基于GIS小尺度下豫中烟田管理分区与推荐施肥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是农业生产的载体、物质基础和主要环境因素。由于受到各种因素的影响,土壤养分和作物产质量不仅具有明显的空间变异,而且这种变异在时间上也表现出一定的变化。我国农业生产是以家庭为基本单位的小规模生产,这种生产往往忽视土壤养分的空间变异性,而把地块作为均质、统一的单元进行水肥管理,这就致使地块的某些区域施肥不足或过高,不但造成了肥料的浪费,还增加了生态环境的压力,导致生产效率和经济效益的降低。因此,准确的掌握田间土壤养分的空间分布状况,确定合理的土壤养分管理单元,并根据田间试验建立施肥模型,给不同管理单元以推荐施肥量,是实现烟田土壤养分精准管理的基础。
     本试验选择平顶山郏县典型烟田为研究对象。利用GPS定位技术,于2009年在平顶山市郏县茨芭乡4 hm~2的烟田进行,以20 m×20 m间距的“网格取样法”取耕层土壤样品111个。综合运用逐步回归分析、地统计方法和GIS技术,分析了土壤养分的空间分布规律,提取了影响烟草品质的关键养分因子,划分了不同肥力水平的管理单元;利用大田试验数据建立推荐施肥模型,给每个分区以推荐施肥量,并通过烟叶品质分析来验证施肥模型,为实现烟田养分差异化管理提供理论基础。初步得到如下研究结果:
     (1)研究区域土壤pH值变幅范围为7.39 ~ 8.44,为烤烟生长次适宜区。土壤有机质、总氮、碱解氮和速效磷含量偏低,其平均含量分别为17.19 g kg~(-1)、0.95 g kg~(-1)、74.97 mg kg~(-1)和7.39 mg kg~(-1);土壤速效钾和有效锌的平均含量为161.4 mg kg~(-1)和1.79 mg kg~(-1),基本上属于高含量水平;土壤有效铁、有效铜和有效锰含量为适应范围,其平均含量分别为8.56 mg kg~(-1)、0.93 mg kg~(-1)和7.37 mg kg~(-1);试验区为中等保肥供肥能力的土壤,其阳离子交换量为16.15 cmol kg~(-1);土壤pH、有机质、阳离子交换量、有效铜、砂粒和粉粒的变异系数较小,变幅为3.22% ~ 13.95%,表现出相对稳定性;其余土壤属性的变异系数在17.9% ~ 43.85%之间变化,表现出较大的空间异质性。因此,可以认为在研究区进行分区差异化管理是非常必要的。正态性检验表明,所有土壤数据均为正态分布或近似符合正态分布,均能满足地统计分析要求。
     (2)地统计分析表明,土壤砂粒和粘粒的半方差理论模型为指数模型,其余土壤属性均为球状模型。除全氮、有机质和有效锌外,其它土壤属性理论模型的决定系数均大于0.91,且除速效钾外所有属性理论模型的残差均较小,说明所有土壤属性理论模型的拟合度较高,这些模型可用于后续空间插值。研究显示,研究区内土壤总氮、阳离子交换量、有效锌和粉粒的Co/(Co+C)比值的变幅为3.39% ~ 23.43%,均表现出强烈的空间相关性,说明其空间异质性主要是由结构性因素引起的;其余养分的Co/(Co+C)比值在30.87% ~ 50.00%之间变化,均为中等空间相关性,表明随机性因素和结构性因素均对其空间异质性起着作用。该区域土壤属性自相关范围在34.3 m ~ 376.3 m之间,所有土壤属性的空间相关距离均大于取样尺度,因此可以认为本研究的20 m土壤取样间距是合理的。空间插值结果显示,所有土壤属性均具有明显的空间分布格局。
     (3)本研究通过删除样点的方法,人为地创造不同的土壤取样间距,然后对不同取样间距下土壤属性进行半方差函数模型拟合和Kriging插值,利用交叉检验方法评价不同取样间距下的空间插值精度,进而确定各土壤属性的最佳取样间距。结果表明,研究区域内的碱解氮、速效磷、速效钾、速效铁和速效锌的合理取样间距为20 m,有机质和速效铜的合理取样间距为60 m,速效锰则以40 m间距进行取样较为合理。
     (4)逐步回归分析表明,研究区域土壤速效钾、有机质、速效磷和阳离子交换量对烤烟品质有着显著的影响,是限制该地区烤烟品质的关键养分因子。在农业生产上,要注意这4种养分的合理调控以保证高质量烤烟的生产。同时,这4种关键养分因子可作为分区数据源,利用模糊聚类分析进行管理单元划分。
     (5)将这4种关键养分因子运用于MZA软件中进行模糊聚类分析。结果表明,研究区被划分为4个管理单元,各单元内土壤养分和烟叶品质趋于一致,而单元间则表现出较大的差异性,这说明运用此方法对烟田划分不同单元进行精准管理是可行的。
     (6)利用曲劳-斯坦福方程进行合理的施肥推荐。通过2007年、2008年、2009年和2010年在平顶山市郏县选择有代表性烟田安排大田试验,以获取推荐施肥模型所需参数,并建立了土壤碱解氮、速效磷和速效钾含量和校正系数间的函数关系。结果表明,土壤养分与其校正系数之间以幂函数曲线相关最佳,各养分的校正系数均随其含量增加而下降。利用初步建立的推荐施肥模型,给出各分区推荐施肥量,为实现烟田养分的分区施肥奠定了基础。
     (7)将推荐施肥模型与管理分区相结合,给定每管理分区以推荐施肥量,同时于相应分区内设置对照,每个处理分别取烤后样C3F进行室内分析。结果显示,运用推荐施肥模型来确定施肥量比常规施肥更有利于优质烟叶的形成,烟叶的各类致香物质物质和总致香物质含量均较高,并且推荐施肥量较常规施肥量少,降低了农业成本,为烟田土壤养分分区管理和推荐施肥提供了理论依据。
Soil is the important carrier, material basis and main environmental of agricultural production. Because of various factors, soil nutrients and crop yield have spatial within-field variability, changing with the time. Agricultural production is based on the family as the basic unit of small-scale production in China. It often regards soil as symmetrical, uniform integer to deal with and ignores the variation of soil nutrient inside soil, so caused fertilizer insufficiently in some areas or fertilizer amply in the others field. This is not only casued the waste of the fertilizer but also constituted a threat to ecological environment, therefore the production efficiency and economic benefits are low. Therefore, it is the basic for the accurate nutrient management of tobacco field which the management zones (MZs) were determined based on accurately understood the spatial distribution of soil nutrients; the fertilization models were established based on field experiment, and the amount of recommended fertilizer was given for each MZs.
     In this study, the distinguishing tobacco plantation field of PingDingShan was selected for exploring the site-specific nutrient management. Soil samples were collected in March 2009. The samples were taken from the topsoil (0 ~ 20 cm) on an approximate 20 m grid sampling design (n = 111). A real-time kinematic global positioning system (GPS) survey was used to identify sampling locations. The spatial variability of soil nutrients in a tobacco-planted field was studied and spatial distribution maps of soil nutrients was generated by geostatistics and geographic information system (GIS), the key quality-limiting factors for tobacco in the study area was determine by stepwise multiple regression analysis, the MZs were delineated by fuzzy clustering algorithm. The fertilization models were established by the data from field experiment and the amount of recommended fertilizer was given for each MZs. Simultaneity, the fertilization models were evaluated by the quality of tobacco. This study provides a basis of information for site-spcific fertilizer management in tobacco-planted field. The primary conclusions were as follows:
     (1) The soils are weakly alkaline with pH levels ranging from 7.39 to 8.44. These pH conditions are not conducive to the production of high-quality tobacco growth. The content of soil OM, TN, AN and AP have low levels, and their mean were 17.19 g kg~(-1), 0.95 g kg~(-1), 74.97 mg kg~(-1), and 7.39 mg kg~(-1), respectively. The high content of AK and Zn were 161.4 mg kg~(-1) and 1.79 mg kg~(-1), respectively. Soil Fe, Cu, and Mn have medium content with mean of 8.56 mg kg~(-1), 0.93 mg kg~(-1), and 7.37 mg kg~(-1). The soil nutrient holding and delivery capacity was medium according to the CEC content (cmol kg~(-1)). Coefficients of variation ranged from approximately 3.22% for pH to almost 43.85% for available AP. Soil pH, OM, CEC, Cu, Sand, and Silt had low CV (3.22% ~ 13.95%), suggesting the relative stability. All other soil properties exhibited a medium variation (CV, 17.9% ~ 43.85%), indicating the heterogeneity of soil properties. Thus, differentiated management may be necessary to achieve maximum economic and environmental benefits. The Kolmogorov-Smirnov test revealed that all variables were normally distributed (P > 0.05) and did not require transformation.
     (2) The results of geostatisitical analyses are shown that the sand and clay ideally matched an exponential model, whereas the rest of the soil properties best fit the spherical model. The coefficients of determination (R2) of all the soil nutrients, expect for TN, OM, and Zn, were greater than 0.91, indicating a good fit. The value nugget-sill ratio is used to qualitatively define spatial dependence values. The nugget-sill ratios for TN, Zn, CEC, and silt were 3.39%, 13.61%, 17.01%, and 23.43%, respectively, suggesting strongly spatial dependence. Meanwhile, all other soil variables were moderately spatially dependent, with the nugget-sill ratios ranging from 30.48% to 49.99%. The range, expressed as distance, can be interpreted as the zone of in?uence diameter. This represents the average maximum distance over which the soil properties of the two samples are related. The range of Zn and silt were 34.3 m and 35.3 m, respectively, much smaller than the other nutrient. The smaller range suggests that smaller sampling intervals are needed for Zn and silt. The distributionmaps of all variables are shown that all soil properties have obvious spatial pattern.
     (3) In this study, the different sampling intervals were obtained artificially by deleting soil-sampling points from the actual sample figure, and the best models were modeled in different sampling intervals. The best models were used to obtain the content contour maps of soil properties in different sampling intervals. To evaluate the accuracy of the estimates, the performance of each interpolation under different intervals was assessed by comparing the deviation of estimates from the measured data through cross-validation. In this region, the interpolation errors of soil organic matter and available copper were lowest in the 60-m sampling interval. In the 20-m sampling interval, alkaline hydrolyzable N, available phosphorus, available potassium, available iron, and available zinc had the least errors of interpolation. Available manganese had the least interpolation error at the 40-m sampling interval. Overall, the sampling efficiency could be further improved. The method can be applied in a practical and cost-effective manner to facilitate soil sampling.
     (4) Through stepwise multiple regression analysis of the relationship between tobacco and soil nutrients showed that soil AK, OM, AP, and CEC were the key quality-limiting factors for tobacco in this area. To attain high-quality flue-cured tobacco, the four soil properties should be reasonably regulated. The four soil properties were aggregated into management zone (MZ) using a clustering algorithm.
     (5) The classification of data on the four soil properties for the delineation of the MZ can be carried out to effectively characterize the spatial variation of the soil nutrients and manage fertilizer application in the tobacco fields. The data on the four soil variables were imported into the MZA software through which clustering analysis was performed. Results of clustering analysis clearly indicated that grouping the data into four classes allowed both FPI and NCE indexes to be minimized. Clustering the four soil properties resulted in an optimum number of four cluster classes. Analysis of variance and CV indicated the heterogeneity of the soil properties and flue-cured tobacco quality among the four MZs. This study may provide a method for variable-rate fertilization management in tobacco-planted fields, and the application of MZ should improve the quality of ?ue-cured tobacco.
     (6) The rational fertilization models were building with Truog-Stanford equation. The models for nitrogen, phosphorus and potassium fertilizers recommendation were established based on four years field experiments. The result shown that the best relationship between soil nutrients and correction factors were power function. When the content of soil nutrients increased, their correction factor decreased. Using the three-fertilization model, the fertilizer application for four management zones were recommended, respectively. This study may provide a method for variable-rate fertilization management in tobacco-planted fields, and the application of MZ should improve the quality of ?ue-cured tobacco.
     (7) The fertilization recommendation for each MZs were generated by fertilization models and management zones, and using the quality of tobacco evaluate the effect of fertilization recommendation. The results indicated that the quality of tobacco in fertilization recommendation zone was better than the conventional fertilization with the chemical components and content of aroma constituent in flue-cured tobacco leaves. Recommended fertilizer reduced the amount of fertilizer application and the cost of agriculture. Based on the study, we conclude that tobacco-planted fields can be managed in a site-specific manner by these methods.
引文
[1] Krige D G.A statistical analysis of some of the borehole values in the Orange Free State gold field.Journal of the Chemical and Metallurgical Society of South Africa, 1952, 53: 47-64.
    [2] Matheron G. Principles of geostatistics. Economic Geology, 1963, 58:1250-1266.
    [3]侯景儒,郭光裕.矿床统计预测及地质统计学的应用与展望[J].北京:冶金工业出版社, 1993
    [4] David M. Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing Company, Amsterdam, 1977.
    [5] Journel A G and Huijbregts C J. Mining geostatistics. Academic Press Inc, 1978.
    [6] Clark I. Practical geostatistics. Applied Science Publishers, London, 1979
    [7] Ovalles F A, and Collins M E. Soil-landscape relationship sand soil variability in north central Florida. Soil Sci. Sac. Am. J. 1986, 50:401-408.
    [8] Oliver M A. Geostatistics and its application to soil science. Soil Use Manage, 1987, 3(1):8-20.
    [9] Yost R S, Uehara G, and Fox R L. Geostatistical analysis of soil chemical properties of large land areas,Ⅰ. Semivariograms. Soil Sci. Soc. Am. J. 1982, 46:1028-1037.
    [10] McBratney A B, and Webster R. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Jounral of Soil Science, 1986, 37:617-639
    [11] Mulla D J. Soil spatial variability and methods of analysis. In Renard CM et al (Ed.). Soil, crop, and water management systems for rainfed agriculture in the SudanoSahelian zone: Proc. Int. Workshop. Niamey. Niger. 7-11 Jan. 1987. ICRISAT. Patancheru. Andhra Pradesh. India, pp:241-252.
    [12] Miller P M, Singer M J, and Nielsen D R. Spatial variability of wheat yield and soil properties on complex hills. Soil Sci. AM. J. 1988, 52:1133-1141
    [13] Santra P, Chopra U K, and Chakraborty D. Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm. Current Science, 2008, 95(7): 937-945.
    [14] Conant R T, Paustian K. Spatial variability of soil organic carbon in grasslands: implications for detecting change at different scales. Environmental Pollution, 2002, 116:127-135.
    [15] Raat K J, Draaijers G P J, Schaap M G, et al. Spatial variability of throughfall water andchemistry and forest floor water content in a Douglas fir forest stand. Hydrology and Earth System Sciences, 2002, 6(3):363-374.
    [16] Sitharam T G, Samui P, and Anbazhagan P. Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models. Geotech Geol Eng. 2008, 26:503-517.
    [17]侯景儡.中国地质统计学(空间信息统计学)发展的回顾与前景[J].地质与勘探,1997,33(1):53-58.
    [18]沈思渊.土壤空间变异研究中地统计学的应用及其展望[J].土壤学年进展, 1989, 17(3):11-2.
    [19]李天生,周国法.空间自相关与分布型指数研究[J].生态学报, 1994, 14(3):327-331
    [20]李哈滨,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报, 1998,9(6): 651-65.
    [21]冯娜娜,李廷轩,张锡洲,王永东,夏建国.不同尺度下低山茶园土壤有机质含量的空间变异.生态学报, 2006, 26(2):349-356.
    [22]张伟,陈红松,王克林,等.典型喀斯特峰丛洼地坡面土壤养分空间变异性研究, 2008,农业工程学报, 24(1):68-73.
    [23]贾艳红,赵传燕,南忠仁,等.黑河下游地下水波动带土壤盐份空间变异性研究. 2008,土壤学报, 45(3),420-430
    [24] Liu G S, Wang X Z, Zhang Z Y, et al. Spatial variability of soil properties in a tobacco field of central China. Soil Science, 2008, 173: 659-667.
    [25] Wang X Z, Liu G S, Hu H T, et al. Determination of management zones for a tobacco field based on soil fertility. Comput. Electron. Agric. 2009, 65:168-175.
    [26] Burrough P A. Soil variability: a late 20th centurey view. Soils and Fertilizers, 1993, 56(5):529-562.
    [27] Sadler E J, Busscher W J, Bauer P J, et al. Spatial scale requirements for precision farming: a case study in the southwestern USA. Agron. J. 1998, 90:191-197.
    [28] Warrick A W. Spatial variability. In: Environmental soil Physics, Hillel, D. (Ed.). Academic Press, USA. 1998, pp. 655-675.
    [29]王政权.地统计学及在生态学中的应用.北京:科学出版社, 1999.
    [30] Brejda J, Moorman J, Smith T B, et al. Distribution and variability of surface soil properties at a regional scale. Soil Sci. Soc. AM. J. 2000, 64:974-982.
    [31] Chien Y J, Lee D Y, Guo H Y, et al. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Sci. 1997, 162:291-298.
    [32] Li Y, Shi Z, Li F, et al. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Comput. Electron. Agric. 2007, 56:174-186.
    [33] Wibawa W D, Dludlu D L, Swenson L J, et al. Variable fertilizer application based on yield goal, soil fertility and soil map unit. J. Prod. Agric. 1993, 6:225-261.
    [34] Wollenhaupt N C, Wolkowski R P, and Clayton M K. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J. Prod. Agric. 1994, 7:441-448.
    [35] Li Y, Shi Z, Wu C F, et al. Optimised spatial sampling scheme for soil electriclal conductivity based on Variance Quad-Tree (VQT) method. Agricultural Sciences in China, 2007, 6:1463-1471.
    [36] Jiang H L, Liu G S, Wang W Z, et al. Spatial Variability of Soil Properties in a Long-Term Tobacco Plantation in Central China. Soil Sci. 2010, 175:137-144.
    [37] Webster R. Quantitative spatial analysis of soil in field. Advance in Soil Science, 1985, 3:1- 70.
    [38] Trangmar B B, Yost R S and Uehara G. Application of geostatistics to spatial studies of soil properties. Advance in Agronomy. Academic Press, 1985, 38: 45-94.
    [39] Cambardlla C A, Moorman T B, Novak J M, et al. Field-scale variability of soil properties in central lowa soils. Soil Science Society of America Journal, 1994, 58:1501-1511.
    [40] Rossi R E, Mulla D J, Journel A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 1992, 62:277-314.
    [41]秦耀东.土壤空间变异研究中的定量分析[J].地球科学进展, 1992,7(1):44-49.
    [42] Wang Y Q, Zhang Z C, Zhang J L, et al. Spatial variability of soil organic carbon in a watershed on the Loess Plateau. Pedosphere, 2009, 19(4):486-495.
    [43] Kheir R B, Greve M H, Abdallah C, et al. Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environmental Pollution, 2010, 158:520-528.
    [44] Mabit L, Bernard C, Makhlouf M, et al. Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma, 2008, 145: 245-251.
    [45] Wang L, Wu J P, Liu Y X, et al. Spatial variability of micronutrients in rice grain and paddysoil. Pedosphere, 2009, 19(6): 748-755.
    [46] Cressie C. The origins of kriging. Math Geol. 1990, 22(2):239-252.
    [47] Smith J L, Halvorson J J, and Papendick R I. Using multiplevariable indicator kriging for evaluating soil quality. Soil Sci. Soc.Am. J. 1993, 57: 743-749.
    [48]杨劲松,姚荣江.基于磁感式土壤表观电导率空间变异性的插值方法比较.农业工程学报, 2007, 23(9):50-57.
    [49]石小华,杨联安,张蕾.土壤速效钾养分含量空间插值方法比较研究.水土保持学报, 2006, 20(2):68-78.
    [50]李新,程国栋,卢玲.青藏高原气温分布的空间插值方法比较.高原气象, 2003, 22(6):565-573.
    [51]刘登伟,封志明,杨艳昭.海河流域降水空间插值方法的选取.地球信息科学, 2006, 8(4):75-83.
    [52]凌辉,武伟,王润,等.小尺度下土壤重金属铬含量的空间插值方法比较研究.西南大学学报(自然科学版), 2007, 29(11):93-99.
    [53]胡溶容,冀衡,张一扬,等.烤烟糖含量的空间变异特征.生态学杂志, 2007, 26(11): 1804-180.
    [54]高峻,黄元仿,李保国,等.农田土壤颗粒组成及其剖面分层的空间变异分析.植物营养与肥料学报, 2003, 9(2):151-157.
    [55]陈树人,肖伟中,朱云开,等.土壤养分和小麦产量空间变异性与相关性分析.农业机械学报, 2008, 39(10):140-143.
    [56]钟晓兰,周生路,李江涛,等.长江三角洲地区土壤重金属污染的空间变异特征—以江苏省太仓市为例.土壤学报, 2007, 44(1): 33-40.
    [57]赵宙,王赞红,张玉亮,等.城市近地面大气颗粒物空间分布的监测与分析.生态环境, 2008, 17(3):980-984.
    [58] Mzuku M, Khosla R, Reich R, et al. Spatial variability of measured soil properties across site-specific management zones. Soil Sci. Soc. Am. J. 2005, 69:1572-1579.
    [59] Moral F J, Terrón JM, Marques da Silva J R. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil & Tillage Research, 2010, 106, 335-343.
    [60] McBratney A B. The potential for site-specific manangement of cotton farming systems. Discussion Paper No.1. Co-operative research center for sustainable cotton productionAustralia, 1995.
    [61]王绍强,朱松丽,周成虎.中国土壤土层厚度的空间变异性特征.地理研究, 2001, 20(2):161-169.
    [62]姜娜,邵明安,雷廷武,等.黄土高原六道沟小流域坡面土壤入渗特性的空间变异研究.水土保持学报, 2005, 19(1):14-17.
    [63]张伟,陈洪松,王克林,等.喀斯特地区典型峰丛洼地旱季表层土壤水分空间变异性初探.土壤学报, 2006, 43(4):554-562.
    [64]江厚龙,王新中,刘国顺,等.烟田土壤质地的空间变异性研究.中国生态农业学报, 2010, 18(4):724-729.
    [65] Tang C L, and Piechota T C. Spatial and temporal soil moisture and drought variability in the Upper Colorado River Basin. Journal of Hydrology, 2009, 379:122-135.
    [66] Wang Y D, Feng N N, Li T X, et al. Spatial variability of soil cation exchange capacity in hilly tea plantation soils under different sampling scales. Agricultural Sciences in China, 2008, 7(1):96-103.
    [67] Alletto L, and Coquet Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma, 2009, 152:85-94.
    [68] Krotov D G, and Samsonova V P. Spatial variability in the distribution of particle-size fractions in agrogray soils and agrogray soils with the second humus horizon. Moscow University Soil Science Bulletin, 2009, 64(1):17-22.
    [69] Vanderlinden K, Giráldez J V, and Meirvenne M V. Soil water-holding capacity assessment in terms of average annual water balance in Southern Spain. Vadose Zone Journal, 2005, 4:317-328.
    [70] Duffera M, White J G, and Weisz R. Spatial variability of Southeastern U.S. Coastal Plain soil physical properties: implications for site-specific management. Geoderma, 2007, 137:327-339.
    [71] Vieira S R, and Gonzalez A P. Analysis of the spatial variability of crop yield and soil properties in small agricultural plots. Bragantia, Campinas, 2003, 62(1):127-138.
    [72] Fisher R A. Statistical method for scientific inference[M]. Oliver and Bzoyd. Edinburg. London. 1956
    [73]张长波,李志博,姚春霞,等.污染场地土壤重金属含量的空间变异特征及其污染源识别指示意义.土壤.2006,38(5):525-533.
    [74]路鹏,黄道友,宋变兰等.亚热带红壤丘陵区典型景观单元土壤养分的空间变异.植物营养与肥料学报.2005,11(6):717-723
    [75]杨玉玲,盛建东,田长彦等.盐化灌淤土壤速效氮、磷、钾空间变异性与棉花生长关系初步研究.中国农业科学, 2003, 36(5):542-547.
    [76]王淑英,于同泉,王建立等.北京市平谷区土壤有效微量元素含量的空间变异特性初步研究.中国农业空间, 2008, 41(1):129-137.
    [77] Gaston L A, Locke M A, Zablotowicz R M, and Reddy K N. Spatial variability of soil properties and weed populations in the Mississippi Delta. 2001. Soil Sci. Soc. Am. J. 65:449-459.
    [78] Fuka M M, Engel M, Haesler F, et al. Diversity of proteolytic community encoding for subtilisin in an arable field: spatial and temporal variability. Biol Fertil Soils. 2008, 45:185-191.
    [79] Hu X N, Li H, Sun DF, et al. Multi-scale spatial structure of heavy metals in agricultural soils in Beijing. Environ Monit Assess. DOI 10.1007/s10661-009-0916-7.
    [80]陈海生,刘国顺,刘大双等. GIS支持下的河南省烟草生态适宜性综合评价.中国农业科学, 2009, 42(7):2425-2433.
    [81]鲍金星,高明,秦建成.重庆市植烟土壤基础环境信息空间变异性分析.西南农业学报, 2006, 19(3):409-413.
    [82]张金萍,张保华,秦耀辰.山东聊城市耕层土壤养分的空间异质性分析.空间导报, 2009, 27(23):49-52.
    [83] Wang Z M, Zhang B, Song K S, et al. Spatial variability of soil organic carbon under maize monoculture in the Song-Nen Plain, northeast China. Pedosphere, 2010, 20(1):80-89.
    [84] Rahman M R, Shi Z H, and Cai C F. Soil erosion hazard evaluation-An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 2009, 220:1724-1734.
    [85] Wang D D, Shi X Z, Lu X X, et al. Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geoderma, 2010, 154:302-310.
    [86]金继运,白由路.精准农业研究的回顾与展望[J].农业网络信息, 2004, 4(4):3-10.
    [87]郑学坚.遥感技术在工业工程中的应用.北京:清华大学出版社, 1997.
    [88] Atheroton B C, Morgan M T, Shearere S A, et al. Site-specific farming: A perspective oninformation needs, benefits, and limitations. J. Soil Water Coserv. 1999, 54(2):455-461.
    [89]刁承军,胡伟.关于精准农业发展的探讨[J] .农机市场, 2003, ( 8):16-18.
    [90]刘金铜,陈谋询,蔡虹.我国精准农业的概念、内涵及理论体系的初步构建[J].农业系统科学与综合研究, 2001, 17(3):180-182.
    [91]于东升,史学正. GIS中土壤信息系统的研究进展.土壤学进展, 1993, 21 (6):26-31.
    [92]黄杏元等.地理信息系统概论[M].北京:高等教育出版社. 2001.
    [93]陈彦,吕新.基于模糊c-均值聚类法的绿洲农田精确管理分区研究.生态学报, 2008, 28(7):3067-3074.
    [94]李翔,潘瑜春,马景宇,等.基于多种土壤养分的精准管理分区方法研究.土壤学报, 2007, 44(1):14-20.
    [95]李艳,史舟,吴次芳,等.基于多源数据的盐碱地精确农作管理分区研究.农业工程学报, 2007, 23(8):84-89.
    [96] Jenny H. Factors of soil formation-a system of quantitative pedology. McGraw-Hill, New York, 1941.
    [97] Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fert. Soil. 1998, 27:315-334.
    [98] Ferguson R B, Hergert G W, Schepers G S, et al. Site-specific nitrogen management of irrigated maize: yield and soil residual nitrate effects. Soil Sci. Soc. Am. J. 2002, 66:544-553.
    [99] Cahn M D, Hummel J W, and Brouer B H. Spatial analysis of soil fertility for site-specific crop management. Soil Sci. Soc. Am. J. 1994, 58:1240-1248.
    [100]宋同清,彭晚霞,曾馥平,等.喀斯特木论自然保护区旱季土壤水分的空间异质性.应用生态学报, 2009, 20(1):98-104.
    [101]苑小勇,黄元仿,等.北京市平谷区农用地土壤有机质空间变异特征.农业工程学报, 2008, 24(2):70-76.
    [102]廖桂堂,李廷轩,王永东,等.不同尺度下低山茶园土壤主要微量元素的空间变异性.土壤, 2008, 40(2): 257-263.
    [103]刘勇,张红,尹京苑.汾河太原段土壤中Hg、Cr空间分布与污染评价.农业工程学报, 2008, 24(5):57-60.
    [104]张金池,李海东,林杰,等.基于小流域尺度的土壤可蚀性K值空间变异.生态学报, 2008, 28(5):2219-2206.
    [105] Aggelopoulou K D, Pateras D, Fountas S, et al. Soil spatial variability and site-specificfertilization maps in an apple orchard. Precision Agric. 2011, 12:118-129.
    [106]蒋超,钱亦乐,杨海峰,等.古尔班通古特沙漠南缘浅层风沙土含水量空间变异.干旱区研究, 2009, 26(4):519-525.
    [107] Timlin D J, Pachepsky Y, and Bryant R B. Spatial and Temporal Variability of Corn Grain Yield on a Hillslope. Soil Sci. Soc. Am. J. 1998, 62:764-773.
    [108] He Y, Hu K L, Chen D L, et al. Three dimensional spatial distribution modeling of soil texture under agricultural systems using a sequence indicator simulation algorithm. Computers and Electronics in Agriculture, 2010, 71(1):24-31.
    [109] Martin J G, and Bolstad P V. Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape. Soil Biology & Biochemistry, 2009, 41: 530–543.
    [110]张铁铮,刘树庆,杨志新.张家口葡萄产区土壤中微量元素空间变异性及对葡萄品质影响.北方园艺, 2010, 4:15-19.
    [111]赫晓慧,温仲明.小流域地形因子影响下的土壤水分空间变异性研究.水土保持研究, 2008, 15(2):80-87.
    [112]陈义强,刘国顺,习红昂.微尺度下烟田铁的空间变异性及其与烟叶铁的相关分析.生态学报, 2009, 29(3):1448-1458.
    [113]闫金凤,陈曦,周可法.土地利用变化对绿洲区地下水硝酸盐空间变异特征的影响.农业环境科学学报, 2008, 27(4): 1475-1481.
    [114]陈海生,曹瑛杰.基于地统计学和GIS的河南省降水量和蒸发量空间变异性分析.河南大学学报(自然科学版), 2008, 38(2):160-165.
    [115]王景雷,孙景生,张寄阳,等.基于GIS和地统计学的作物需水量等值线图.农业工程学报, 2004, 20(5):51-54.
    [116]丁美花,杨星卫,李湘阁,等.基于GIS技术的上海精准农业水稻生产潜力估算模型.土壤通报, 2006, 37(1):56-60.
    [117]娄国强,吕文彦,余昊卜,等.基于GS和GIS的春尺蠖种群分布动态研究.昆虫学报, 2006, 49(4):613-618.
    [118] Snyder B A, Callaham M A, Hendrix P F. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biol Invasions. 2011, 13(2): 349-358.
    [119] Mwaura F, Kaburu H M. Spatial variability in woody species richness along altitudinalgradient in a lowland-dryland site, Lokapel Turkana, Kenya. Biodivers Conserv. 2009, 18:19-32.
    [120] Hart M A, and Sailor D J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol. 2009, 95:397-406.
    [121] Jung J W, Lee S W, Hwan H S, et al. The effects of spatial variability of land use on stream water quality in a costal watershed. Paddy Water Environ. 2008, 6:275-284.
    [122] Hu W Y, Lu Y L, Wang T Y, et al. Spatial variability and temporal trends of HCH and DDT in soils around Beijing Guanting Reservoir, China. Environ Geochem Health, 2010, 32(5):441-449.
    [123] Wijaya K, Nishimura T, Setiawan B I, et al. Spatial variability of soil saturated hydraulic conductivity in paddy field in accordance to subsurface percolation. Paddy Water Environ. 2010, 8:113-120.
    [124] Masvaya E N, Nyamangara J, Nyawasha R W, et al. Effect of farmer management strategies on spatial variability of soil fertility and crop nutrient uptake in contrasting agro-ecological zones in Zimbabwe. Nutr Cycl Agroecosyst. 2010, 88(1):111-120.
    [125] Srayeddin I, and Doussan C. Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography. Plant Soil, 2009, 319:185-207.
    [126] Shi J C, Xu J M, and Huang P M. Spatial variability and evaluation of status of micronutrients in selected soils around Taihu Lake, China. J. Soils Sediments, 2008, 8:415-423.
    [127] Doerge, T. Management zone concepts. SSMG-2. In: Clay et al. ed. Site specific management guidelines. Available at http://ppifar.org/ssmg (verified 4 Jan. 2006). Potash and Phosphate Inst., Norcross, GA. 1999.
    [128] Fridgen J J, Kitchen N R, Sudduth K A, et al. Management zone analyst (MZA ): software for subfield management zone delineation. A gron J., 2004, 96:100-108.
    [129] Koch B, Khosla R, Frasier W M, et al. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron. J. 2004, 96: 1572-1580.
    [130] Khosla R, Fleming K, Delgado J A, et al. Use of site-specific management zones to improve nitrogen management for precision agriculture. J. Soil Water Conserv. 2002, 57: 513~518.
    [131]白由路,金继运,杨俐苹,等.基于GIS的土壤养分分区管理模型研究[J].中国农业科学, 2001, 34:46-50.
    [132]陈彦,吕新.基于FCM的绿洲农田养分管理分区研究.中国农业科学, 2008, 41(7):2016-2024.
    [133]王海江,崔静,陈彦,等.基于模糊聚类的棉田土壤养分管理分区研究.棉花学报, 2010, 22(4):339-346.
    [134] Kitchena N R, Suddutha K A, Myersb D B, et al. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Computers and Electronics in Agriculture, 2005, 46:285–308.
    [135] Miao Y X, Mulla D J, Batchelor W D, et al. Evaluating management zone optimal nitrogen rates with a crop growth model. Agron. J. 2006, 98:545-553.
    [136] Bongiovanni R G, Robledo C W, Lambert D M. Economics of site-specific nitrogen management for protein content in wheat. Computers and Electronics in Agriculture, 2007, 58:13-24.
    [137] Fleming K L, Heermann D F, and Westfall D G. Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation. Agron. J. 2004, 96:1581-1587.
    [138] Chang J Y, Clay D E, Carlson C G, et al. Different Techniques to Identify Management Zones Impact Nitrogen and Phosphorus Sampling Variability. Agron. J. 2003, 95:1550-1559.
    [139]高祥照,胡克林,郭焱,等.土壤养分与作物产量的空间变异特征与精确施肥.中国农业科学, 2002, 35:660-666.
    [140]李翔,潘瑜春,赵春江,等.基于多年产量数据的精准农业管理分区提取与尺度效应评价.中国农业科学, 2005, 38(9):1825-1833.
    [141] Jiang H L, Liu G S, Wang R, et al. Delineating site-specific quality-based management zones for a tobacco field. Soil Sci. 2011, 176(4): 206-212.
    [142] Derby N E, Casey F X M, and Franzen D W. Comparison of Nitrogen Management Zone Delineation Methods for Corn Grain Yield. Agron. J. 2007, 99:405-414.
    [143] Brock A, Brouder S M, Blumhoff G, et al. Defining yield-based management zones for corn–soybean rotations. Agron. J. 2005, 97: 1115-1128.
    [144] Jaynes D B, Kaspar T C, Colvin T S, et al. Cluster analysis of spatiotemporal corn field patterns in an Iowa field. Agron. J. 2003, 95:574-586.
    [145] Flowers M, Weisz R, and White J G. Yield-based management zones and grid samplingstrategies: describing soil test and nutrient variability. Agron. J. 2005, 97:968-982.
    [146] Schepers J S, Schlemmer M R, Fergunson R B. Site-specific considerations for managing phosphorus. J Environ Qual, 2000, 29: 125- 130.
    [147] Long D S, Carlson G R and De Gloria S D. Quality of field management maps. In Robert P C, et al. (Ed.). Site-specific management for agricultural system s. Proc Int Conf. 2nd, Minneapolis, A SA, CSSA, and SSSA, Madison, W I. 1994. 251- 271.
    [148]宋晓宇,王纪华,刘良云,等.基于Quickbird遥感影像的农田管理分区划分研究.中国农业科学, 2007, 40(9):1996-2006.
    [149]张竞成,顾晓鹤,王纪华,等.基于中分辨率影像的农田管理单元自动提取研究.中国农业科学, 2010, 43(17):3526-2527.
    [150] Song X Y, Wang J H, Huang W J, et al. The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agric. 2009, 10:471-487.
    [151]李仁岗.肥料效应函数.农业出版社, 1987, 1-87.
    [152]刘立波.土壤施肥模型的研究与应用.安徽农业科学, 2008, 36(10):4187-4188.
    [153]彭志良,赵泽英,王海,等.早熟黄瓜优化施肥数学模型研究.安徽农业科学, 2007, 35(22):6787-6788.
    [154]汪金舫,李本银,颜廷梅.稻田变量施肥作业图的形成与施肥模型应用.中国生态农业学报, 2003, 11(1):59-61.
    [155]陈义强,刘国顺,习红昂.烟草栽培中氮、磷、钾肥及水分因子与产值的经验模型.中国农业科学. 2008. 41(2): 480-487.
    [156]施建平,鲁如坤,时正元,等. Logistic回归模型在红壤地区早稻推荐施肥中的应用.土壤学报, 2002, 39(6): 853-862.
    [157]孙波,严浩,施建平,等.基于组件式GIS的施肥专家决策支持系统开发和应用.农业工程学报, 2006, 22(4): 75-79.
    [158]谭宗琨. BP人工神经网络在玉米智能农业专家系统中的应用.农业网络信息, 2004, (10): 9-11, 21.
    [159]马成林,吴才聪,张书慧,等.基于数据包络分析和人工神经网络的变量施肥决策方法研究.农业工程学报, 2004, 20(2): 152-155.
    [160]柯庆明,林文雄,黄珍发,等.小白菜平衡施肥数学模型模拟研究.中国生态农业学报, 2005, 13(1): 119-121.
    [161]阮云泽,孙桂芳,唐树梅.土壤养分状况系统研究法在菠菜平衡施肥上的应用.植物营养与肥料学报, 2005, 11(4): 530-535.
    [162]李贻铨.林木施肥与营养诊断.林业科学, 1991, 27(4):435-442.
    [163]黄崇熙,张津平,肖国民,等.油茶施肥模式对产量的影响及效益选择.经济林研究, 1996,(2): 25-26.
    [164]唐光旭,张永生,唐丽湘,等.油茶栽培肥力配比的试验研究.经济林研究, 1998, (4): 20-22.
    [165]危常州,侯振安,雷咏雯,等.不同地理尺度下综合施肥模型的建模与验证.植物营养与肥料学报, 2005, 11(1):13-20.
    [166] Baum E L, Heady E O, and Blackmore J. Economic analysis of fertilizer use data. The Iowa State College Press-Ames, Iowa, U. S. A. Pretace. 1956.
    [167] Chosh P C, and Misra U K. Modified mitscherlich– bray equation for calculation of crop response to applied phosphate. Journal of the Indian Society of Soil Science, 1996, 44(4):786-788.
    [168] Bangar A R. Fertilization of sorghum based on modified mitscherlich– bray equation under semi-arid tropics. Journal of the Indian Society of Soil Science, 1998, 46(3):383-391.
    [169] Colwell J D. Development and evaluation of general or transfer models of relationships between wheat yields and fertilizer rates in southern Australia. Aust. J. of Soil Res. 1984, 22:191-205.
    [170] Thomas R S, Russell C M. Effect of nit rogen supp ly on maize yield:é. Modeling physiological response. Agron J. 1995, 87: 632-641.
    [171] Makowski D, Wallach D, Meynard J M. Models of yield, grain protein, and residual mineral nitrogen responses to applied nitrogen for winter wheat. Agronomy Journal, 1999, 91: 377-385.
    [172] Kastens T L, Schmidt J P, Dhuyvetter K C. Yield models implied by traditional fertilizer recommendations and a framework for including nontraditional information. Soil Science Society of America Journal, 2003, 67: 351-364.
    [173] Pier J W, and Doerge T A. Concurrent evaluation of agronomic economic, and environmental aspects of trickle– irrigated watermelon production. J. Environ. Qual. 1995, 2:75-84.59.
    [174] Sexton B T, Moncrief J F, Rosen C J, et al. Optimizing nitrogen and irrigation input for corn based on nitrate leaching and yield on a coarse– textured soil. J. Environ. Qual. 1996,25:982-992.
    [175] Sonar K R, Tamboli B D, Patil Y M, et a1. Targetting yield of pearl millet on vertisols based on soil testing [J]. Journal of the Indian Society of Soil Science, 1994, 42(4):658-660.
    [176] Osmond D L, and Riha S J. Nitrogen fertilizer requirements for maize produced in the tropics: A comparison of three computer based recommendation system. Agricultureal Systems, 1996, 50:37-50.
    [177] Bahri A, and Berndtsson R. Nitrogen source impact on the spatial variability of organic carbon and nitrogen in soil. Soil Sci. 19996, 16(5):288-297.
    [178] Andre W W, Cunter B, Rodger B G. Geostatistical characterization of soil moisture patterns in Tarrawarra catchment Andre. Journal of Hydrology, 1998, 205:20-37.
    [179] Nelson, D.W., and Sommers, L.E., Total carbon, organic carbon and organic matter. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, Page, A.L., Miller, R.H., Keeney, D.R., (Eds). 2nd Edn., ASA and SSSA, Madison, WI. 1982, 9, 539-579.
    [180] Lefroy R DB, Blair G, and Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant Soil. J. 1993, pp. 155-156, 399-402.
    [181] Bremner J M, and Mulvaney C S. Total nitrogen. In: Methods of Soil Analysis, Page, A.L. (Ed.). 2nd Edn. Agron. No. 9, Part 2: Chemical and Microbiological Properties. Am. Soc. Argon., Madison, WI. USA. 1984, pp: 595-624.
    [182]鲍士旦.土壤农化分析.北京:农业出版社, 2005.
    [183] Olsen S R, Cole CV, Watanabe FS, et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939, Washington, DC. 1954.
    [184] Richards L A. Diagnosis and improvement of saline and alkaline soil. USDA Hand Book. No. 60. U.S. Govt. Print. Office, Washington, DC. 1954, pp. 160.
    [185] Miller D W, and Miller D M. A micro-pipette method for soil mechanical analysis. Commun. Soil. Sci. Plant Anal. 1987, 18:1-15.
    [186] Lindsay W L, and Norvell W A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Am. J. 1978, 42:421-428.
    [187] Chapman H D. Cation exchange capacity. In: methods of soil analysis, black, C.A. (ED.). Part 2. Number 9 in the series agronomy: American institute agronomy, Madison, Wisconsin, 1965, pp: 891-901.
    [188]中国土壤学会.土壤农业化学分析方法[M].北京:中国科技出版社, 1999.
    [189]南京农业大学.土壤农化分析[M].北京:农业出版社, 1986.
    [190] Webster R, Oliver M A. Statistical methods in soil and land resources survey [M]. Oxford University Press. 1990.
    [191] Robertson G P. GS+ geostatistics for environmental science user manual [M]. Gamma Design Software. Version 3.1. Plainwell, MI. 1998.
    [192]肖云茹.概率统计计算方法[M].天津:南开大学出版社, 1994,197- 217.
    [193] Bezdek J C. (Ed), Pattern recognition with fuzzy objective function algorithms. Plenum Press, 1981, New York.
    [194] Odeh I O A, McBratney A B, and Chittleborough D J. Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships. Soil Sci. Soc. Am. J., 1992, 56: 505~516.
    [195] Gao X B, Pei J H, Xie W X. A study of weighting exponent m in a fuzzy c-means algorithm. Chinese Journal of Electronics, 2000, 28(4):80-83.
    [196] Lark R M and Stafford J V. Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Ann. Appl. Biol., 1997, 130: 111-121.
    [197] Facchinelli A, Sacchi E, and Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soil. Environmental Pollution, 2001, 114(3): 313-324.
    [198]孙波,赵其国.低丘红壤肥力的时空变异.土壤学报, 2002, 30(2):190-198.
    [199]许红卫,高克异,王珂,等.稻田土壤养分空间变异与合理取样数研究.植物营养与肥料学报, 2006, 12(1):37-43.
    [200]任永浩,韩锦峰.不同根际pH值下烤烟生长反应的比较研究[J].中国烟草, 1995, 16:1-5.
    [201]强继业,朱海平,周振春,等.云南省部分地区烤烟适宜pH值范围的缓冲研究[J].中国生态农业学报, 2005, 13(2): 149-l51.
    [202]杨宇虹,冯柱安,晋艳,等.土壤pH值对烟叶品质的影响[J].烟草科学研究, 2000, (1): l2-l6.
    [203]全国土壤普查办公室.中国土壤普查技术[M].北京:农业出版社, 1990.
    [204]高玉蓉,许红卫,周斌.稻田土壤养分的空间变异性研究.土壤通报, 2005, 36(6):822-825.
    [205]梁中龙,甘海华,戴军.广州岑村农用地土壤养分空间变异性研究.华南农业大学学报,2004, 25(3):22-25.
    [206]赵军,孟凯,隋跃宇,等.海伦黑土有机碳和速效养分空间异质性分析.土壤通报, 2005, 36(4):488-492.
    [207] Nielsen D R. Wendroth O. Spatial and temporal statisticsl: sampling field soil and their vegetation[M].Caterna Verlag GMBH.Reiskirchen, 2003.
    [208] Zhang X Y, Sui Y Y, Zhang X D, et al. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 2007 17(1):19-29.
    [209] Li Y, Shi Z, and Li F. Delineation of site-specific management zones based on temporal and spatial variability of soil electrical conductivity. Pedosphere, 2007, 17(2): 156-164.
    [210]耿玉清,余新晓,岳永杰,等.北京山地森林的土壤养分状况.林业科学, 2010, 46(5):169-175.
    [211]安云娜,黄义雄,官紫玲,等.福建东山岛土壤养分综合评价.安徽农业科学, 2007, 35(13):3926-3927, 3962.
    [212]章程,谢运球,吕勇,等.广西弄拉峰丛山区土壤有机质与微量营养元素有效态.中国岩溶, 2006, 25(1):63-66.
    [213] Li Y, Shi Z, Wu C F, et al. Definition of management zones based on fuzzy clustering analysis in coastal saline land. Scientia Agricultura Sinica, 2007, 40 (1): 114-122.
    [214]邹加明,单沛祥,李文璧,等.大理州植烟土壤肥力质量现状与演变趋势[J].中国烟草学报, 2002, (4): 14-20.
    [215]张忠锋.施用秸秆对改善土壤性状和烟叶品质效应的研究[J].中国烟草科学, 2001, (3): 11-14.
    [216]陈岗.楚雄州土壤养分状况与烟叶品质及致香物质相关性研究[J].云南烟草, 2003, (4): 19- 30.
    [217]王闯,符云鹏,艾永峰.土壤特性与烟叶品质的关系[J].安徽农业科学, 2005, 33(5): 862-863.
    [218]韩锦峰.烟草栽培生理[M].北京:中国农业出版社, 1986.
    [219]曹志洪.优质烤烟生产的钾素与微素[M].南京:江苏科学技术出版社, 1995.
    [220]窦逢科.烟草品质与土壤肥料[M].郑州:郑州科学技术出版社, 1992, 61-62.
    [221]张华,张甘霖.热带低丘地区农场尺度土壤质量指标的空间变异.土壤通报, 2003, 34(4): 241-245.
    [222]蒙格尔,克尔克贝,张宜春等译.植物营养原理[M].北京:中国农业出版社, 1987.
    [223]中国农业科学院烟草研究所主编.中国烟草栽培学[M].上海科学技术出版社, 1987.
    [224] Cambardella C A, Moorman T B, Novak J M. Field-scale variability of soil preperties in Central lowa soils.Soil Sci.Soc. 1994, 58: 1501-1511.
    [225] van H JPraag , de F Smedt, vu T Thanh. Simulation of calciumleaching and desorption in an acid forest soil. European Journal of Soil Science. 2000, 51: 245-255.
    [226] Mayer R, Liess S, Lopes M I M S, et al . Atmospheric pollution in a tropical rain forest: Effects of deposition upon biosphere and hydrosphereⅠ. Concentrations of chemicals. Water, Air, and Soil Pollution, 2000, 121: 59-78.
    [227] Huntington T G, Hooper R P, Johnson E C, et al. Calcium depletion in a southeastern United States forest ecosystem. Soil Sci. Soc. Am. J. 2000, 64:1845-1858.
    [228]柴世伟,温琰茂,张云霓,等.广州郊区农业土壤重金属含量与土壤性质的关系.农村生态环境, 2004, 20(2): 55-58.
    [229]北京农业大学.农业化学(总论) [M].北京:中国农业出版社, 2000, 165-186.
    [230]王军,傅伯杰,邱扬,等.黄土高原小流域土壤养分的空间异质性.生态学报, 2002, 22(8):1173-1178.
    [231]陈伟强,刘国顺,华一新.平顶山市土壤速效养分空间变异分析.河南农业大学学报, 2007, 42(5):559-564.
    [232]廖桂堂,李廷轩,王永东,等.基于GIS和地统计学的低山茶园土壤肥力质量评价.生态学报, 2007, 27(5):1978-1986.
    [233]冯娜娜,李廷轩,张锡洲,等.不同尺度下低山茶园土壤颗粒组成空间变异性特征.水土保持学报, 2006, 20(3): 123-128.
    [234] Jiang Y J, Li L L, Wu Y X, et al. Temporal–spatial variability of soil fertility in karst region: a case study of Xiaojiang watershed Yunnan. Environ Geol. 2008, 55:875-887.
    [235] Zhao Y C, Xu X H, Darilek J L, et al. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China. Environ Geol. 2009, 57:1089-1102.
    [236]周慧珍,龚子同, Lamp L.土壤空间变异性研究.土壤学报. 1996, 33(3):232-241.
    [237] Foody, G.D. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 2002, 185-201.
    [238]王秀,赵春江,孟志军,等.精准农业土壤取样间距划分方法的研究[J].土壤学报, 2005, 42(2): 199-205.
    [239]王淑英,路苹,王建立,等.不同研究尺度下土壤有机质和全氮的空间变异特征[J].生态学报, 2008, 28(10): 4957-4964.
    [240]姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量.植物营养与肥料学报, 2001, 7(3):262-270.
    [241]盛建东,肖华,武红旗,等.不同取样间距农田土壤全量养分空间变异特征研究.土壤通报, 2006, 26(2): 63-67.
    [242]吴才聪,马成林,张书慧,等.基于GIS的精确农业合理采样与施肥间距研究[J].农业机械学报, 2004, 35(2): 80-83.
    [243] Cipra J E, Bidwell O W, Whitney K A, et al. Variation with distance in selected fertility measurements of Pedons of Western Kansas Ustoll. Soil Sci. Soc. Am. J. Proc. 1972, 36: 111-115.
    [244] Jacob W C and Klute A. Sampling soils for physical and chemical properties. Soil. Sci. Soc. Am. J. Proc. 1956, 20:170-172.
    [245] Batte M T. Factors influencing the profitability of precision farming systems. J. Soil Water Conserv. 2000, 55:12-18.
    [246] Odeh I O A, McBratney A B, and Chittleborough D J. Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships. Soil Sci. Am. J. 1992, 56:505-516.
    [247] Boydell B, McBratney A B. Identifying potential within field management zones from cotton yield estimates. In: Stafford, J.V. (Ed.), Proceedings of the 2nd European Conference on Precision Agriculture. Odense Congress Cent. Denmark, July 11–15. SCI, London, 1999, pp. 331–341.
    [248] Wu D X, Yuan Z Y, Yan K Y, et al. Establishment on quality indexes of different grades of flue-cured tobacco. Tobacco Science & Technology, 2001, 12:9-15.
    [249]周纪芗.回归分析[M].上海:华东师范大学出版社, 1993.
    [250] Johnson C K, Mortensen D A, Wienhold B J, et al. Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agron. J. 2003, 95:303-315.
    [251] Kravchenko A N. Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Am. J. 2003, 67:1564~1571.
    [252] Franzen D W. Delineating nitrogen management zones in a sugarbeet rotation using remote sensing - A Review. Sugar Beet Research J. 2004, 42(2)47-60.
    [253] Vrindts E, Mouazen A M, Reyniers M, et al. Management zones based on correlation between soil compaction, yield and crop data. biosystems Engineering, 2005, 92(4): 419-428.
    [254]刘国顺.烟草栽培学[M],北京:中国农业出版社, 2003.
    [255]李艳,史舟,吴次芳,等.基于模糊聚类分析的田间精准管理分区研究.中国农业科学, 2007, 40(1): 114-122.
    [256] Fleming K L, Westfall D G, Wiens L E, et al. Evaluating farmer developed management zone maps for precision farming [A]. In Robert, P C, et al. (ed.) Proceedings of 4th International Conference on Precision Agriculture[C]. 1999. ASA, CSSA, and SSSA, Madison, W I., U SA p.335-343.
    [257] Franzen D W, Kitchen N R. Developing management zones to target nitrogen applications [Z]. SSMG-5, In Site-Specific management guidelines. Potash & Phosphate Institute. 1999. Available online at http://www. ppi-far.Org/ssmg.
    [258] Wright D L, Rasmussen V P, Baker D J. Using remote sensing to manage wheat grain protein. NASA SSC Report, 2003, ARC-USU-001-02. Affiliated Research Center Final Reports 2002. [CD-ROM]. Earth Science Applications Directorate, National Aeronautics and Space Administration, John C. Stennis Space Center, Mississippi.
    [259]侯彦林.“生态平衡施肥”的理论基础和技术体系[J].生态学报, 2000, 20(4): 653-658.
    [260]王兴仁,陈新平,张福锁,等.施肥模型在我国推荐施肥中的应用.植物营养与肥料学报, 1998, 4(1):67-74.
    [261]金耀青.配方施肥的方法及其功能(对我国配方施肥工作的评述)[J].土壤通报, 1989, 20(1): 46-49.
    [262] Schroder J J, Neeteson J J, Withagen J C M, et al. Effects of N application on agronomic and environmental parameters in silage maize production on sandy soils. Field Crops Research, 1998, 58:55-67.
    [263] Stanford G and Smith S J. N mineralization potential of soils. Soil Sci. Soc Am J. 1972, 36: 465-472.
    [264]唐莉娜,熊德中.土壤酸度的调节对烤烟根系生长与烟叶化学成分含量的影响.中国生态农业学报, 2002, 10(4):65-67.
    [265]施卫省,唐辉,王亚明,等.包膜尿素在烟草生产上的初步经济评价.昆明理工大学学报(理工版), 2005, 30(1):86-89.
    [266]吕永华,高淑涛,郭庆荣,等.土壤水分状况与烤烟生长及磷肥利用的关系.中国烟草科学, 2006 , ( 1) : 45-47.
    [267]李天福,陈萍,冉邦定.烤烟不同耐肥品种的肥料利用率与烟叶品质.烟草科技, 1999, 33-34.
    [268]代勇,胡松,姚民英,等.养分平衡法在黔东南州油菜测土推荐施肥中的应用研究.土壤通报, 2008, 39(3):712-714.
    [269]高福平,李孔浩,黄守营.小麦“3414”肥料效应试验初报.土壤肥料, 2008, 5:61-64.
    [270]邢月华,汪仁,安景文土壤养分测定值与其校正系数的回归关系.辽宁农业科学, 2005, 2:45-46.
    [271]潘大丰,程季珍,李群,等.山西省主要蔬菜施肥智能信息技术研究.农业工程学报, 2000, 16(1):109-112.
    [272]严小龙,张福锁.植物营养遗传.北京:中国农业出版社, 1997: 78-106.
    [273]朱尊权.烟叶的可用性与卷烟的安全性[J].烟草科技, 2000, (8):3-6.
    [274]刘华山,韩锦峰,曾涛,等.烤烟喷施降碱增钾制剂的生理效应及对品质的影响[J].华北农学报, 2005, 20(3):46-49.
    [275]王瑞新.烟草化学[M].北京:中国农业出版社, 2003.
    [276]章新军,黎妍妍,许自成,等.河南烤烟外观与内在质量的综合评价.安徽农业科学, 2007, 35(7):1953-1954,1959.
    [277]胡国松,赵元宽,曹志洪,等.我国主要产烟省烤烟元素组成和化学品质评价[J].中国烟草学报, 1997,(3):36-43.
    [278] Broyer T C, Carlton A B, Johnson C M, et al. Chlorine– a micronutrient element for higher plants [J]. Plant Physiol, 1954, 29:526-532.
    [279]刘国顺.国内外烟叶质量差距分析和提高烟叶质量技术途径探讨[J].中国烟草学报, 2003, 9(B11):54-58.
    [280]周冀衡,朱小平,王彦亭,等.烟草生理与生物化学[M].合肥:中国科学技术大学出版社, 1996.
    [281] TSO T C. Production, physiology and biochemistry of tobacco plant [M]. Beltsville, Maryland, USA: IDEALS Inc., 1990.
    [282]金闻博,戴亚,横田平,等.烟草化学[M].北京:清华大学出版社, 1993.
    [283] Weeks W W. Chemistry of tobacco constituents influencing flavor and aroma [J]. Rec. Adv. Tob. Sci., 1985, (11):175-200.
    [284]韦凤杰,张国显,王海涛,等.豆浆灌根对豫西烤烟香气含量和评吸质量影响研究初报.中国烟草科学, 2008, 29(3):48-52.
    [285] Smeeton B W. Genetic control of tobacco quality. Rec. Adv. Tob. Sci. 1987, 13:3-26.
    [286]史宏志,刘国顺.烟草香味学[M].北京:中国农业出版社, 1998.
    [287]杨虹琦,周冀衡,杨述元,等.不同产区烤烟中主要潜香型物质对评吸质量的影响研究[J].湖南农业大学学报:自然科学版, 2005, 31(1):11-14.
    [288]吴殿信,袁志永,闫克玉,等.烤烟各等级烟叶磺量指数的确定.烟草科技, 2001, 12:9-15.
    [289]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究-以河北省遵化市为例.应用生态学报, 2000, 11(4):557-563.
    [290] Cassman K G, Gines G C, Dizon M A. Nitrogen use efficiency in tropical lowland rice systems: Contributions from indigenous and applied nitrogen. Field Crops Research, 1996, 47: 1-12.
    [291]沈荣开,王康,张瑜芳,等.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J].农业工程学报, 2001, 17(5) :35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700