水电站机组振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电站机组的运行特性主要包括三个方面的内容:一是能量特性,二是空化和空蚀特性,三是机组的稳定性。能量特性和空蚀空化特性关系到机组的利用程度和机组的使用寿命,但是稳定性不仅关系到机组的使用寿命而且关系到机组以至于电站能否正常运行。同时,由于机组振动诱发的水电站厂房结构的振动已经成为水电站运行和设计的关键问题。现有的传统分析方法可以对水电站机组和厂房振动信号进行有效的分析及机组和厂房振动故障的诊断,传统的傅里叶分析方法对平稳信号的分析已经成熟,能够有效的对平稳信号进行有效的分析,但是傅里叶分析方法对非平稳信号的分析则存在一定的缺陷,甚至显得无能为力。小波、信息熵技术等现代处理手段的出现和发展在信号处理方面显示出了其优越性和广阔的发展前景。本文就是以宁夏青铜峡水利枢纽机组的实测信号,利用小波分析理论的小波分解和小波能谱熵及多分辨率奇异谱熵理论对信号进行处理分析,研究水力机组运行的振动特性。具体思路和研究内容如下:
     第一章绪论部分简要介绍水电站机组振动现状、存在的问题和发展动态,对小波、信息熵等现代信号处理方法及本课题所要解决的问题进行归纳和说明。
     第二章主要具体结合青铜峡机组和厂房振动的实测信号,利用传统的傅里叶分析方法对机组的振动测试进行分析和研究,从不同角度综合评价机组的运行稳定性,指出诱发机组振动的多种因素,并结合实测信号的分析确定青铜峡机组振动的振源。
     第三章简要介绍了小波和信息熵理论的发展历史及其理论,及小波和信息熵相结合的小波熵理论在信号分析当中的运用和发展趋势。
     第四章,利用小波与信息熵理论对青铜峡机组部件和摆度实测信号进行分析,并结合对尾水管脉动压力信号的奇异谱熵分析结果对青铜峡振动信号进行分析,指出青铜峡机组尾水管压力脉动对机组振动的影响。
     第五章总结和展望,指出在本论文中存在的及需要进一步加以研究和解决的问题。
The operation characteristics of Water Turbine Generator Set mainly include energy, cavitation and stability. Energy is related to extent of water-power utilization; cavitation is related to service life of turbine; the stability not only has great effect to turbine life, but also is directly related to the normal operation of power station. Meanwhile, the vibration of plant structure induced by water-power set has become key problem in designing and operation. The traditional analysis method has good effect in the analysis of vibration signal of power station and damage diagnosis of Water Turbine Generator Set. Fourier transform which is mutual in the analysis of steady signal has limited application in the analysis of unsteady signal. The development of Wavelet analysis has been gradually presenting their advantage and extensive prospect in analysis of measured signal. Based on the actual measurement data of Qingtong-Gorge power station, this paper is aiming to study the vibration characteristics of water-power set with the wavelet decomposing of wavelet analysis theory , wavelet energy entropy and multi-resolution singular spectrum entropy.
     In chapter 1, general situation, the development and existed conditions of vibration of water-power set are introduced, the new method of signal analysis such as wavelet analysis, information entropy and problems to be solved in this paper are summarized.
     In chapter 2, according to the measured data of Qingtong -Gorge water-power set, with the application method of traditional Fourier transform, the operation stability of the water-power set is assessed from different angles, thus the factors and the sources that induced the vibration of the water-power set are pointed out according to the analysis result of the measured data.
     In chapter 3, the development history and the theory of wavelet and information entropy are introduced briefly, then the utility and the development tendency in the signal analysis of the theory of wavelet entropy are summarized.
     In chapter 4, the measured signal of the components of the water-power set and the throw are analyzed with the application of the theory of wavelet and information entropy theory, thus according to the analysis result above, the vibration signal of Qington-gorge power-set is analyzed and the influence of Qington-gorge power-set draft-tube pulsant pressure on the vibration of power-set is clarified.
     The content of the chapter 5 is the summary and the prospect, some problems that are needed to be further studied and resolved in this paper are pointed out.
引文
[1]汪恕诚,水电发展的出路何在,水力发电,1996(9):2-4
    [2]周大兵,抓住机遇开拓进取为促进水电事业更大发展而努力—在国家电力公司水电发展研讨会上的讲话,贵州水力发电,1999,(增刊):2-10
    [3]谭月灿,韦彩新,唐穗平等,改善拓溪电站混流式水轮机水力稳定性的研究.水力发电,1998(2):47-51
    [4]李启章,大型水轮发电机组的振动稳定性问题湖北电力,2000(10):21-23
    [5]朱耀泉,三峡水轮机高水头运行水力稳定性研究,水利水电技术,1996(12):6-10
    [6]黄源芳,三峡工程水轮机几个重大问题的决策水力发电,1998(4):36-39
    [7]姚大坤,李至昭,曲大庄,混流式水轮机自激振动分析,大电机技术,1998(5):56-60
    [8]覃大清,赵阳,关于混流式水轮机稳定性的几点新认识,1998(3):24-28
    [9]董毓新,水轮发电机组振动,大连:大连理工大学出版社,1989:10-30
    [10]王坷纶,水力机组振动,北京:水利电力出版社,1986:36-110
    [11]程良俊,水轮机,北京:机械工业出版社,1984
    [12]张克危,流体机械原理,北京:机械工业出版社,2000: 2-10
    [13]王泉龙,浅谈水轮机振动的研究,大电机技术2000(7): 12-16
    [14]于纪幸,降低水轮机尾水管压力脉动措施的模型试验研究,2001(4)
    [15](德)R.齐亚拉斯混流式水轮机在部分负荷和超负荷时的运行情况,水轮机水力振动译文集,北京:水利电力出版社,197(3):59-78
    [16]肖若富,中比转速混流式水轮机内流场数值模拟及性能改善研究,博士学位论文,华中科技大学,2004
    [17]周凌九,水轮机转轮流场计算及性能预测,博士学位论文,北京:中国农业大学,1999
    [18]余涛,王晶等.水电机组故障诊断专家系统研究现状与发展前景.云南电力技术,1999,27(2): 50-53
    [19]王剑锋,隆元林水电厂的状态检修和故障诊断技术.四川电力技术,1999,23(l): 20-24
    [20]沈东,陈思.水轮发电机组振动故障诊断与识别.水动力学研究与进展,2000,15(1): 129-133
    [21]王海,孙建平,尺度熵及其在水电机组监测诊断系统中的应用,水电能源科学,2006(4),24(2):17-18
    [22]罗建书,沙基昌,分形信号的小波分析,工程图学学报,1999(2):27-34
    [23]谢平,故障中信息熵特征提取及融合方法研究,申请博士论文,燕山大,2006
    [24]陈小勤,何正友,基于小波熵和小波熵权的电能质量扰动识别,电力科学与工程,2006(1):1-5
    [25]肖余粮,和卫星,小波变换和小波熵在睡眠电信号变化特性研究中的应用价值,中国临床康复,2006(7),10(25):118-120
    [26]何正友,蔡玉梅,小波熵理论及其在电力系统故障检测中的应用研究,中国电机工程学报,2005,25(5):38-42
    [27]姜建东,屈梁生,大机组振动信号复杂性的定量描述,西安交通大学学报,1998(6),32(6):31-34
    [28]蒋林,高德远等,转子运行稳定性—大型回转机械瞬时运行状态评价,西北工业大学学报,2000(8),18(3):457-460
    [29]卢晓莉,罗键,信息融合熵在机械故障诊断中的应用,厦门大学学报,2006(1),45(1):39-43
    [30]胡红英,马孝江,局域波近似熵及其机械故障诊断中的应用,振动与冲击,25(4):38-40
    [31]杨文献,姜节胜,机械信号奇异熵研究,机械工程学报,2000,36(12):122-126
    [32]李龙根,刘桂雄,熵概念的发展及其在工程测试中的应用,机床与液压,2003(3):259-261
    [33]印欣运,何永勇,小波熵及其在状态趋势分析中的应用,振动工程学报,2004(6),17(2):165-169
    [34]申弢,黄树红,杨叔子,旋转机械振动信号的信息熵特征,机械工程学报,2001,37(6):94-98;
    [35]符向前,刘光临,蒋劲等,基于信息熵的机组运行劣化度综合指标,电力系统自动化,2005,29(7):75-78
    [36]胥永刚,何正嘉,基于二维近似度量轴心轨迹复杂性的研究,西安交通大学学报,2003(11),37(11):1171-1174
    [37]胥永刚,机电设备监测诊断时域新方法的应用研究,申请博士论文,西安交通大学,2003(09)
    [37]朱雪龙,应用信息论基础,北京:清华大学出版社,2001:3-5
    [38]卢文样,杜润生.工程测试与信息处理.武汉二华中理工大学出版社,2002:40-44
    [39] C.E.Shannon. A Mathematical Theory of Communication. Bell Sys Tech 1948, 27:379-433
    [40]邢修三,熵产生率公式及其应用,物理学报,2003,52(12):2969-2977
    [41]邢修三,物理熵、信息熵及其演化方程,中国科学(A辑),2001,31(7):78-86
    [42]田玉楚,非线性动态系统的宏观信息熵分析,通信学报,1997,18(1):47-53
    [43] A.N.Kolmogorov.Three Approaches to the Quantitative Definition of Information.Problem of Information Transmission,1965,1(1):1-7
    [44] G.J.Chaitin.Information-Theoretic Computational Complexity.IEEE Trans Inform,Theory,1974,IT20:10-15
    [45] S.M.Pincus.Approximate Entropy as a Measure of System Comlpexity. Proc.Natl.Acad.Sci.1991,88:2297-2301
    [46] S.M.Princus.A Regularity Statistic for Medical Data Analysis.Journal of Clinical Monitoring,1991,7(4):335-345
    [47] Y.L.Meng, Liu B Z. A Comprehensive Nonlinear Analysis of Electromyogram.Proceeding of IEEE 23th Annual Conf Bioligical and Medical Engin,2001,Estanbul:1078-1088
    [48] D.Erdogmus, J.C.Principe. Information Transfer through Classifiers and Its Relation to Probability of Error. Proceedings. IJCNN'01,2001,Florida:50-54
    [49] Trebichi, K.Sobczyk. Maximum Entropy Principle and Non-stationaryDistribu-tions of Systems. Probabilistic Engineering Mechanics,2004, 11(3):169-178
    [50] S.Aviyente, W.J.Williams. Minimum Entropy Time-Frequency Distributions Signal Pricessing
    [51] Hagenauer, Z.Dawy. Genomic Analysis using Methods from Information. Theory. Information Theory Workshop,IEEE,2004,24:55-59
    [52]杨文献,姜节胜机械信号奇异熵研究,机械工程学报,2000,36(12):122-126
    [53]林雯婷,张克危,小波变换及其在水轮机水压脉动信号处理中的应用,大机电技术,2002(6):47-54
    [54]申弢,大型旋转机械智能监测诊断中信息融合理论与技术的研究,申请博士论文,华中理工大学,1999(04)
    [55]张东胜,李家峡水力发电厂1号水轮发电机组运行分析,青海电力,1998(3):17-24
    [56]黄河李家峡水电站双排机组真机试验研究,天津:天津大学建筑工程学院,2004
    [57]王海,水轮发电机组状态监测,诊断及综合试验分析系统研究,博士学位论文,华中科技大学,2001
    [58]马震岳,董毓新,水轮发电机组动力学,大连:大连理工大学出版社,2003
    [59]吕延光,混流式水轮机稳定性研究,申请硕士学位论文,哈尔滨工业大学,2001
    [60]周廷奎,混流式水轮机压力脉动及水力振动研究,申请硕士学位论文,四川工业学院,2002
    [61]吴刚,戴勇峰,张克危,混流式水轮机尾水管进口流场与水压力脉动的关系,水能源科学,2000,18(3):58-61
    [62]云南香格里拉冲江河、螺丝湾水电站机组测试报告,天津:天津大学水利水电工程系,2005
    [63]程正兴,小波分析算法与应用,西安:西安交通大学出版社,1998
    [64]彭新民,郭航忠,水流脉动压力的小波分析研究,水利学报,2003(8):26-31
    [65]丁世飞,基于信息理论的数学模式识别及应用研究,[山东科技大学博士论文],2004:435-436
    [66]桂中华,水轮机故障智能诊断及振动数字化预测研究,申请博士论文,华南理工大学,2005(04)
    [67]肖孝锋,郑莉媛,二滩水电站机组运行稳定性研究,水力发电,2006,32(3):76-78
    [68]陈造奎,水电站测试技术,北京:中国水利水电出版社1998:74-77
    [69]倪传坤,周建中,基于SVD的水电机组轴心轨迹自动识别,水电自动化与大坝监测,2003(12),27(6):22-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700