南林895杨组培苗耐盐性及耐盐机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以美洲黑杨杂种优良无性系南林895杨(Populus×euramericana cv.Nanlin895)组培苗为研究对象,进行NaCl胁迫处理。通过调查组培苗的生长情况、测定膜透性、渗透调节物质的含量和相关酶的活性等,得到以下主要结论:
     1.南林895杨具有一定的耐盐性,但在100mmol/L NaCl处理下,组培苗的生长受到明显的抑制作用,株高和根长均下降,叶片的黄化和脱落现象加剧。叶片的相对电导率增加,光合色素含量下降。叶片受盐害现象比较严重,根受到的盐害症状较轻。
     2.随盐浓度的增加,南林895杨组培苗叶片和根中的脯氨酸含量增加。根中的可溶性糖含量持续上升,叶片中的可溶性糖含量下降。叶片和根中可溶性蛋白的含量均下降。无机盐离子Na+的含量持续上升,根中的变化小于叶片中的变化。无机盐离子K+在各部位中呈下降趋势。叶片主要是通过积累脯氨酸和无机盐离子Na+,根主要是通过积累脯氨酸和可溶性糖共同维持体内的渗透势。
     3.随盐浓度的增加,南林895杨组培苗叶片和根中超氧化物歧化酶(SOD)的活性是先升高后降低,100mmol/L NaCl处理的SOD活性低于对照活性。叶片和根中的过氧化物酶(POD)活性均上升。50mmol/L NaCl处理的叶片中的过氧化氢酶(CAT)活性高于对照水平,其他处理的叶片和根中的CAT活性均低于对照水平。根中的抗坏血酸过氧化物酶(APX)活性持续上升,叶片中的APX是先上升后下降。根中的谷胱甘肽还原酶(GR)活性持续上升,叶片中的GR活性持续下降。丙二醛(MDA)含量持续上升。SOD、POD、APX和GR在根中作用比较大,SOD、APX、POD和CAT在叶片作用比较大。但高盐下,一些酶的活性受到了影响,仅有叶片和根中POD、根中APX和GR的活性比较强。
     4.南林895杨组培苗叶片中的蛋白表达高于根中的蛋白表达。NaCl处理后,蛋白表达均上升,有新的特异蛋白的产生。高分子区域表现为48KD的蛋白条带,低分子区域主要是20KD和14KD,这些蛋白主要集中在pI4~7。
In this study, Populus×euramericana cv.Nanlin895tissue culture plantlets are experimentmaterial. Growth condition, membrane permeability, the content of osmotic adjustmentsubstances and the activity of enzymes were tested after NaCl stress. The result showed asfollows:
     1.‘Nanlin895’ tissue culture plantlets could grow after100mmol/L NaCl stress, but thegrowth was significantly inhibited. Plant height and root length were decreased. Leaves wereseriously yellowing and shedding. The relative conductivity was increased and photosyntheticpigments content were decreased in leaves. Leaves were affected more seriously than roots.
     2. With the increasing of salt concentration, the proline content were increased in ‘Nanlin895’ tissue culture plantlets leaves and roots. The content of soluble sugar were increased inroots and decreased in leaves continuously. The soluble protein were both decreased in rootsand leaves. The content of Na+were continuously increased and the change in leaves wasgreater than roots. The content of K+were decreased in every organ. In short, leaves weremainly accumulate proline and Na+, and roots were accumulate proline and soluble sugar inmaintaining osmotic potential.
     3. With the increasing of salt concentration, the activity of superoxide dismutase(SOD)were increased firstly, and then decreased in plantlets leaves and roots. Under100mmol/L NaClstress, the activity of SOD were lower than control. The activity of peroxidase(POD) were bothincreased in leaves and roots. Under50mmol/L NaCl stress, the activity of catalase(CAT) werehigher than control in leaves. In other tests, the activity of CAT were lower than control inleaves and roots. The activity of acorbate peroxidase(APX) were continuously increased inroots. In leaves, they were increased firstly, and then decreased. The activity of glutathionereductase(GR) were increased in roots and decreased in leaves continuously. The content ofmalondiadehyde(MDA) were continuously increased. SOD、POD、APX and GR played moreroles in roots. SOD、APX、POD and CAT played more roles in leaves. But high salt stressdestroyed some enzymes’ activity. Only the activity of POD in leaves and roots, APX and GRin roots were still higher.
     4. The protein expression in leaves was higher than roots. After NaCl stress, the proteinexpression were all rose and some specific stress-up-regulate protein appeared. High molecularweight regions were48kilodalton (KD). Low molecular weight regions were mainly20KD and14KD. They were mainly focused on isoelectric point(pI)4~7.
引文
[1]艾万东.高等植物调渗蛋白与耐旱耐盐基因工程[J].生物工程进展,1994,3(15):10-15.
    [2]鲍思伟,谈锋,廖志华.土壤干旱对蚕豆叶片渗透调节能力的影响[J].西南农业学报,2001,23(4):353-359.
    [3]陈国良.盐胁迫下青杨叶片蛋白质组的双向电泳体系构建与差异表达[D].兰州大学,硕士学位论文,2008,5.
    [4]陈建勋,王小峰.植物生理学实验指导[M].广州:华南理工大学出版社,2006.
    [5]陈少良,李金克,尹伟伦.等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,5/6(24):84-88.
    [6]陈士刚,李青梅,陶晶,等.碱胁迫对几种杨树光合色素含量的影响[J].吉林林业科技,2005,6(11):8-12.
    [7]陈万超.三个杨树品种耐盐性和耐盐机制的比较研究[D].东北师范大学,硕士学位论文,2007,11.
    [8]陈玉玉.四种杨树的耐盐性比较及其遗传转化系统的初步研究[D].大连理工大学,硕士学位论文,2009,2.
    [9]程钧,张晓平,方炎明.不同浓度NaCl胁迫对红桤木幼苗生长及部分生理指标的影响[J].中国农学通报,2010,26(6):142-145.
    [10]程强,潘惠新,徐立安.等.杨树基因组计划及其分子生物学研究进展[J].南京林业大学学报(自然科学版),2009,1(33):131-135.
    [11]崔旭盛,董学会,郭玉海. ICP-AES技术测定不同产地柴胡矿质元素[J].光谱学与光谱分析,2012,2(32):529-531.
    [12]邓绍云,邱清华.中国盐碱土壤修复研究综述[J].北方园艺,2011(22):171-174.
    [13]丁丽娜,金华,殷鸣放.等.盐胁迫对杨树幼苗叶片光合色素及气体交换特征的影响[J].西北植物学报,2006,26(12):2523-2527.
    [14]杜金友,陈晓阳,李伟.干旱胁迫诱导下植物基因的表达与调控[J].生物技术通讯,2004,2:10-14.
    [15]范吉星,邓用川,黄惜,等.红海榄根部盐胁迫反应的比较蛋白质组学分析[J].中国生物化学与分子生物学报,2009,25(1):72-77.
    [16]范克胜,吴小芹,任嘉红,叶建仁.盐胁迫下外生菌根真菌与根际有益细菌互作对杨树光合特性的影响[J].西北植物学报,2011,31(6):1216-1222.
    [17]樊军锋,韩一凡,李玲,等.84K杨树耐盐基因转化研究[J].西北林学院学报,2002,17(4):33-37.
    [18]高英,同延安,赵营,等.盐胁迫对玉米发芽和苗期生长的影响[J].中国土壤与肥料,2007(2):30-34.
    [19]郭彦青.杨树营养贮藏蛋白质动态变化规律的研究[D].南京林业大学,硕士学位论文,2005,6.
    [20]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2005,5.
    [21]郝再彬,苍晶,徐肿.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [22]贺岩,陈云昭,王玉国,等.外源脯氨酸对盐胁迫下大豆离体胚再生植株生长及渗透调节的影响[J].山西农业大学学报,1999,2(19):100-103.
    [23]胡晓立. NaCl胁迫对李属彩叶植物生理特性及叶色的影响[D].河北农业大学,硕士学位论文,2010,6.
    [24]黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学学报,1997,27(4):509-514.
    [25]霍晨敏,赵宝存,葛荣朝.等.小麦耐盐突变体盐胁迫下的蛋白质组分析[J].遗传学报,2004,31(12):1408-1414.
    [26]姜国斌,丁丽娜,金华,等.盐胁迫对杨树幼苗叶片光合特性及叶绿素荧光参数的影响[J].辽宁林业科技,2007,1:20-23,43.
    [27]李存桢,刘小京,杨艳敏,等.盐胁迫对盐地碱蓬种子萌发及幼苗生长的影响[J].中国农学通报,2005,21(5):209-212.
    [28]李登超,朱祝军,徐志豪.硒对菠菜抗氧化系统及过氧化氢含量的影响[J].园艺学报,2002,29(6):547-550.
    [29]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,167-169.
    [30]李红梅,万小荣,何生根.植物水孔蛋白最新研究进展[J].生物化学与生物物理进展,2010,37(1):29-35.
    [31]李伟强,刘小京. NaCl胁迫下3种盐生植物生长发育及离子在不同器官分布特性研究[J].中国生态农业学报,2006,2(14):49-52.
    [32]李彦,张英鹏,孙明盐,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报,2008,1(24):258-265.
    [33]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.
    [34]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,2(20):20-25.
    [35]刘凤华,孙仲序,崔德才,等.细菌mtl-D基因的克隆及在转基因八里庄杨中的表达[J].遗传学报,2000,27(5):428-433.
    [36]刘海学,张冬梅,丁学稳,等. NaCl胁迫对向日葵种子萌发的影响[J].种子,2011,11(30):24-27.
    [37]柳成荫,杨洪兵. NaCl胁迫与等渗PEG处理对荞麦幼苗渗调物质累积的影响[J].西南农业学报,2011,4(24):1279-1281.
    [38]吕延良.白蜡等4个树种盐胁迫下生理生化反应的研究[D].山东农业大学,硕士学位论文,2010,6.
    [39]马长乐,王萍萍,张慧等.盐地碱蓬APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报,2002,28(4):261-266.
    [40]马文月.植物抗盐性研究进展[J].农业与技术,2004,4(24):95-99.
    [41]马秀英. ATPase与杨树耐盐性形成机制研究[D].北京林业大学,硕士学位论文,2009,10.
    [42]莫海波,殷云龙,芦治国,等. NaCl胁迫对4种豆科树种幼苗生长和K+、Na+含量的影响[J].应用生态学报,2011,5(22):1155-1161.
    [43]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.
    [44]彭儒胜,赵大根,张兴芬,等.黑杨和胡杨派间杂种无性系耐盐碱试验[J].林业科技开发,2010,5(24):30-33.
    [45]任丽丽,任春明,张伟伟,等.短期NaCl胁迫对野生大豆和栽培大豆叶片光合作用的影响[J].大豆科学,2009,28(2):239-242.
    [46]任丽丽,任春明,赵自国.植物耐盐性研究进展[J].山西农业科学,2010,38(5):87-90.
    [47]沈艳华,徐锡增,方升佐.等.硅对盐胁迫下杨树根系中离子微域分布的影响[J].林业科技开发,2008,2(22):15-18.
    [48]宋微,吴小芹.外生菌根真菌对NL-895杨光合作用的影响[J].西北植物学报,2011,31(7):1474-1478.
    [49]孙方行,周勃,孙明高.盐胁迫对海棠等3树种光合能力及色素变化的影响[J].浙江林业科技,2010,2(30):36-39.
    [50]孙国荣,阎秀峰.盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化[J].植物研究,1999,19(4):445-451.
    [51]孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响[J].林业科学研究,2009,22(3):315-324.
    [52]孙宏丽,商宏艳,姚叶,等. NaCl与KCl处理对海滨木槿生长特性的影响[J].山东林业科技,2011,6:13-16,20.
    [53]孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J].中国农业科学,1997,30(4):9-15.
    [54]孙卫红,王伟青,孟庆伟.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J].植物生理学通讯,2005,2(14):143-147.
    [55]陶晶,陈士刚,秦彩云.等.东北西部主要杨树品种对盐碱胁迫的生长反应[J].吉林林业科技,2004,4(33):13-16,31.
    [56]田野,张焕朝,方升佐.等.盐胁迫下杨树根际系统盐分离子分布特性[J].植物资源与环境学报,2003,12(3):11-15.
    [57]王宝增,赵可夫.低浓度NaCl对玉米生长的效应[J].植物生理学通讯,2006,42(4):628-632.
    [58]王波,宋凤斌,张金才.植物耐盐性研究进展[J].农业系统科学与综合研究,2007,2(23):212-216.
    [59]王厚麟,缪绅裕.大亚湾红树林及海岸植物叶片盐腺与表皮非腺毛结构[J].台湾海峡,2000,19(3):372-378.
    [60]王雷,尹增芳,马清滢,等.外源Ca2+对南林895杨扦插苗光合作用及生长的影响[J].南京林业大学学报(自然科学版),2010,34(6):24-27.
    [61]王亮,苏乔,安利佳.甜菜碱醛脱氢酶基因转化速生杨107的研究[J].安徽农业科学,2007,35(4):1000-1001.
    [62]王瑞刚,陈少良,刘力源,等.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J].北京林业大学学报,2005,27(3):46-52.
    [63]王锁民,朱兴运,王增荣. NaCl对碱茅幼苗游离氨基酸成分及脯氨酸等含量的影响[J].草业学报,1993b,2(3):40-43.
    [64]王媛.涝渍对三种树种生长及生理生化的影响[D].南京林业大学,硕士学位论文,2011,3.
    [65]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报,2003,27(3):11-14.
    [66]汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42.
    [67]吴雪霞,查丁石,朱宗文,等. NaCl胁迫下不同茄子材料种子萌发期的耐盐性比较[J].种子,2011,11(30):33-36.
    [68]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报,2002,26(5):19-22.
    [69]武美燕,吴良欢.有机物质与植物抗逆性关系研究进展[J].土壤通报,2007,5(38):993-997.
    [70]肖兴翠,吴立勋,汤玉喜,等.18个杨树品系湖区对比试验初报[J].湖北林业科技,2008,35(3):20-22.
    [71]许晓英.盐胁迫对白桦种子萌发和幼苗生长的影响[J].中国林业,2011,1A:49.
    [72]闫道良,孙一香,宗松晗.不同质量分数NaCl对月见草生理指标的影响[J].东北林业大学学报,2010,7(38):54-55.
    [73]阎顺国,沈禹颖.生态因子对碱茅种子萌发期耐盐性影响的数量分析[J].植物生态学报,1996,20(5):414-422.
    [74]阎秀峰,孙国荣.星星草生理生态学研究[M].北京:科学出版社,2000.
    [75]阎志红,刘文革,赵胜杰,等. NaCl胁迫对不同西瓜种质资源发芽的影响[J].植物遗传资源学报,2006,7(2):220-225.
    [76]杨春霞,李火根,程强,等.南林895杨抗旱耐盐基因DREB1C的转化[J].林业科学,2009,45(2):18-21.
    [77]杨凤军,李天来,宿越,等. NaCl、单Na+、Cl-胁迫对不同番茄幼苗光合特性的影响[J].华北农学报,2009,24(4):163-168.
    [78]杨洪兵,丁顺华,邱念伟,等.小麦幼苗拒Na+部位的Na+拒机理[J].植物生理与分子生物学学报,2001,27(2):179-185.
    [79]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5).
    [80]杨涓,许兴,魏玉清,等.盐胁迫下枸杞叶片细胞表面糖蛋白的变化[J].西北植物报,2004,24(11):2053-2056.
    [81]袁坤,王明庥,黄敏仁.一种适合杨树叶片的蛋白质提取方法[J].南京林业大学学报(自然科学版),2007,3(31):119-121.
    [82]袁坤,潘惠新,杨礼富.等.杨树叶片蛋白质组分析[J].南京林业大学学报(自然科学版),2009,3(33):13-16.
    [83]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,40(9),1-3.
    [84]张川红,沈应柏,尹伟伦.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,2(38):27-31.
    [85]张洁明,孙景宽,刘宝玉,等.盐胁迫对荆条、白蜡、沙枣种子萌发的影响[J].植物研究,2006,5(26):595-599.
    [86]张金凤.盐胁迫下8个经济林树种苗木反应特性的研究[D].山东农业大学,硕士学位论文,2004,6.
    [87]张可群.速生优质杨新品种-南林95杨和南林895杨[J].农业知识,2004(1):17.
    [88]张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J].复旦学报,2001,40(5):556-561.
    [89]张明艳.杜仲对盐胁迫反应的研究[M].甘肃农业大学,2000.
    [90]张秋芳.盐胁迫对盐生植物叶片SOD及光合特性的效应[D].山东师范大学,硕士学位论文,2002,4.
    [91]张淑红,张恩平,司龙亭,等.盐胁迫对黄瓜幼苗渗透调节物质含量的影响[J].中国蔬菜,2005(12):30-31.
    [92]张妍,王瑛,梁玉玲,等.转LEA3基因水稻的抗性分析[J].河北农业大学学报,2005,28(5):33-36.
    [93]赵会玉,海梅荣,达布希拉图,等. NaCl胁迫下渗透调节物质对黄瓜生长和生理特性的影响[J].安徽农业科学,2010,38(19):10004-10006.
    [94]赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990.
    [95]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002.
    [96]邹丽娜.盐分胁迫下紫穗槐生理生长生理特性及营养成分特征[D].兰州大学,硕士学位论文,2010,5.
    [97]诸葛强,房丹,李秀芬,等.美洲黑杨杂种优良无性系转抗虫基因(Bt和CpTI)的研究[J].分子植物育种,2006,4(6):819-824.
    [98] Abbasi F M, Komastu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath[J].Proteomics,2004,4:2072-2081.
    [99] Alshammary S F, Qian Y L, Wallner S J. Growth response of four turfgrass species to salinity[J].Agricultural water management,2004,(66):97-111.
    [100] Belkhadi A, Hediji H, Abbes Z. Effects of exogenous salicylic acid pre-treatment on cadmium toxicityand leaf lipid content in Linum usitatissimum L[J]. Ecotoxicology and Environmental Safety,2010,73:1004-1011.
    [101] Blumwald E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology,2000,4:434.
    [102] Carter D R, Cheeseman J M. The effect of extemal NaCl on thylakoid stacking in lettuce plants[J].Plant Cell Environ,1993,16(2):215-223.
    [103] Chen G X, Asada K. Asorbate peroxidase in tea leaves occurrence of two isoenzymes and theirdifferences in enzymatic and molecular properties[J]. Plant Cell Physiology,1989,30:987-998.
    [104] Damerval C, Le Guilloux M. Characterization of novel proteins affected by the opaque2mutation andexpressed during maize endosperm development[J]. Molecular and General Genetics,1998,257:354-361.
    [105] Dani V, SimonW J, Duranti M, et al. Changes in the tobacco leaf apoplast proteome in response to saltstress[J].Proteomics,2005,5:737-745.
    [106] Ericson M C, Alfinito S H. Proteins produced during salt stress in tobacco cell culture[J]. PlantPhysiology,1984,74:506-509.
    [107] Foyer C H, Halliwell B. Presence of glutathione and glutathione reductase in chloroplast: a proposedrole in ascorbic acid metabolism[J]. Planta,1976,133:21-25.
    [108] Graham D, Patterson G R. Responses of plants to low nonfreezing temperatures:proteins, metabolism,and acclimation[J]. Annual Review of Plant Physiology,1982,33:347-372.
    [109] Hare P D, Cress W A, Staden J V. Dissecting the roles of osmolyte accumulation during stress[J].Plant Cell Environ,1998,(21):535-553.
    [110] John L F, Michael W P, Ken N, et al. Salt,increased glutathione biosynthesis plays a role in nickeltolerance in thlaspi nickel hyper accumulators[J]. The Plant Cell,2004,16:2176-2191.
    [111] Knops M H, Reinhart K. Specific leaf area along a nitrogen fertilization gradient[J]. American MidlandNaturalist,2000,144(2):265-272.
    [112] Kocsy G, Szalai G, Galiba G. Induction of glutathione synthesis and glutathione reductase activity byabiotic stresses in maize and wheat[J]. Scientific World Journal,2002,21(2):1699-1705.
    [113] Kornyeyev D, Dmytro K, Barry A. et al. Enhanced photochemical light utilization and decreasedchilling-induced photoinhibition of photosystem II in cotton over expression genes encodingchloroplast-targeted antioxidant enzymes[J]. Physiol Plant,2001,133:323-331.
    [114] Lacand D, Durand M. Na+and K+transport in excised soybean roots[J]. Physiol Plant,1995,93:132-138.
    [115] Ladyman J A R, Ditz K M, Grumet R, et al. Genotypic variation for glycine betaine accumulation bycultivated and wild barley in relation to water stress [J].Crop Science,1983,(23):465-468.
    [116] Lamport Derek T A, Northcote D H. Hydroxyproline in cell walls of higher plants[J]. Nature,1960,188:665-666.
    [117] La Rosa P C, Singh N K, Hasegawa P M, et al. Stable NaCl tolerance of tobacco cells is associatedwith enhanced accumulation of osmotin[J]. Plant Physiology,1989,91:855-861.
    [118] La Rosa P C, Chen Z, Nelson D E, et al. Osmotin Gene Expression is post transcriptionallyregulated[J].Plant Physiol,1992,100:409-415.
    [119] Liang Z W, Wang Z C, Ma H Y, et al. The Progress in Improvement of High pH Saline-Alkali Soil inthe Songnen Plain by Stress Tolerant Plants[J]. Journal of Jilin Agricultural University,2008,30(4):517-528.
    [120] Li G W, Peng Y H, Yu X, et al. Transport functions and expression analysis of vacuolar membraneaquaporins in response to various stresses in rice[J]. Plant Physiol,2008,165(18):1879-1888.
    [121] Ludewig U, Dynowski M. Plant aquaporin selectivity:where transport assays,computer simulations andphysiology meet[J]. Celluar and Molecular Life Sciences,2009,66(19):3161-3175.
    [122] Macfarlane G R, Burchett M D. Cellular distribution of copper,lead and Zinc in the grey mangrove,Avicennia marina (Forsk)Vierh [J]. Aquatic botany,2000,(68):45-59.
    [123] Maurel C, Reizer J, Schroeder J I, et al. The vacuolar membrane protein γ-TIP creates water specificchannels in Xenopus oocytes[J]. European Molecular Biology Organization,1993,12(6):2241-2247.
    [124] McNeil S D, Nuccio M L, Hanson A D. Betaines and related osmoprotectants:targets for metabolicengineering of stress resistance[J]. Plant Physiol,1999,(120):945-949.
    [125] Michelet B, Boutry M. The Plasma Membrane H+-ATP ase: a Highly Regulated Enzyme with MultiplePhysiological Functions[J].Plant Physiol,1995,108(1):1-6.
    [126] Ndimba B K, Chivasa S, Simon W J, et al. Identification of Arabidopsis salt and osmotic stressresponsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry[J].Proteomics,2005,16:4185-4196.
    [127] Neelam Misra, Ajay K.Gupta. Effect of salt stress on proline metabolism in two high yieldinggenotypes of green gram[J]. Plant Science,2005,169:331-339.
    [128] Ott J C. Regulation of the photosynthetic election transportchain[J]. Plant,1999,209:250-258.
    [129] Parida A K, Das A B. Salt tolerance and salinity effects on Plants: a review[J]. Ecotoxicology andEnvironmental Safety.2005(60):324-349.
    [130] Plomion C, Lalanne C, Claverol S, et al. Mapping the proteome of poplar and application to thediscovery of drought-stress responsive proteins[J]. Proteomics,2006,6(24):6509-6527.
    [131] Rao G G, Rao G R. Pigment composition and chlorophyase activity in pigment pea and Gingellyeunder NaCl salinity[J]. Indian Jexp Biology,1981,19:768-770.
    [132] Rodriguez H G, Boberts K M, Jordan W R. Growth water relations and accumulation of organic andinorganic solutes in roots of Maize seedlings during salt stress[J]. Plant Phyiol.1997,113:881-893.
    [133] Sairam R K, Srivastava G C, Agarwal S, et al. Differences in antioxidant activity in response to salinitystress in tolerant and susceptible wheat genotypes[J]. Plant Molecular Biology,2005,49:85-91.
    [134] Sawada H, Sung I S,Usui K J,et al. Adaptive mechanism of Echinochloa crus-galli Beau.var.FormosansHowe under salt stress: Effect of salicylic acid on salt sensitivity[J]. Plant Science,2008,174:583-589.
    [135] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phytol,1993(125):27-58.
    [136] Voikmar K M, Hu Y, Steppuhn H. Physiological Responses of Plant Salinity[J]. Plant Science,1998,78(1):19-27.
    [137] WANG W-Q, LI Bin, MENG Q-W, et al. The sequence of Lycopersicon esculentum thylakoid-boundascorbate peroxidase gene TtAPX[J]. Journal of Plant Physiology and Molecular Biology,2002,28(6):491-492.
    [138] Weis P, Windham L, Burke D J, et al. Release into the environment of metals by two vascular saltmarsh plants [J]. Marine Environmental Research,2002,(54):325-329.
    [139] Xu D P, Duan X L, Wang B Y, et al. Expression of a late embryogenesis abundant protein gene,HAV1,from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiology,1996,110(1):249-257.
    [140] Yang Y, Jiang D A, Xu H X, et al. Cyclic electron flow around photosystem I is required for adaptationto salt stress in wild soybean species Glycine cyrtolaba ACC547[J]. Biology Planta,2006,50:586-590.
    [141] Zhu C F, Schraut D, Hartung W. Differential responses of maize MIP genes to salt stress and ABA[J].Experimental Botany,2005,56(421):2971-2981.
    [142] Zhu J K. Plant salt tolerance[J]. Trends Plants Science,2001,6:66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700