J]. Tunnelling and Uderground Space Technology,2009,24:398-409.
    [9] Germanovish L N, Dyskin A V. Fracture mechanisms and instability of openings in compression[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):263-284.
    [10] Griffith A A. The phenomena of rupture and flow in solid[J]. Philosophical Transactions of the RoyalSociety of London A,1921,221:163-198.
    [11] Griffith A A. The theory of rupture[A]. Proceedings of the First Congress of Applied Mechanics[C],1924:55-63.
    [12] Hajiabdolmajid V, Kaiser P K, Martin C D. Modelling brittle failure of rock[J]. International Journal ofRock Mechanics and Mining Sciences,2002,39:731-741.
    [13] Hajiabdolmajid V, Kaiser P K. Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and Underground Space Technology,2003,18:35-48.
    [14] Heard H C. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function oftemperature, confining pressure, and interstitial fluid pressure[J]. Rock deformation,1960,193-226.
    [15] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression[J]. International Journalof Fracture Mechanics,1965,13:137-155.
    [16] Hoek E, Brown E T. Underground excavation in rock[M].London: The Institute of Mining andMetallurgy,1980.
    [17] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002edition. In: Proceedings ofthe North American Rock Mechanics Symposium Toronto,2002.
    [18] Hoek E, Kaiser P K, Bawden W F. Support of underground excavations in hard rock[M].A.A.Balkenma/Rotterdam/Brookfield,1995.
    [19] Hoek E,Brown E T.Strength of joint rock mass[J].Geotechnique,1983,33(3):187-223.
    [20] Hoek E,Brown E T.Underground excavations in rock[M].Herford,England:Austin&Sons Ltd,1980.
    [21] Hikweon L, Bezalel C H. True triaxial strength, deformability, and brittle failure of granodiorite fromthe San Andreas Fault Observatory at Depth[J]. International Journal of Rock Mechanics&MiningSciences,2011,48:1199-1207.
    [22] Huang J, Wang Z, Zhao Y. The development of rock fracture from microfracturing to main fractureformation[J]. International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts,1993,30(7):925-928.
    [23] Kaiser P K, Tannnant D D, McCreat D R. Canadian Rockburst Support Handbook[M]. GeomechanicsResearch Centre,1996.
    [24] Kaiser, P K. Observational modelling approach for design of underground opening[A]. In Proceedings,International Society for Rock Mechanics, South African National Group, The Application of NumericalModelling in Geotechnical Engineering[C],1994.
    [25] Kidybinski A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and MiningSciences and Geomechanics Abstracts,1981,18(6):295-304.
    [26] Kielbassa S, Duddeck H. Stress-strain fields at the tunneling face-Three-dimensional analysis fortwo-dimensional technical approach[J]. Rock Mechanics and Rock Engineering,1991,24(3):115-132.
    [27] Lajtai E Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture[J].Tectonophysics,1971,(11):129-156.
    [28] Martin C D, Chandler N A. Stress heterogeneity and geological structures[J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1993,30(7):993-999.
    [29] Martin C D, Kaiser P K, McCreath DR. Hoek-Brown parameters for predicting the depth of brittlefailure around tunnels[J]. Canadian Geotechnical Jorunal,1999,36(1):135-51.
    [30] Martin C D. Characterizing in situ stress domains at AECL underground research laboratory[J].Canadian Geotechnical Journal,1990,27:631-646.
    [31] Martin C D. Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stresspath on brittle rock strength[J]. Canadian Geotechnical Journal,1997,34(5):698-725.
    [32] Martin C D. The strength of massive Lac du Bonnet granite around underground openings[D]. Manitoba:University of Manitoba,1993.
    [33] Moriyaa H, Fujita T, Niitsuma H, et al. Analysis of fracture propagation behavior using hydraulicallyinduced acoustic emissions in the Bernburg salt mine, Germany[J]. International Journal of RockMechanics and Mining Sciences,2006,43(1):49-57.
    [34] Ortlepp W D. Rock fracture and rockbursts: an illustrative study[M], The South African institute ofMining and Metallurgy,1997.
    [35] Pan X D, Hudson JA. Plane strain analysis for tunneling[J]. Int J Numer Anal Methods Geomech,1991,15(4):223-229.
    [36] Pelli F, Kaiser P K, Morgenstern N R. An interpretation of ground movements recorded duringconstruction of Donkin-Morien tunnel[J]. Canadian Geotechnical Journal,1991,28(2):239-254.
    [37] Peng S, Johnson A M. Crack growth and faulting in cylindrical specimens of Chelmsford granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1972,9(1):37-86.
    [38] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of RockMechanics&Mining Sciences,2004,41:1329-1364.
    [39] Stephansson O. Polydiapirism of granitic rocks in the Svecofennian of Central Sweden[J]. PrecambrianResearch,1975,2:189-214.
    [40] Xu W, Yue Z, Hu R. Study on the mesostructure and mesomechanical characteristics of the soil–rockmixture using digital image processing based finite element method[J]. International Journal of RockMechanics and Mining Sciences,2008,45(5):749-762.
    [41] Yue Z Q, Chen S, Tham L G. Finite element modeling of geomaterials using digital image processing[J].Computers and Geotechnics,2003,30(5):375-397.
    [42] William J D, Pathegama G R, Choi S K. The effect of specimen size on strength and other properties inlaboratory testing of rock and rock-like cementitious brittle materials[J]. Rock Mech Rock Eng,2011,44(5):513-529.
    [43]陈炳瑞,冯夏庭,肖亚勋,等.深埋隧洞TBM施工过程围岩损伤演化声发射试验[J].岩石力学与工程学报,2010,29(8):1562-1569.
    [44]陈海军,郦能惠,聂德新,等.岩爆预测的人工神经网络模型[J].岩土工程学报,2002,24(2):229-232.
    [45]陈卫忠,吕森鹏,郭小红,等.基于能量原理的卸围压试验与岩爆判据研究[J].岩石力学与工程学报,2009,28(8):1530-1541.
    [46]陈祥,孙进忠,张杰坤,等.岩爆的判别指标和分级标准及可拓综合判别方法[J].土木工程学报,2009,42(9):82-88.
    [47]陈秀铜,李璐.基于AHP-FUZZY方法的隧道岩爆预测[J].煤炭学报,2008,33(11):1230-1234.
    [48]陈秀铜,李璐.锦屏二级水电站引水隧洞区域三维初始地应力反演回归分析[J].水文地质工程地质,2007,(6):55-59.
    [49]陈蕴生,李宁,韩信.非贯通裂隙介质裂隙扩展规律的CT试验研究[J].岩石力学与工程学报,2005,24(15):2665-2670.
    [50]冯涛,谢学斌,王文星,等.岩石脆性及描述岩爆倾向的脆性系数[J].矿冶工程,2000,20(4):18-19.
    [51]冯夏庭.地下硐室岩爆预报的自适应模式识别方法[J].东北大学学报,1994,15(5):471-475.
    [52]符文喜,任光明,聂德兴,等.深埋长隧道岩爆的预测预报及防治初探[J].地质灾害与环境保护,1999,10(1):25-28.
    [53]高春玉,徐进,何鹏,等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(18):456-460.
    [54]葛修润,任建喜,蒲毅彬.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,4:104-111.
    [55]工程岩体分级标准(GB50218-94)[S].中华人民共和国建设部.北京:中国计划出版,1994.
    [56]谷明成,侯发亮,陈成宗.秦岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    [57]郭然,于润沧.有岩爆危险巷道的支护设计[J].中国矿业,2002,11(3):23-26.
    [58]郭志.实用岩体力学[M].北京:地震出版社,1996.
    [59]何满潮.深部开采工程岩石力学现状及其展望[A].第八全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会主编,北京:科学出版社,2004:88-94.
    [60]侯发亮,刘小明,王敏强.岩爆成因再分析及烈度划分探讨[A].第二届全国岩石动力学学生会议论文集[C].武汉:武汉测绘科技大学出版社,1992.
    [61]侯发亮.岩石的全程应力应变曲线及岩爆倾向指数分析[A].第二届全国岩石动力学学术会议论文集[C].宜昌,1990.
    [62]侯发亮等.岩石力学在工程中的应用[M].北京:知识出版社,1989.
    [63]华安增,孔圆波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    [64]华安增,孔圆波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    [65]华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    [66]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J].岩石力学与工程学报,2010,29(1):21-34.
    [67]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213.
    [68]黄达,谭清,黄润秋.高应力卸荷条件下大理岩破裂面细微观形态特征及其与卸荷岩体强度的相关性研究[J].2012,33(増2):7-15.
    [69]黄书岭.高应力下脆性岩石的力学模型与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [70]贾愚如,黄玉灵.地下洞室中岩爆对策研究[J].地质灾害与防治,1991,2(1):42-50.
    [71]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [72]姜彤,黄志全,赵彦彦.动态权重灰色归类模型在南水北调西线工程岩爆风险评估中的应用[J].岩石力学与工程学报,2004,23(7):1104-1108.
    [73]景锋,盛谦,张勇慧,等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报,2007,26(10):2056-2062.
    [74]赖勇,张永兴.岩石宏、细观损伤复合模型及裂纹扩展规律研究[J].岩石力学与工程学报,2008,27(3):534-542.
    [75]李新平,陈俊桦,李友华,等.溪洛渡电站地下厂房爆破损伤范围及判据研究[J].岩石力学与工程学报,2010,29(10):2042-2049.
    [76]李新平,肖桃李,汪斌,等.锦屏二级水电站大理岩不同应力路径下加卸载试验研究[J].岩石力学与工程学报,2012,31(5):882-889.
    [77]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [78]梁志勇,刘汉超,石豫川,等.岩爆预测的概率模型[J].岩石力学与工程学报,2004,23(18):3098-3101.
    [79]林鹏,黄凯珠,王仁坤,等.不同角度单裂纹缺陷试样的裂纹扩展与破坏行为[J].岩石力学与工程学报,2005,24(增2):5652-5657.
    [80]林鹏,周雅能,李子昌,等.含三维预置单裂纹缺陷岩石破坏试验研究[J].岩石力学与工程学报,2008,27(增2):3882-3887.
    [81]刘斌.基于最小耗能原理的岩爆孕育发生机理研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [82]刘冬梅,蔡美峰,周玉斌,等.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报,2006,25(3):467-472.
    [83]刘立鹏,姚磊华,王成虎,等.地应力对脆性岩体洞群稳定性的影响[J].中南大学学报(自然科学版),2010,41(2):972-977.
    [84]刘立鹏,汪小刚,贾志欣,等.掌子面推进过程围岩应力及裂隙发育规律[J].中南大学学报(自然科学版),2013,44(2):764-771.
    [85]刘立鹏.锦屏二级水电站施工排水洞岩爆问题研究[D].北京:中国地质大学(北京),2011.
    [86]刘立鹏,汪小刚,贾志欣,段庆伟,张磊.锦屏二级水电站大理岩复杂加卸载应力路径力学特性研究[J].岩土力学,34(8):2287-2294,2013.
    [87]陆家佑,王昌明.根据岩爆反分析岩体应力研究[J].长江科学院院报,1994,11(3):27-30.
    [88]马启超.工程岩体应力场的成因分析与分布规律[J].岩石力学与工程学报,1986,5(4):329-342.
    [89]潘一山,李忠华.矿井岩石结构稳定性的解析方法[A].全国固体力学学术会议论文集[C].2002.
    [90]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    [91]彭瑞东.基于能量耗散及能量释放的岩石损伤与强度研究[D].北京:中国矿业大学,2005.
    [92]彭祝,王元汉,李廷芥. Griffith理论与岩爆的判别准则[J].岩石力学与工程学报,1996,15(增):491-495.
    [93]邱士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1807-1817.
    [94]舒磊,王磊,彭金伟.秦岭铁路隧道岩爆预报的模糊综合评判研究[J].四川联合大学学报(工程科学版),1998,2(5):55-60.
    [95]水利发电工程地质勘察规范(GB50287-2006)[S].中华人民共和国建设部.北京:中国计划出版社,2007.
    [96]水利水电工程地质勘察规范(GB50487-2008)[S].中华人民共和国建设部.北京:中国计划出版社,2009.
    [97]宋建波,张倬元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
    [98]苏国韶,冯夏庭,江权,等.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究[J].岩石力学与工程学报,2006,25(12):2453-2460.
    [99]苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用[M].北京:科学出版社,2002.
    [100]谭以安.关于岩爆岩石能量冲击性指标的商榷[J].水文地质工程地质,1992,19(2):10-13.
    [101]谭以安.岩爆类型及其防治[J].现代地质,1991,5(4):450-456.
    [102]谭以安.岩爆烈度分级问题[J].地质论评,1992,38(5):439-443.
    [103]谭以安.岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J].电子显微学报,1989,2:41-48.
    [104]唐绍辉,吴壮军,陈向华.地下深井矿山岩爆发生规律及形成机理研究[J].岩石力学与工程学报,2003,22(8):1250-1254.
    [105]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991.
    [106]陶振宇.高地应力区的岩爆及其判据[J].人民长江,1987,5:25-32.
    [107]万姜林,周世祥,南琛,等.岩爆特征及机理[J].铁道工程学报,1998,2:95-102.
    [108]汪泽斌.岩爆实例、岩爆术语及分类的建议[J].工程地质,1988,(3):32-38.
    [109]王吉亮,陈剑平,杨静,等.岩爆等级判定的距离判别分析方法及应用[J].岩土力学,2009,30(7):2203-2208.
    [110]王兰生,李天斌,李永林,等.二郎山隧道高地应力与围岩稳定问题[M].北京:地质出版社,2006.
    [111]王兰生,李天斌,徐进,等.川藏公路二郎山隧道围岩变形破裂的调研与监测[A].四川省公路学会隧道专业委员会1998年学术讨论会论文集[C],1998.
    [112]王耀辉,陈莉雯,沈峰.岩爆破坏过程能量释放的数值模拟[J].岩土力学,2008,29(3):790-794.
    [113]王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501.
    [114]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.
    [115]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [116]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量分析[J].岩石力学与工程学报,2008,27(9):1729-1740.
    [117]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [118]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    [119]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(1):3565-3570.
    [120]熊海华,卢文波,李小联,等.龙滩水电站右岸导流洞开挖中爆破损伤范围研究[J].岩土力学,2004,25(3):432-436.
    [121]熊孝波,桂国庆,许建聪,等.可拓工程方法在地下工程岩爆预测中的应用[J].解放军理工大学学报(自然科学版),2007,8(6):695-701.
    [122]徐林生,王兰生,李永林.岩爆形成机制与判决研究[J].岩土力学,2002,23(3):300-303.
    [123]徐林生,王兰生.二郎山公路隧道岩爆发生规律与岩爆预测研究[J].岩土工程学报,1999,21(5):569-572.
    [124]徐林生.川藏公路二郎山隧道高地应力与岩爆问题研究[D].成都:成都理工学院,1999.
    [125]徐松林,吴文,张华.大理岩三轴压缩动态卸围压与岩爆模拟分析[J].辽宁工程技术大学学报,2002,21(5):612-615.
    [126]徐志英.岩石力学(第三版)[M].北京:中国水利水电出版社,1993.
    [127]许梦国,杜子建,姚高辉,等.程潮铁矿深部开采岩爆预测[J].岩石力学与工程学报,2008,27(增1):2921-2928.
    [128]闫长斌,徐国元,杨飞.爆破动荷载作用下围岩累积损伤效应声波测试研究[J].岩土工程学报,2007,29(1):88-93.
    [129]严鹏,卢文波,陈明,等. TBM和钻爆开挖条件下隧洞围岩损伤特性研究[J].土木工程学报,2009,42(11):121-128.
    [130]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [131]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [132]张津生,陆家佑,贾愚如.天生桥二级水电站引水隧洞岩爆研究[J].水力发电,1991,(10):34-37.
    [133]张凯,周辉,潘鹏志,等.不同卸荷速率下岩石强度特性研究[J].岩土力学,2010,31(7):2072-2078.
    [134]张镜剑,傅冰骏.岩爆及其判据和防治[J].岩石力学与工程学报,2008,27(10):2034-2042.
    [135]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [136]赵德安,陈志敏,蔡小林,等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.
    [137]赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950.
    [138]中国人民武装警察部队水电指挥部.天生桥二级水电站引水隧洞岩爆研究[R].1991.
    [139]周德培,洪开荣.太平驿隧洞岩爆特征及防治措施[J].岩石力学与工程学报,1995,14(2):171-178.
    [140]周科平,古德生.基于GIS的岩爆倾向性模糊自组织神经网络分析模型[J].岩石力学与工程学报,2004,23(18):3093-3097.
    [141]周小平,哈秋聆,张永兴,等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3245.
    [142]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1994,16(1):49-63.
    [143]左文智,张齐桂.地应力与地质灾害关系探讨[A].第五届全国工程地质大会文集[C].北京:地质出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700