雨水集蓄设施结构分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱缺水与水土流失并存一直是黄土高原生态环境建设面临的主要问题之一。调控降雨径流和高效利用水土资源,不但是解决该问题的有效手段,同时也是解决贫困劣质水地区饮水安全的重要措施,而雨水蓄集设施是调控工程的重要设施。集蓄设施结构形式实际上由人们长期以来形成的经验所决定,集蓄设施中还存在技术不成熟,理论基础不完善和软件应用不广泛等问题。针对这些问题,本研究通过室内材料试验、有限元分析,取得如下研究结果:
     (1)MBER固化土弹性模量试验研究。针对固化土弹性模量研究薄弱的问题,以自主研发的MBER土壤固化剂为研究对象,通过对杨凌试验区土样进行室内试验,分别研究了土壤固化剂剂量、不同含水率和不同龄期三种因素对MBER固化土的弹性模量的影响。根据试验结果,获得了MBER固化土应力应变关系曲线,分析得出固化土弹性模量在300MPa-1000MPa之间。固化土的弹性模量随着土壤固化剂剂量,含水率及龄期的增长呈增加趋势,而当含水率达到一定值时,固化土的弹性模量呈下降趋势。因此,通过合理控制土壤固化剂剂量及含水率,能够改善固化土的力学性能,进而达到改良固化土的目的。
     (2)固化土水窖结构分析与优化设计。基于ANSYS平台的有限元法,完成了固化土水窖的结构分析,以固化土干性水窖作为特例进行了空间结构分析,计算了水窖的应力分布规律,并以水窖耗材率最小为目标函数,以允许拉应力和压应力为约束条件,给出固化土水窖最优尺寸,为固化土水窖的施工提供技术支撑。通过计算分析得出空窖为固化土水窖的不利工况,在此工况下以节约材料用量为目的,在满足水窖强度和刚度的条件下,以水窖体积最小为目标函数,以允许应力为约束条件,对水窖窖壁厚度进行优化,计算得出最小厚度为19cm。
     (3)固化土集流面结构分析与优化设计。针对固化土集流面的各种影响因素,选取板长、板厚、固化土模量、垫层模量等参数作为计算变量,应用大型通用有限元软件ANSYS,对固化土集流面的板底最大拉应力和竖向位移进行计算,并分析了单轴双轮组标准轴载BZZ-100与温度变化对集流面性能的影响,为固化土集流面的设计与维护提供了参考。结果表明,夏冬不同季节固化土集流面破坏程度不同,夏季炎热的时间段对固化土集流面更容易产生破坏,随着板厚的增加,板中温度应力减小,随着弹性模量的增加板中温度应力增加;当集流面兼作路用时,面板荷载应力随着固化土面板模量、面板厚度、垫层模量及垫层厚度的增加显著减小。在移动荷载作用下,随着车速的增加,固化土板中最大拉应力和竖向最大位移值越来越小。另外,以固化土集流面单位面积造价最小为目标函数,以材料应力为约束条件,得出固化土集流面的最优厚度组合为面层11cm,垫层33cm。
Draught, water shortage and soil erosion have always been one of main difficulties forthe ecosystem environment construction on loess plateau. Regulation of rainfall runoff andefficient utilization of water and soil resources are effective means to resolve these difficulties.They are also important measures for solving drinking water safety in deprived poor-qualitywater area. More important, rain water storage facilities are critical components for regulationconstruction. However, the structure type of storage facilities is often practically designed,and the basic theories are not ripe. Also, structural optimization design is of juvenility forstorage facilities and lack of software application. To settle these questions above, this paperobtains results below by lab testing and structure calculation:
     (1)Experimental research on elastic modulus of MBER solidified soil. Aiming at fewresearches on elastic modulus of solidified soil, based on independent development soilstabilizer, this paper studies sample soils from Yang-ling, and analyzes dosage of soilstabilizer, different moisture content, and different age, which influence MBER solidifiedsoil’s elastic modulus. According to the experimental result, the stress-strain relationshipcurve is obtained, and the solidified soil’s elastic modulus is between300MPa and1000MPa,which shows the rising tendency with the increasing of dosage of solidified soil, moisturecontent and age. However, the elastic modulus of solidified soil begins to go down with theachievement of threshold value of moisture content. The result shows that the solidified soilcan be improved through the implementation of mechanical property with reasonablycontrolling of solidified soil dosage and moisture content.
     (2)The analysis and optimized design of solidified soil water cellar. In this paper, byusing the Finite Element Method and ANSYS-based structure analysis software, solidifiedsoil water cellar’s space structure are analyzed. Meantime, taking the minimum constructionmaterials consuming as objective function, allowable stress as constraints, the cellardimension is optimized according to its capacity of water. In conclusion, this paper suppliestechnical support for cellar designer and theory basis for new cellar development. Fromanalysis results, empty is the solidified soil water cellar’s adverse working condition. Underthis condition, saving materials usage is objective function. When cellar strength and stiffness is satisfied, saving cellar construction materials usage is objective function, and allowablestress is constraint. Then the cellar wall thickness is optimized, the optimal wall thickness is19cm.
     (3) The analysis and optimized design of catchment area of solidified soils. Aiming atmany factors that affect the catchment area of solidified soils, we have select length of panel,thickness of panel, concrete module, base modulus as calculated variable, and we use ANSYSsoftware for calculating the maximum tensile stress and vertical displacement below thestabilized road panel. We also analysis the influences of solidified soils performance fromuniaxial double wheel groups standard axis load BZZ-100and temperature change. Theseprovide the valuable references for design and maintenance of solidified soils. The resultsshows that the degree of destroy of solidified soils for the catchment area varies in differentseasons such as summer and winter. In hot temperature of summer, solidified soil for thecatchment area is easy to be destroyed. Also the temperature and base modulus increased withthe increment of length of solidified soil’s panel. Meanwhile, the catchment area is used asroad, the panel load tress decreases obviously. And under of influence of moving load, themaximum tensile stress and vertical displacement become smaller with the increment of speedof vehicles. We conclude the optimized thickness of solidified soils catchment area is that thesurface layer is about11cm and cushion layer33cm under the constrain condition of materialstress and object function using the price of elemental area.
引文
B.M.别兹鲁克,K.A克尼亚久克.1954.水泥稳定土壤路面工程.戚立德译.北京:人民交通出版社.
    艾园园.2009.曲墙式混凝土衬砌水窖设计及力学分析.甘肃农业大学硕士学位论文.
    曹光荣,张祥艳.2002.拼装式水窖在饮水解困工程中的应用.中国水利,9:67-69.
    陈佩林,梁锡山.1998.用蒙特卡罗法分析沥青路面结构的可靠度.广东公路交通,1:24-27.
    崔灵周,魏丙臣,李占斌,等.2004.黄土高原地区雨水集蓄利用技术发展评述.灌溉排水,4:75-78.
    崔胜明,余群.1995.汽车轮胎行驶性能与测试.北京机械工业出版社.
    邓学均.2006.路基路面工程.人民交通出版社.
    段进,倪栋,王国业.2006.ANSYS10.0结构分析从入门到精通.北京:兵器工业出版社:24-121.
    樊恒辉,高建恩,吴普特,等.2005.MBER土壤固化剂集流场的施工工艺.中国水土保持科学,3:56-59.
    樊恒辉,高建恩,吴普特,等.2010.水泥基土壤固化剂固化土的物理化学作用.岩土力学,(12):3741-3745.
    樊恒辉,吴普特,高建恩,等.2006a.固化土集流面无侧限抗压强度影响因素研究.农业工程学报,9:11-15.
    樊恒辉,吴普特,高建恩,等.2006b.密度和含水率对固化土无侧限抗压强度的影响.中国水土保持科学,6:54-58.
    范钦珊,施燮琴,孙汝劼.1989.工程力学.北京:高等教育出版社.273-301.
    方朝阳,王海波,刘炜.2004.装配式薄壁混凝土水窖研究.中国农村水利水电,12:77-81
    冯浩,吴普特,彭红涛,等.2001.HEC与AAM添加剂对提高黄土集流效率的试验研究.农业工程学报.3:28-31.
    冯学赞,张万军.2005.干旱半干旱地区人工地衣集雨面营建潜力探析.中国生态农业学报.1:156-159.
    高建恩,孙胜利,吴普特.一种新型土壤固化剂:国家发明,专利号:ZL200410073273.5.
    高建恩,吴普特,樊恒辉,一种拼接式活动集雨面,实用新型,专利号:03224561.5.
    郭增强,赵玉成,王海亮.2004.土中球形爆破衬砌承载力的研究.铁道建筑,2:34-36.
    韩信来,高建恩,樊恒辉,等.2009.黄土高原不同地区固化土强度变化规律研究.人民黄河,22:76-78.
    韩子东.2001.道路结构温度场研究.长安大学硕士学位论文.
    何振国,吴兴亚,何光耀.1997.塑料棚膜防渗储水窖在旱地集雨节灌工程中的应用初探.甘肃农业科技,7:15-16.
    侯新录.2004.结构分析中的有限元法与程序设计.北京:中国建材工业出版社:51-59.
    黄文元.2000.沥青路面超重车轴载换算初步研究.公路交通科技.1:5-9.
    蒋应军.2005.重载交通水泥混凝土路面材料与结构研究.长安大学博士学位论文.
    阚前华,谭长建,张娟,等.2006.ANSYS高级工程应用实例分析与二次开发.北京:电子工业出版社.285-299.
    柯结伟,庞有师,陈志勇.2007.土壤固化剂技术研究与工程应用现状.华东公路,(5),48-51.
    李红艳,杨文辉,朱德兰,等.2010.竹塑复合材料多边形水窖结构应力分析.人民黄河,6:113-115.
    李红艳.现场装配式小型水窖结构研究.西北农林科技大学硕士学位论文,2010.
    李怀有等.2003.高原沟壑区雨水集流效率研究.水土保持研究,10(4):96-98.
    李俊才,高国瑞.2000.水泥土的微结构特征及分析.成都理工学院学报.27(4):388-393.
    李巧珍,吴普特,冯浩,等.2004.新型高分子有机硅材料集流效率试验研究.水土保持学报,18(3):33-36.
    李艳,张林春,张文君,等.2005.ANSYS在道路路面结构计算中的应用.城市道桥与防洪,2:100-102.
    刘东常,丁立杰,田耕,等.2000.柱壳结构外压稳定性分析的柱壳有限条元法.华北水利水电学院学报,3:23-25.
    刘铁宏,王义新.2009.土壤固化剂在防汛抢险中的应用现状分析.吉林水利,(3),46-49.
    娄宗科,党进谦.2001.黄土地区水窑窖设计参数与施工技术研究..水土保持通报,21(3):14-19.
    陆金燕.1992.轮胎接地面三向力的动态测量..橡胶工业,39(10):21-26.
    陆吾华,侯作启.2005.橡胶坝设计与管理.中国水利水电出版社.
    马兴华.2003.高强度聚酯镀铝复合膜集雨窖池试验研究.甘肃农业..2:53-54.
    闵庆文,余卫东.2002.从降水资源看黄土高原地区的植被生态建设..水土保持研究,9(3):109-112
    莫永京,彭红涛,雷廷武,等.2003.玻璃纤维水泥土集雨面物理性能的试验研究.农业工程学报..6:18-20.
    彭静美,于连顺.2007.温度场和温度应力的有限元分析.山西建筑.22(7):86-88.
    齐广平.2000.几种常用人工集流面的应用现状及存在问题分析.甘肃农业科技,2:27-29.
    任德斌,苏博.2010.沈阳建筑大学学报.26(4):699-703.
    任树梅.2003.水资源保护.北京:中国水利水电出版社.
    任杨俊,李建牢,赵俊侠.2000.国内外雨水资源利用研究综述.水土保持学报,14(1):88-92.
    阮玉瑭.2007.基于ANSYS的某机枪有限元结构分析.南京理工大学硕士学位论文.
    松尾新一郎.1983.土质加固方法手册.
    宋南京,陈新中,赵洪义.2009.土壤固化剂的研究进展和应用.中国建材科技,55-61.
    苏德荣,冯会胜,陈垣.2004,埃塞俄比亚的集水技术.中国农村水利水电,8:101-104.
    孙明漳,梁清彦译.北京:中国铁道出版社.138-140.
    王百田,王斌瑞.1994.黄土坡面地表处理与产流过程研究.水土保持学报,8(2):18-24.
    王红伟.2008.车载和温度应力下水泥混凝土路面板结构性危害三维有限元分析.吉林大学硕士学位论文.
    王俊杰,柴贺军.2008.车辆荷载下饱和路基挡墙主动土压力计算.岩土工程学报,30(3):372-378.
    王克勤,孟菁玲.1996.国内外农林业集水技术的研究进展.干旱地区农业研究,14(4):109-117.
    王星华.1999.粘土固化浆液固结过程的SEM研究.岩土工程学报.21(1):34-40.
    王勖成编著.2003.有限单元法.北京:清华大学出版社.1-160.
    王泽军.2005.锅炉结构有限元分析.北京:化学工业出版社.22-92.
    吴明舒.2003.管窖结合开发山涧溪流的探讨.水资源保护,2:56-57.
    吴普特,高建恩,岳宝蓉.2003.10.29.一种坡地集流面的制备方法.国:CN1451820A.
    吴普特,高建恩.2006.黄土高原水土保持新论:基于降雨地表径流调控利用的水土保持学.郑州:黄河水利出版社.
    肖克飚.2006.一种拼装式集雨水窖结构优化设计.西北农林科技大学硕士学位论文.
    许红艳,何丙辉,李章成,等.2004.我国黄土地区水窖的研究.水土保持学报,2:58-62
    杨建北,周孚明.1992.混凝土薄壳水窖.中国水土保持,10:14-16.
    於春强,郑尔康.2003.高性能土壤固化剂及在地基处理中的应用.中国土木工程学会第9届土力学及岩土工程学会议论文集.北京:清华大学出版社.
    於春强,郑尔康.2003.高性能土壤固化剂及在地基处理中的应用.中国土木工程学会第九届土力学及岩土工程学会议论文集.北京:清华大学出版社.729-735.
    张仕华,朱德兰,高建恩,等.2009.混凝土薄壳球形水窖结构的优化设计.西北农林科技大学学报.9:214-218.
    张仕华.2009.基于ANSYS的水窖结构有限元分析.西北农林科技大学硕士学位论文.
    赵文君,高建恩,许秀全,等.2010.不同材质水窖贮存雨水水质变化特征.水土保持学报.1:20-24.
    赵文君.2010.雨水安全集蓄水窖水质变化规律的初步研究.中国科学院研究生院硕士学位论文.
    中交公路规划设计院有限公司.2004JTGD60—2004公路桥涵设计通用规范.北京:人民交通出版社.CJ/T3073-1998.1998.土壤固化剂.北京:中华人民共和国建设部.
    DL/T5150-2001.2002.水工混凝土试验规程.北京:中国电力出版社.
    JTJ057-94.公路工程无机结合料稳定材料试验规程.北京:人民交通出版社.1994.
    SL237-1999.1999.土工试验规程.北京:中国水利水电出版社.
    A. El Ayadi.etal.2011.An improved dynamic model for the study of a flexible pavement. Advances inEngineering Software,1-10.
    A. Mohsenimanesh.etal.2009.Stress analysis of a multi-laminated tractor tyre using non-linear3D finiteelement analysis. Materials and Design,30:1124-1132.
    Burdass.W.J.1975.Water harvesting for livestock in Western Australia. Proc. Water Harvesting Symp.Phoenix AZ ARS W-22.U SDA.8-26.
    Chiarella.J.V and W.H.Beck.1975.Water harvesting catchments on India lands in the southwest.Proc.Water Harvesting Symp. Phoenix AZ ARS W-22.USDA.104-114.
    Dedrick.A.R,W.Rr.Williamson.1973.Operation,serviceability and material evaluation of raintraps on thefishlake national forest(1960-1971).Agricultural experiment station of Utah State University.
    Diamond S.etal.1996.Mechanisms of soil-lime stabilization. Public Road.33(12):260—265.
    Erdogan Madenci, Ibrahim Guven.2007.The Finite Element Method and Applications in Engineering UsingAnsys. Springer US:248-249.
    Esteban Vazquez-Fernandez.etal.2009. A computer vision system for visual grape grading in Wine Cellars.Springer-Verlag Berlin Heidelberg,335-344.
    F.N. Leit o.etal.2011.Composite (steel_concrete) highway bridge fatigue assessment. Journal ofConstructional Steel Research,67:14-24.
    Fan,Luah.1995Free Vibration Analysis of Arbitrary Thin Shell Structures by Using Spline Finite Element.Journal of Sound and Vibration.
    FAO.1987.Soil and water conservation in semi-arid areas. Soil bulletin No.57.FAO,Rom.
    Fink.D.H and W.L.Ehrler.1979.Runoff farming for jojoba arid land plant resources. Proc. Int.ArifLandsConf.Plant Resources,Int.Center for Arid and semi-Arid Land Studies, Texas TechnicalUniversity,Lubock.TX.212-224.
    Fink.D.H.1976.Laboratory testing of water-repellent soil treatments for water harvesting.SoilSci.Soc.AM.J.40:562-566.
    Fink.D.H.1970.Water repellency and infiltration resistance of organic-filmn-coated soil. SoilSci.Soc.AM.Proc.34:189-194.
    Frith J L,Nulsen R A.1971.Clay cover for roaded catchments, JDept of Agric West Aust.12(8):56-62.Grary w. Frasier, Lioyd E. Myers.1983.Handbook of water harvesting U.S. Department ofAgriculture,Agriculture handbook No.600.2-20.
    Hollick M.1982.Water harvesting in arid lands, Scientific Reviewson Arid Zone Res earch,1:173-247.
    Kamyar C. Mahboub.etal.2004. Evaluation of temperature reponses in Concrete Pavement. Journal oftransportation engineering,395-401.
    Kazutaka Suzukl, etal.1985.Formation and carbonation of C-S-H in water, Cem&ConResearch.15:213-224.
    MDjoudi,Bahai.2003.A shallow shell finite element for the linear and non-linear analysis of cylindricalshells. Engineering Structures,16(2):150-153
    Mostafa Yousefi Darestani.etal.2007.Structural response of concrete pavements under moving truckloads.Journal of transportation engineering,670-676.
    Nega,Kimeu.2002.Low-cost methods of water harvesting.Nairobi. Probabilistic Mechanics and Structuraland Geotrch Nical Reliabity,U.S.A.10:495-498.
    QinwuXu.etal.2009. Experimental and numerical analysis of a waterproofing adhesive layer used onconcrete-bridge decks. Adhesion&Adhesives,9:525-534.
    Sankaran Mahadevan, Prakash Raghothamachar.2000.Adaptive simulation for system reliability analysis oflarge,Computers and Structures,77:725-734.
    Teruhisa Masada and A.M.ASCE.2011.Full-Scale field load testing of storm-water storage chamberStructures. Journal of performance of constructed facilities,317-325.
    Zienkiewicz,Robert.2005.The Finite Element Method:Its Basisand Fundamentals.Butterworth HeinemannPublications,518-520.
    Zienkiewicz.1977.The Finite Element Method. New York, McGraw-Hill,P112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700