拖曳式重复使用运载器飞行动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运载器的重复使用是未来航天运输发展的必然趋势,而重复使用运载器的发射方式多种多样,拖曳式空中发射就是其中的一种。
     为了实现我国天地往返航天运输系统“快速、机动、廉价、可靠”的发展目标,国家高技术研究发展计划(863计划)对各种天地往返运输系统的发射方式进行了探索研究。在国家863计划的支持下,我们对拖曳式两级重复使用跨大气层飞行器概念及关键技术进行了专题研究,本论文的研究内容就是该专题的一部分。由于缺乏相应的参考资料,该项研究的困难极大。在国内,尚无他人开展此项工作;在国外,除了提出拖曳式空中发射RLV这个概念外,再也没有其他有价值的资料可以参考。所以,该项目和该论文的任何一项研究成果都是具有一定的创新性和探索性。
     论文回顾和分析了国外,包括日本、欧洲、俄罗斯、印度,特别是美国的重复使用运载器的发展历史、现状,总结了世界未来重复使用运载器的发展趋势,分析了重复使用运载器空中发射方式的性能优势。简要阐述了如下3种空中发射方式:背负式发射、空中加油式发射和拖曳式发射,并对拖曳式空中发射的概念和优点进行了较为详细的介绍。根据拖曳式空中发射系统的特点,进行了系统的概念设计。通过对拖曳系统中拖缆细致而深入的研究,建立了多种拖缆的数学模型。依据拖曳系统的耦合特性和约束条件,建立了拖曳飞行动力学和运动学方程,提出了一种基于仿真的拖曳系统飞行性能计算方法。最后,在分析拖曳系统中飞行器的静稳定性之后,采用拖缆的“直线线性弹簧”模型,建立了拖曳系统的小扰动运动方程,并对系统中飞行器的动态特性和品质进行了初步计算、仿真和分析。论文所进行的创新性研究主要表现在以下几个方面:
     1) 针对拖曳式空中发射重复使用运载器的技术指标要求及拖曳系统的特点,进行了拖曳式空中发射系统的概念设计,尤其是运载器的概念设计。
     2) 针对拖曳系统的耦合特性和约束条件,对拖曳系统中的柔性体——拖缆进行了细致的研究,建立了拖缆的多种数学模型,包括:直线线性弹簧、刚化柔性悬索、弹簧柔性体、等距约束、刚化柔性体、完全柔性体等。其中“直线线性弹簧”模型和“刚化柔性悬索”模型在拖曳系统的仿真计算中得到了成功应用。
     3) 从拖曳飞机、运载器运动方程和拖缆数学模型出发,建立了拖曳系统中三体相互耦合和约束的动力学和运动学方程。
     4) 根据建立的拖曳系统动力学和相应的运动学方程,对拖曳系统中运载器在纵向平面内和水平面内的航迹控制进行了研究,达到使运载器跟随拖曳飞机的目的。
     5) 基于仿真的方法,对拖曳系统的起飞性能和基本飞行性能进行了研究,以验证拖曳系统的飞行性能能否满足运载器发射的要求。所研究的拖曳系统起飞性能和基本飞行性能有:起飞滑跑距离、平飞最大速度、平飞最小速度、升限。
     6) 采用拖缆的“直线线性弹簧”模型,建立了拖曳系统的小扰动运动方程,
The reuse of vehicle is the trend of the development of space transportation. There are many kinds of launch modes for reusable launch vehicles (RLVs), the air-launch is just one.
    In order to implement our development target of the space transportation system, that is "quick, flexible, cheap and reliable", the high-tech research and development program of China (863 program) has investigated all kinds of launch methods of transportation system. Under this project, we carried on an exploratory research of the two-stage-to-orbit transatmospheric vehicle and some key technology. This dissertation belongs to this research. The difficulties of the research came from the lack of references. So, every piece of the research findings is creative and exploratory.
    This dissertation reviewed and analyzed the history, current status and development trend of foreign RLVs in Japan, Europe, Russia, India and America. 3 kinds of air-launched methods and their performance advantages were introduced simply, including captive on top, aerial refueled, and towed. The concept design of the towed air-launched system was studied in detail according to the system characteristics. The towline in the towed air-launched vehicle system was researched in depth and finely. Many kinds of the towline mathematical models were founded. According to the coupling characteristics and constrained conditions of the towing system, the models of dynamics and kinematics of the towing system were built up. Some flight performances of the towing system were studied by simulation method. Finally, the static stability and the dynamic characteristics and flying quality of the vehicles in the towing system were analyzed and simulated. All creative research findings are showed as follows.
    1) Aiming at the technical order to the towed air-launched vehicle and the characteristics of the towing system, a concept design for a towed air-launch system is archived
    2) On the basis of the towing system's coupling characteristics constrained conditions, 6 kinds of mathematical models of the towline —a flexible body, are studied, which are linear spring, flexible suspended cable with rigidization, spring flexible body, equal distance restriction, flexible body with rigidization, and flexible body. The linear spring model and flexible suspended cable with rigidization model are applied in simulation calculation of the towing system.
    3) Based on dynamic and kinematic equations of the towing aircraft and towed vehicle and towline's mathematical models, the dynamic and kinematic equations of the towing system with three entities coupling and constrained are build.
    4) In the light of the dynamic and kinematic equations of the towing system, the trajectory control of the towed vehicle is studied, in order to achieve that the vehicle can follow the towing aircraft.
引文
[1] 王丹刚.世界航天运载器大全[Z].北京:宁航出版社,1996.
    [2] 曹鹤荪.中国大百科全书航空航天卷[M].北京:中国大百科全书出版社,1985.
    [3] 段中林,代增刚.航天器的分类研究[J].指挥技术学院学报,2001,Vol 12(2):42~46.
    [4] 肖其虎,唐硕.运载火箭空中发射的分离运动分析[J].导弹与航天运载技术,2004,VOL246(4).13~27
    [5] 赵颖.NASA的综合航天运输计划[J].国际太空,2001(11),1
    [6] 科明.可重复使刚运载器技术的发展趋势[J].中国航天.2001(g),24~29
    [7] 航天运输系统空中发射方式方案探索研究[R].长沙:国防科技大学航天与材料工程学院,2003.
    [8] 运载火箭机载发射概念研究[R].西安:西安工业大学航天工程学院,1999.
    [9] 高超声速飞行器技术发展战略研究[R].北京:北京航空航天大学,2002.
    [10] 国家高技术航天领域交通运输技术专家组.第二届会通运输系统发展战略研讨论文集.2000.8.
    [11] 李春丽.牵引飞行动力学初步研究[D].工学硕十学位论文.2003.4
    [12] T.A.Heppenheimer(美),纪绍钧译著.美国国家空天飞机计划[M].北京:航空工业出版社,1989.12.
    [13] R. L. Chase, M. H. Tang. A History of the NASP Program from the formulation of the Joint Program Office to the termination of the HySTP Scramjet performance demonstration Program. AIAA-95-6031.
    [14] Liability Risk-Sharing Regime for U. S. Commercial Space Transportation: Study and Analysis. U. S. Department of Transportation, Federal Aviation Administration, Associate Administrator for Commercial Space Transportation, 2002. 4. http://ast.faa.gov/files/pdf/FAALiabilityRiskSharing4-02.pdf.
    [15] Introduction to NASA's Integrated Space Transportation Plan and Space Launch Initiative. National Aeronautics and Space Administration, 2001.5. http://www.slinews.com/slifinal.pdf.
    [16] 2004 U. S. Commercial Space Transportation Developments and Concept: Vehicle, Technologies, and Spaceports. Associate Administrator for Commercial Space Transportation, Federal Aviation Administration. 2004.1. http://ast.faa.gov/files/pdf/Book 1 screen.pdf
    [17] 2003 U. S. Commercial Space Transportation Developments and Concept: Vehicle, Technologies, and Spaceports. Associate Administrator for Commercial Space Transportation, Federal Aviation Administration. 2003. 1. http://ast.faa.gov/files/pdf/newtech03_finai.pdf.
    [18] 2002 U. S. COMMERCIAL SPACE TRANSPORTATION DEVELOPMENTS AND CONCEPTS: VEHICLES, TECHNOLOGIES, AND SPACEPORTS. Administrator for Commercial Space Transportation, Federal Aviation Administration. http://ast.faa.gov/files/pdf/newtech.pdf.
    [19] Reusable Launch Vehicle & Spaceports: Programs & Concepts for 2001. Associate Administrator for Commercial Space Transportation, Federal Aviation Administration. http://ast.faa.gov/files/pdf/2001rlv.pdf.
    [20] 2000 Reusable Launch Vehicle Programs & Concepts. Associate Administrator for Commercial Space Transportation. http://ast.faa.gov/files/pdf/2000rlv.pdf.
    [21] 1999 Reusable Launch Vehicle Programs & Concepts. Associate Administrator for Commercial Space Transportation. http://ast.faa.gov/files/pdf/99rlv.pdf.
    [22] Reusable Launch Vehicle Programs and Concepts. Associate Administrator for Commercial Space Transportation. http://ast.faa.gov/files/pdf/98rlv.pdf.
    [23] Larry G. Sills. Space-Based Global Strike: Understanding Strategic and Military Implications. Occasional Paper No. 24, Center for Strategy and Technology, Air War College. 2001.
    [24] Larry G. Sills. Prompt Global Strikes Through Space: What Military Value? A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements.2000.
    [25] Marti SariguI-Klijn, Ph. D. and Nesrin SariguI-Klijn, Ph. D. A Study of Air Launch Methods for RLVs. Mechanical and Aeronautical Engineering Dept, University of California. AIAA 2001-4619.
    [26] G. E. Mueller, J. Cuzzupoli, R. Kohrs, D. F. Lepore. Building the K-1 Reusable Aerospace Vehicle AS A Commercial Venture. Kistler Aerospace Corporation. IAA-99-IAA. 1. 2. 02.
    [27] Ramon Chase, Ming Tang. The Quest for Single Stage Earth-to-Orbit: TAV, NASP, DC-X and X-33 Accomplishments, Deficiencies, and Why They Did Not Fly. AIAA-2002-5143.
    [28] Dryden Flight Research Center, Eclipse Tow Launch Demonstration Project, National Aeronautics and Space Administration, 1998. FS-2002-09-049-DFRC
    [29] Ken Norlin and Jim Murray, Simulations in Support of Towed Flight Demonstration, National Aeronautics and Space Administration, 1998.
    [30] Marti Sarigul-Klijn Ph. D. and Nesrin Sarigul-Klijn Ph. D., A Study of Air Launch Methods for RLVs, AIAA, 2001.
    [31] Daniel P. Rayment. Aircraft Design: a Conceptual Approach, Lockheed Aeronautical, 1995.
    [32] E. Fallon II, A. Taylor, R. Meyerson. Landing System Design Summary of the K-1 Reusable Launch Vehicle. AIAA 99-1720
    [33] The Space Launch Initiative: Technology to Pioneer The Space Frontier. FS-2001-06-122-MSFC, June 2001.
    [34] Ramon L. Chase, L. E. McKinney, H. D. Froning, Jr. An Innovative Two Stage-to-Orbit Launch Vehicle Concept. April 3-5, 2001.
    [35] John E. Grant, Harvey J. Willenberg, Brian J. Tillotson, Joseph N. Stemler, Michal E. Bangham, Robert L. Forward.. A Two-Stage Commercial Launch System. AIAA-2000-5353.
    [36] J. Old, L. Ledsinger, J. Bradford, A. Charania, D. McCormic.. Stargazer: A TSTO Bantam-X Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion. AIAA 99-4888
    [37] 贾沛然,陈克俊,何力.远程火箭弹道学[M].北京:国防科技大学出版社,1993.12.
    [38] [苏]В.П.米申.航天飞行器设计基础[M].北京:航空工业出版社,1989.10.
    [39] 甘楚雄,刘冀湘.弹道导弹与运载火箭总体设计[M].北京:国防工业出版社,1996.1.
    [40] Elaine A. Wagner, John J. Burken. Deterministic Reconfigurable Control Design for the X-33 Vehicle. AIAA-98-4413.
    [41] Ping Lu, John M. Hanson. An Alternative Entry Guidance Scheme for the X-33. AIAA-98-4255.
    [42] John M. Hanson, Dan J. Coughlin. Ascent, Transition, Entry, and Abort Guidance Algorithm Design for the X-33 Vehicle. AIAA-98-4409.
    [43] Ping Lu, John M. Hanson. Entry Trajectory Design for the X-33 Vehicle. AIAA-97-3580.
    [44] Charles E. Hall, Michael W. Gallaher. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes. AIAA-98-4411.
    [45] J. Jim Zhu, Brad D. Banker. X-33 Ascent Flight Control Design by Trajectory Linearization—A Singular Perturbation Approach. AIAA-2000-4159.
    [46] John J. Burken, Ping Lu, Zhenglu Wu. Reconfigurable Flight Control Designs with Application to the X-33 Vehicle. NASA/TM-1999-206582
    [47] M. Christopher Cotting, John J. Burden, Reconfigurable Control Design for the Full X-33 Flight Envelope. NASA/TM-2001-210396.
    [48] [德]J·维滕伯格.多刚体系统动力学[M].北京:北京航空学院出版社,1986.7
    [49] 洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [50] 陆佑方.柔性多体系统动力学[M].北京:北京高等教育出版社,1996.7.
    [51] 袁士杰,吕哲勤编著.多刚体系统动力学[M].北京:北京理工大学出版社,1992.3.
    [52] 陈乐生,王以伦.多刚体动力学基础[M].哈尔滨:哈尔滨工程大学出版社,1995.3
    [53] [苏]В.И.叶果洛夫著,俞骧,戈华等译.水下拖曳系统[M].北京:海洋出版社,1988.
    [54] [日]堀高夫村,山茂明著,张育民等编译.悬索理论以及应用[M].中国林业出版社,1992.
    [55] 劭大晓.架空输电线路的电线力学计算[M].北京:水利电力出版社,1987.
    [56] 郭喜庆.高压架空送电线路机械计算[M].北京:农业出版社,1992.
    [57] 周振山.高压架空送电线路机械计算[M].北京:水利电力出版社,1984.
    [58] 吴小平,郑友祥,丘光中.拖缆火箭弹道计算研究[J].弹道学报,1995,Vol 7(1):42~49.
    [59] 严似松,黄根余.拖航系统静水中操纵运动的模拟计算[J].中国造船,1997,Vol139(4),12~19.
    [60] 严似松,黄根余.拖航系统在风浪中操纵运动的模拟计算[J].船舶力学,2001,Vol5(1),13~24.
    [61] 朱克强.流线刑与圆截面型拖缆的流体动力特性对拖曳系统的影响比较[J].华东船舶工 业学院学报,1999,Vol 13(6),13~18.
    [62] 肖业伦.航天器飞行动力学原理[M].北京:宁航出版社,1995.12.
    [63] 熊海泉等.飞机飞行力学[M].北京:航空工业出版社,1990.9
    [64] 胡寿松.自动控制原理[M].北京:科学出版社,2001.2
    [65] 金长江,范立饮,周士林.飞行动力学—飞机飞行性能计算[M].北京:国防工业出版社,1983.
    [66] 常振亚等.飞机飞行性能计算手册[Z].西安:飞行力学杂志社,1987.
    [67] 徐士良.C常用算法程序集(第二版)[M].北京:清华大学出版社,1996.
    [68] 钱杏芳,林瑞雄,赵亚南.导弹飞行动力学[M].北京:北京理工大学出版社,2000.8.
    [69] 徐敏,严恒元.飞行器空气动力工程计算方法[M].西安:西北工业大学航天工程学院,1998.
    [70] 飞机飞行品质计算手册[Z].航空工业出版社,1983.
    [71] H. P. Lee, M. Chang, M. K. Kaiser. Flight Dynamics and Stability and Control Characteristics of the X-33 Technology Demonstrator Vehicle. AIAA-98-4410.
    [72] Kelly L. Murphy, Robert J. Nowak. X-33 Hypersonic Aerodynamic Characteristics. AIAA-99-4162.
    [73] Brian R. Hollis, Richard A. Thompson. X-33 Aerodynamic and Aeroheating Computations for Wind Tunnel and Flight Conditions. AIAA 99-4163
    [74] Anhtuan D. Ngo, William B. Blake. Longitudinal Control and Footprint Analysis for a Reusable Military Launch Vehicle. AFRL-VA-WP-TP-2003-319.
    [75] Michael R. Mendenhall, Martin C. Hegedus. Integrated Aerodynamic Design and Analysis of Launch Vehicles. AIAA 01-0263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700