碳酸锂结晶过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂是一种重要的战略资源,碳酸锂结晶过程是锂工业中一个最基本、最关键的环节。本文旨在通过对碳酸锂结晶过程的研究,为工业生产提供理论指导和技术支持,同时丰富工业结晶的基础理论和研究方法。
     针对产业发展需求,本文系统地研究了碳酸锂产业链中初级产品制备(LiCl+Na2CO3反应结晶)、高纯产品制备(LiHCO3热分解反应结晶,Li2CO3重结晶,LiOH+CO2气液反应结晶)和超细粉体制备(溶析-反应结晶耦合过程,喷雾分解结晶等)等三方面过程中碳酸锂的结晶过程。
     采用激光法研究了未添加晶种条件下,碳酸锂在水溶液中的介稳区性质。结果表明温度和Na2CO3流速对超溶解度影响最大。采用FBRM(聚焦光束反射测量仪)研究了添加晶种条件下碳酸锂的介稳区性质。实验发现较大的晶种表面积能够消耗更多过饱和度用于晶体生长,抑制成核发生,提高超溶解度。
     采用激光法研究了碳酸锂的诱导期和初级成核过程,计算得到了碳酸锂初级成核过程中界面能、接触角、成核级数等重要参数。通过表面熵因子判定碳酸锂晶体生长机理为螺旋生长。采用FBRM和PVM(颗粒录影显微镜)对碳酸锂二次成核过程进行了在线研究,并采用吸附模型很好地解释了晶种大小、添加量等操作参数对诱导期和成核速率的影响。提出了破碎过程与成核过程对比的方法,对磨损成核和表面成核进行定量区分,反映不同成核机理对二次成核的贡献。
     系统研究了碳酸锂初级产品制备中操作模式和工艺条件的影响,提出了变温反应结晶制备碳酸锂的工艺,这一工艺产率高、粒度大、分布均匀、流动性好,并基本消除了碳酸锂结晶过程中严重的粘壁现象。由于传统的以PBE (population balance equation)方程为基础的结晶动力学研究方法在本实验体系难以适用,本文提出了拉格朗日法和欧拉法两种神经网络模拟的方法,在本体系中有非常好的应用效果,也为其它复杂结晶过程的动力学研究开辟了一条新路。
     通过研究碳酸锂溶解过程发现,减小粒度、升高温度和引入超声,能够加速溶解速率,搅拌速度对溶解几乎没有影响。采用FBRM和PVM能够在线监测溶解过程中粒度分布和晶体形貌的变化。分别采用Avrami模型和矩量变换方法,关联出碳酸锂溶解动力学模型。实验发现添加适量的晶种、采用较高的进料浓度和保持适度的搅拌速度有利于碳酸锂重结晶过程。提出了碳酸锂重结晶工艺流程并制备出光滑完整的棒状晶体。
     计算得到LiHCO3的理论分解温度为4.25℃。研究发现提高初始浓度、降低升温速率和添加晶种使LiHCO3表观分解温度降低。提出了采用Labmax表征LiHCO3分解结晶过程热效应的方法,表明90℃以上高温条件有利反应进行。提出了LiHCO3分解反应结晶过程宏观反应动力学的关联式。分别研究了超声协同作用下和微波协同作用下LiHCO3分解反应结晶的结晶动力学,得到了相关动力学参数。提出了超声-微波耦合场协同作用下LiHCO3分解反应结晶的结晶工艺。
     采用降膜吸收塔和旋转盘气液反应器,系统研究了LiOH气液反应结晶过程。LiOH碳化终点pH值控制在9.5-10为宜。研究了操作条件对LiOH碳化的影响,构建的神经网络模型,能够同时准确描述气体吸收动力学和气液反应结晶动力学。采用正交实验分析了操作条件对旋转盘气液反应结晶的影响,表明引入超声、降低温度和通气流量有利于减小产品粒径。
     本文探索采用多种方法制备了碳酸锂超细粉体。超声反应结晶工艺是非常简单有效的方法,提出的溶析-反应结晶耦合工艺和溶析-分解-反应结晶耦合工艺,能够获得平均粒度在200 nm的亚微米级碳酸锂超细粉体。采用喷雾分解结晶技术,能够获得多孔中空球颗粒,这些中空球由大量约200 nm的晶体自组装而成,BET比表面积可达7.24 m2/g。
Lithium is an important strategic resource, and the crystallization of Li2CO3 is the key process in the lithium industry. The objective of this research is to provide theoretical guidance and technological support for the production as well as to enrich the basic theory and studying method for the industrial crystallization.
     According to the development demand of the lithium industry, this research systematically investigated the crystallization processes of Li2CO3 in the preparation of primary product (LiCl+Na2CO3), high-purity product (decomposition of LiHCO3, recrystallization of Li2CO3, LiOH+CO2) and ultrafine powders (anti-solvent reactive crystallization, spray pyrolysis).
     The unseeded metastable zone of Li2CO3 in aqueous solution was studied by laser method, and the results show the temperature and the feeding rate of Na2CO3 are the two critical factors influencing the supersolubility. The seeded supersolubility of Li2CO3 was measured by FBRM, which shows a larger surface area is beneficial to enhace the supersolubility level.
     The unseeded induction period and primary nucleation of Li2CO3 was examined by the laser method, and a series of nucleation parameters were obtained such as interfacial energy, contact angle, nucleation order etc. The seeded induction period and secondary nucleation of Li2CO3 was investigated by FBRM and PVM. The adsorption model can explain the effect of seed size and seed loading on the secondary nucleation. A method through comparison between pure breakage/attrition and nucleation process was put forward to distinguish the attrition-induced and surface-induced nucleation quantitatively, which can reveal the contributions of different nucleation mechanisms.
     The effects of operational conditions on the crystallization in the preparation of primary Li2CO3 product were explored. A variable-temperature reactive crystallization was put forward, which features a high yield, a large and homogeneous crystal size as well as good fluidity. Because the traditional method of kinetic research, which based on the PBE, is not fit to this system, so a novel neural-net work simulation method was presented. The neural net work simulation can be divided into Lagrangian method and Euler method, both of them obtained good results in this crystallization. The novel neural-net work simulation is referential for other complex crystallization processes.
     Results show a smaller crystal size, a higher temperature and the presence of ultrasound advances the dissolution rate, while the stirring speed has nearly no effect. The evolution of chord length distribution and crystal shape of Li2CO3 particles were monitored by FBRM and PVM respectively. Two method, Avrami model and moment transformation, were adopted to describe the dissolution kinetic processes. The introduction of proper seed, a high initial concentration and a moderate stirring speed is preferred in the recrystallization. This research put forward a recrystallization craft of Li2CO3, and by which good rod crystals were prepared.
     As for the coupled process of decomposition and reactive crystallization of LiHCO3, the theoretical decomposition temperature was evaluated as 4.25℃.A thermal analysis technique was put forward to characterize the reaction thermal effect by using Labmax reactor, which implied that the reaction became more drastic when the temperature was beyond 90℃. The effects of operating parameters on the apparent reaction rate were investigated, through which a novel empirical correlation was presented to describe the apparent reaction rate as a function of temperature, reactant concentration and stirring speed. The ultrasound-assisted and microwave assisted crystallization kinetics in the decomposition of LiHCO3 were investigated respectively, and the kinetic parameters were achieved. A new craft by using the combination of ultrasound and microwave during the decomposition of LiHCO3was carried out and obtained good results.
     A falling film tower and a spinning disk reactor were used in the gas-liquid reactive crystallization. Results show the carbonation end point of pH should be controlled within 9.5-10. The effects of operating conditions on the carbonation of LiOH were studied systematically. A neural-net work was set up to describe the complex carbonation of LiOH involving both reactive adsorption and reactive crystallization. The neural-net work simulation can simultaneously give the adsorption rate, crystallization rate and crystal size distribution accurately. An orthogonal experiment was conducted to explore the impacts of operational variables on the carbonation of LiOH in a spinning disk reactor. Results show the introduction of ultrasound, a lower temperature and a lower flow rate of CO2 facilitates the formation of small particles.
     Several technologies were explored to prepare ultrafine powders of Li2CO3. It was found that the ultrasound-assisted reactive crystallization is a simple and effective method. Two novel reactive crystallization processes, anti-solvent reactive crystallization and anti-solvent-decomposition reactive crystallization were studied, both of them can obtain about submicron crystals. Hollow spheres were prepared by spray pyrolysis of LiHCO3, which are composed of about 200 nm primary particles. The BET surface area of the hollow spheres reaches 7.24 m2/g.
引文
[1]Ogata A, Komaba S, Baddour-Hadjean R, et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery [J]. Electrochim. Acta,2008,53(7):3084-3093
    [2]Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides [J]. Adv. Mater.,2001,13(12-13):943-956
    [3]Chiovaro P, Maio P A, Oliveri E, et al. On the influence of the supporting frame on the nuclear response of the Helium-Cooled lithium lead test blanket module for ITERE [J]. Fusion Eng. Des,2006,81(1-7):677-686
    [4]Puma A L, Berton J L, Branas B, et al. Breeding blanket design and systems integration for a helium-cooled lithium-lead fusion power plant [J]. Fusion Eng. Des.,2006,81(1-7): 469-476
    [5]王素洁,吴国清,李瑞华,罗根香,黄正.5wt%YAl2p/Mg-Li复合材料的组织与性能的研究[J].航空材料学报,2007,27(1):20-22
    [6]刘滨,张密林,胡耀宇,巫瑞智.富镧混合稀土对Mg-10Li-4Al合金组织和力学性能的影响[J].航空材料学报,2007,27(5):17-21
    [7]Riello P, Canton P. Nucleation and crystallization behavior of glass-ceramic materials in the Li2O-Al2O3-SiO2 system of interest for their transparency properties [J]. J. Non-Cryst Solids,2001,288(1-3):127-139
    [8]刘磊,孙洪伟.锂基润滑脂的制备及热力学估算[J].轴承,2009(11):30-31
    [9]冉建中.世界有色金属工业现状[J].国家有色工业局规划发展司.1999,383-416
    [10]戴志锋,肖小玲,李法强,马培华.高纯碳酸锂的制取方法探讨[J].盐湖研究,2005,13(2):53-58
    [11]郑绵平.中国的锂资源[J].新材料产业,2007,(8):13-16
    [12]申军,戴斌联.盐湖卤水锂矿资源开发利用及其展望[J].化工矿物与加工,2009,(4): 1-7
    [13]赵元艺.中国盐湖锂资源及其开发进程[J].矿床地质,2003,22(1):99-106
    [14]秦玉楠.钼酸锂的原料锂盐—碳酸锂生产工艺及其改进[J].中国钼业,2004,28(6):26-28
    [15]Mehta, Vijay C. Process for recovery lithium from salt brines [P].U.S. pat.,4723962, 1988
    [16]Marshall P, Neipert, Charles K, Bon. Method of lithium recovery [P].U.S. pat.,3306700, 1967
    [17]王宝才.我国卤水锂资源及开发技术进展[J].化工矿物与加工.2000,29(10):4-6
    [18]黄师强,崔荣旦,张淑珍等.一种从含锂卤水中提取无水氯化锂的方法[P].中国专利:CN87103431,1987
    [19]许庆仁.从氯化镁饱和卤水中萃取锂的研究[J].有机化学,1979,(1):13-22
    [20]刘向磊,钟辉,唐中杰.盐湖卤水提锂工艺技术现状及存在的问题[J].无机盐工业,2009,41(6):4-6
    [21]肖小玲,戴志峰,祝增虎等.吸附法从盐湖卤水提锂的研究进展[J].盐湖研究,2005,13(2):66-69
    [22]杨建元,夏康明.用高镁含锂卤水生产碳酸锂、氧化镁和盐酸的方法[P].CN17243722006
    [23]米泽华.高纯碳酸锂的制取方法探讨[J].新疆有色金属,2000,2:27-29
    [24]袁小华.论碳酸锂生产的若干工艺问题[J].江西冶金,1998,18(2):25-28
    [25]杨卉芃,李琦,曹跃华等.离子交换法提纯二次锂[J].中国资源综合利用,2002.(5):22-25.
    [26]凌宝萍.高纯碳酸锂制备过程中氢化与除硼研究[D].中国科学院青海盐湖研究所,2004:15-16
    [27]伊文涛,闰春燕,马培华,李法强,王相文.碳酸锂碳化三相反应动力学研究[J].化学工程,2008,36(1):37-40
    [28]伊文涛,闫春燕,马培华.碳酸锂常压鼓泡碳化宏观反应动力学研究[J].化工矿物与加工,2009(3):1-4
    [29]米泽华.碳酸锂微粉的制备方法探讨[J].新疆有色金属,2001,4:22-24
    [30]徐龙泉,曾祖亮,梁虎等.硫酸法生产电池级碳酸锂[P].CN 1267636A,2000
    [31]杜楠,周贵树.一种电池用纳米级碳酸锂的制备方法[P].CN 101209846A,2008
    [32]王静康.化学工程手册—结晶[M].北京:化学工业出版社,1996.
    [33]陆杰,王静康.反应结晶过程研究Ⅱ—二次过程及机理分析[J].化学工业与工程1999,16(1):58-61
    [34]E.B.哈姆斯基著,古涛、叶铁林译.化学工业中的结晶[M].北京:化学工业出版社.1986,6
    [35]陈新志,蔡振云,胡望明.化工热力学[M].北京:化学工业出版社.2001.4
    [36]Pitzer K. S. Thermodynamics of electrolytes. I. Theoretical basis and general equations[J]. J. Phys. Chem.1973,77(2):268-277
    [37]Pitzer K. S.; Mayorga G. Thermodynamics of Electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent [J]. J. Phys. Chem., 1973,77(19):2300-2308
    [38]Cheng Pan, Maciej Radosz. Modeling of solid-liquid equilibria in naphthalene, normal-alkane and polyethylene solutions [J]. Fluid Phase Equilibria.1999,155(1): 57-73
    [39]Taihe Deng, Satoru Horiuchi, Lindsay E. Roy. Solubility of anthracene in ternary 2-butoxyethanol+alkane+propanol solvent mixtures [J]. J. Chem. Eng. Data.,1999, 44(2):258-261
    [40]韩佳宾,陈静,刘向军等.基于人工神经网络的咖啡因溶解度的建模[J].化工时刊,2003,17(4):26-28
    [41]金克新,陈勇强,谢朝钢.硝基氯苯体系固液平衡研究[J].化学工业与工程,1993,10(2):1-8
    [42]宋彭生,姚燕.i+, K+//Cl-, SO42--H2O体系相平衡的热力学[J].盐湖研究,2001,9(4):8-14
    [43]王继顺,高世扬,刘铸,唐王波.+, Li+, Mg2+//Cl--H2O四元水盐体系在-10℃时的平衡溶解度相图[J].盐湖研究,1993,1(2):11-15
    [44]曾英,殷辉安,唐明林,王励生.298K时i+, Na+, K+//CO32--H2O四元体系相图和液相物化性质测定[J].化学工程,1999,27,(5):45-47
    [45]殷辉安,郝丽芳,曾英,唐明林.i+, Na+//CO32-, B4O72-, Cl--H2O五元体系298K相平衡及平衡液相物化性质的研究[J].高校化学工程学报,2003,17(1):1-5
    [46]桑世华,唐明林,殷辉安,曾英.K2CO3-Na2CO3-Li2CO3-H2O四元体系288 K的相平衡[J].应用化学,2004,21(5):509-511
    [47]刘勇,王静康,尹秋响.环丙沙星结晶热力学研究[J].天津大学学报,2002,35(3):313-316
    [48]Patrcia Correia, Carlos Lopes, Manuel E. M. Piedade, Joo A. A. Loureno, Maria L. Serrano. Solubility and metastable zone width of 1-keto-1,2,3,4-tetrahydro-6-methyl lcarba zole in Acetone [J]. J. Chem. Eng. Data,2006,51(4):1306-1309
    [49]武洁花,王静康,尹秋响,张美景.头孢唑林钠结晶热力学[J].中国抗生素杂志,2006,31(11):665-668
    [50]Qiaoli Chen, Yongli Wang, Yanbin Li, Jingkang Wang. Solubility and metastable zone of cefoperazone sodium in acetone+water system [J]. J. Chem. Eng. Data,2009,54(3): 1123-1125
    [51]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社.1985,10
    [52]Nyvlt J. Kinetics of crystallization in solution[J]. J. Cryst. Growth,1968, (3/4):377-383.
    [53]Sohnel O., Mullin J.W. The role of time in metastable zone width derminations[J]. Chem. Eng. Res. Des,1988,66(6):537-540
    [54]Mullin J W, Jancic S J. Interpretation of Metastablezone Widths [J]. Trans. IChemE,1979, 57(3):188-192
    [55]Kind M, Mersmann A, On Supersaturation during Mass Crystallization from Solution [J]. Chem. Eng. Technol.,1990,13(1):50-62
    [56]Sohnel O, Mullin J W. A method for the determination of precipitation induction periods[J]. J Cryst. Growth,1978,44(4):377-382
    [57]Marciniak B. Density and ultrasonic velocity of undersaturated and supersaturated solutions of fluoranthene in trichloroethylene, and Study of their metastable zone width [J]. J. Cryst. Growth,2002,236(1/3):347-356
    [58]Hennessy A, Neville A, Roberts K J. In situ SAXS/WAXS and turbidity studies of the structure and composition of multihomologous n-alkane waxes crystallized in the absence and presence of flow improving additive species [J]. Cryst. Growth Des.,2004,4(5): 1069-1078
    [59]Parsons A R, Black S N, Colling R. Automated measurement of metastable zones for pharmaceutical compounds [J]. Chem. Eng. Res. Des.,2003,81(6):700-704
    [60]李军,王燕,张凌之.表面活性剂对氟硅酸钠(钾)在磷酸介质中结晶介稳区宽度的影响[J].四川大学学报,2002,34(3):53-56
    [61]Gurbuz, H. Ozdemir B. Experimental determination of the metastable zone width of borax decahydrate by ultrasonic velocity measurement [J]. J. Cryst. Growth,2003, 252(1-3):343-349
    [62]Sibel Titiz-Sargut, Joachim Ulrich. Application of a protected ultrasound sensor for the determination of the width of the metastable zone [J]. Chem. Eng. Process.,2003, 429(11):841-846
    [63]陆杰,王静康.普鲁卡因青霉素的溶液微粒结晶—溶解度和超溶解度的测定[J].中国抗生素杂志,1999,24(5):337-338,367
    [64]鲍颖,王静康,王永莉.大观霉素溶析结晶介稳态研究.中国抗生素杂志[J].2003,28(1):10-17
    [65]刘勇,王静康.环丙沙星在溶液中固液表面能的测定[J].化学工业与工程,2002,19(5):373-379
    [66]Dilum D, Dunuwila, Kris A, Berglund. ATR-FTIR spectroscopy for in situ measurement of supersaturation[J]. J. Cryst. Growth,1997,179(1-2):185-193
    [67]Fujiwara M, Chow P S, Ma D L, et al. Paracetamol crystallization using laser back scattering and ATR-FTIR spectroscopy:metastability, agglomeration and control [J]. Cryst. Growth Des.,2002,2(5):363-370
    [68]Qu H., Kultanen M.L., Rantanen J., Kallas J. Solvent-mediated phase transformation kinetics of an anhydrate/hydrate system [J] Cryst. Growth Des.,2006,6(9):2053-2060
    [69]Barrett P, Glennon B. Characterizing the metastable zone width and solubility curve using lasentec FBRM and PVM [J]. Chem. Eng. Res. Des.,2002,80(9):799-805
    [70]AINasser W.N., Shaikh A., Morriss C, Hounslow M.J., Salman A.D. Determining kinetics of calcium carbonate precipitation by inline techniquefJ]. Chem. Eng. Sci.,2008, 63(5):1381-1389
    [71]Zoltan K N, Fujiwara M, Woo X Y, et al. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments [J]. Ind. Eng. Chem. Res.,2008,47(4):1245-1252
    [72]Alfred Ruf, Jorg Worlitschec, Marco Mazzotti. Modeling and experimental analysis of PSD measurements thourgh FBRM [J]. Part. Part.Sys.Charact,2000,17(4):167-179
    [73]Sparks, R. G. and Dobbs, C. L. The use of laser back scatter instrumentat ion for the on-line measurement of particle size distribution for emulsions [J]. Part. Part. Sys. Charact,1993,10(5):279-289
    [74]Mersmann A, Bartosch K. How to predict the metastable zone [J]. J. Cryst. Growth,1998, 183(1/2):240-250
    [75]Kwang-Joo Kim, Alfons Mersmann. Estimation of metastable zone width in different nucleation processes [J]. Chem. Eng. Sci.,2001,56(7):2315-2324
    [76]Nathalie Lyczko, Fabienne Espitalier, Olivier Louisnard, Jacques Schwartzentruber. Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate[J]. Chem. Eng. J.,2002,86(3):233-241
    [77]Nagy Z.K., Fujiwara M., Woo X.Y., Braatz R.D. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments[J]. Ind. Eng.Chem. Res.,2008,47(4):1245-1249
    [78]Mullin J W. Crystallization,3rd Ed. [M]. Oxford:Butterworth Heinemann Press,1992. Table A.4
    [79]Mullin J W. Crystallization,3rd Ed. [M]. Oxford:Butterworth Heinemann Press, 1992..238.
    [80]Kubotaa N., Yokota M., Mullin J.W. The combined influence of supersaturation and impurity concentration on crystal growth [J] J. Cryst. Growth,2000,212(3-4):480-488
    [81]Mullin J W. Crystallization,3rd Ed. [M]. Oxford:Butterworth Heinemann Press,1992. 173-201.
    [82]Randolph A D, Larson M A. Theory of Particulate Processes,2nd Ed. [M]. San Diego: Academic Press Inc.,1988.123-128
    [83]Myerson A S. Handbook of Industrial Crystallization,2nd Ed. [M]. Oxford:Butterworth Heinemann Press,2002.46-50
    [84]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.81-89
    [85]Tai C Y, Chien W C. Interpreting the effects of operating variables on the induction period of CaCl2-Na2CO3 system by a cluster coagulation model [J]. Chem. Eng. Sci., 2003,58(14):3233-3241
    [86]Kim Y, Hyung W, Haam S, et al. The effect of initial precipitates on the induction period of L-prnithine-L-aspartate during semi-batch drowning out crystallization [J]. J. Cryst. Growth,2006,289(1):236-244
    [87]Hao H X, Wang J K, Wang Y L. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system [J]. J. Cryst. Growth,2005,274(3/4):545-549
    [88]Mersmann A, Kind M. Chemical Engineering Aspects of precipitation from solution [J]. Chem. Eng. Technol.,1988,11(1):264-276
    [89]Kuznetsov Y G, Malkin A J, Glantz W, et al. In situ atomic force microscopy studies of protein and virus crystal growth mechanisms [J]. J. Cryst. Growth,1996,168(1):63-67
    [90]Mersmann A. Supersaturation and nucleation [J]. Trans. IChemE, Part A,1996,74: 812-819
    [91]Tai C Y, Wu J F, Rousseau R W J. Interfacial supersaturation crystal growth, secondary nucleation, and crystal growth [J]. J. Cryst. Growth,1992,116(3/4):294-306
    [92]Qian R Y, Botsaris G D. A new mechanism for nuclei formation in suspension crystallizers:the role of interparticle forces [J]. Chem. Eng. Sci.,1997,52(20): 3229-3240
    [93]Qian R Y, Botsaris G D. Nuclei breeding from a chiral crystal seed of NaC103 [J]. Chem. Eng. Sci.,1998,53(9):1745-1756
    [94]Mullin J W. Crystallization,3rd Ed. [M]. Oxford:Butterworth Heinemann Press,1992. 202-218
    [95]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.102
    [96]Bransom S H. Factors in the design of continuous crystallizer[J]. British Chemical Engineering.1960,5:838-843
    [97]Canning T F, Randolph A D. Some aspects of crystallizatiotheory[J]. AIChE J.,1967, 13(1):5-11
    [98]Abegg G F, Stevens J D, Larson M A. Crystal size distribution in continuous crystallizer when growth rate is size dependent[J]. AIChE J.,1968,14(1):188-194
    [99]Rojkowski Z. A new empirical kinetics equation of size-dependent crystal growth and its use[J].Kristallundtechnik.1977,12:1121-1126
    [100]Rojkowski Z. Two parameter kinetic equation of size-dependent crystal growth[J]. Kristall und technik.1978,13:1277-1284
    [101]Mydlarz J, Jones A G. On modeling the size-dependent growth rate of potassium sulphate in an MSMPR Crystallizer [J]. Chem. Eng. Commun.,1990,90(1):47-56
    [102]Mydlarz J, Jones A G. On the estimation of size-dependent crystal growth rate functions in MSMPR crystallizers [J]. Chem. Eng. J., Bio., Eng., J.,1993,53(2):125-135
    [103]Randolph AD, Larson M A. Theory of Particulate Processes,2nd Ed. [M]. San Diego: Academic Press Inc.,1988.
    [104]Leszek S, Epstein M A. Crystallization kinetics of sucrose in a CMSMPR evaporative crystallizer [J]. Ind. Eng. Chem. Proc. Des. Dev.,1981,20(2):197-203
    [105]Tavare N S. Simulation of Ostwald ripening in a reactive batch crystallizer [J]. AIChE J.,1987,33(1):152-156
    [106]Giridhar Madras, Benjamin J McCoy. Transition from nucleation and growth to Ostwaldripening[J]. Chem. Eng. Sci.,2002,57(18):3809-3818
    [107]Hartel.R.W, Randolph.A.D. Mechanisms and kinetic modeling of calcium oxalate crystal aggregation in a urine like liquor [J]. AIChE J.,1986,32(7):1186-1195
    [108]Narayan S Tavare, Anand V.Patwardhan, Agglomeration in a continuous MSMPR crystallizer [J] AIChE J.,1992,38(3):377-384
    [109]Batterham R J, Hall J S, Barton G, Proceedings,3rd International symposium on Agglomeration [M]. Numberg.1981
    [110]Hounslow M J, Ryall R I, Marshall V R. A discretized population balance for nucleation, growth, and aggregation[J]. AIChE J.,1988,34(11):1821-1832
    [111]Marchal P, David R, Klein J P, Villermaux J. Crystallization and precipitation engineering-I. An efficient method for solving population balance in crystallization with agglomeration [J]. Chem. Eng. Sci.,1988,43(1):59-67
    [112]Litster J D, Smit D J, Hounslow M J. Adjustable discretized population balance for growth and aggregation[J]. AIChE J.,1995,41(3):591-603
    [113]Vanni M. Discretization procedure for the breakage equation[J]. AIChE J.,1999,45(4): 916-919
    [114]Kumar S, Ramkrishna D. On the solution of population balance equations by discretization-II. A moving pivot technique[J].Chem. Eng. Sci.,1996,51(8):1333-1342
    [115]Gelbard F, Tambour Y, Seinfeld J H. Sectional representations for simulating aerosol dynamics[J]. J. Colloid Interface Sci.,1980,76(2):541-556
    [116]Marco Vanni. Approximate population balance equations for aggregation-breakage processes [J]. J. Colloid Interface Sci.,2000,221(2):143-160
    [117]Mahoney, A.W., Ramkrishna, D. Efficient solution of population balance equations with discontinuities by finite elements [J]. Chem. Eng. Sci.,2002,57 (7):1107-1119
    [118]Ma, D.L., Tafti, D.K., Braatz, R.D. High-resolution simulation of multi-dimensional crystal growth [J]. Ind. Eng. Chem. Res.,2002,41(25):6217-6223
    [119]Gunawan, R., Fusman, I., Braatz, R.D.,2008. Parallel high-resolution finite volume simulation of particulate processes [J]. AIChE J.,54 (6):1449-1458
    [120]Qamar, S., Ashfaq, A., Angelov,I., Elsner, M.P., Warnecke, G. Seidel-Morgenstern, A. Numerical solutions of population balance models in preferential crystallization [J]. Chem. Eng. Sci.,2008,63(5):1342-1352
    [121]McGraw, R. Description of aerosol dynamics by the quadrature method of moments [J]. Aerosol Sci. Technol.,1997,27(2):255-265.
    [122]Marchisio, D.L., Fox, R.O. Solution of population balance equations using the direct quadrature method of moments [J]. J. Aerosol Sci.,2005,36(1):43-73
    [123]Grosch R., Briesen H., Marquardt W. Generalization and Numerical Investigation of QMOM [J]. AIChE J.,2007,53(1):207-227
    [124]Majumder A, Kariwal V, Ansumali S, Rajendran A. Entropic lattice Boltzmann method for crystallization processes [J]. Chem. Eng. Sci.,2010,65 (13):3928-3936
    [125]Daniel E. Rosner, Suyuan Yu. MC simulation of aerosol aggregation and simultaneous spheroidization [J]. AIChE J.,2001,47(3):545-661
    [126]Roberto I. Fast Monte Carlo methodology for multivariate particulate systems—Ⅰ:Point ensemble Monte Carlo [J]. Chem. Eng. Sci.,2008,63(1):95-110
    [127]Santillan M M, Bals O, Fauduet H, Porte C, Delacroix A. Study of batch crystallization and determination of an alternative temperature time profile by on-line turbidity analysis application to glcine crystallization [J]. Chem. Eng. Sci.,2000,55(18):3759-3770
    [128]Lung-Somarriba B M, Santillan M M, Porte C, Delacroix A. Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallizations seeding methodology [J]. J. Cryst. Growth,2004,270(3-4):624-632
    [129]Z.I. Zafar, Determination of semi-empirical kinetic model for dissolution of bauxite ore with sulfuric acid:Parametric cumulative effect on the Arrhenius parameters [J], Chem. Eng. J.,2008,141(1-3):233-241
    [130]Demirkiran N. A study on dissolution of ulexitein ammonium acetate solutions [J], Chem. Eng. J,2008,141(1-3):180-186
    [131]夏树屏,高世扬,刘志宏,宋粤华.盐类溶解动力学的数学模型和热力学函数[J].盐湖研究,2003,11(3):9-17
    [132]Pillay V., Fassihi R. Unconventional dissolution methodologies [J]. J. Pharm. Sci.,1999, 88(9):843-851
    [133]Morse J W, Arvidson R S. The dissolution kinetics of major sedimentary carbonate minerals [J]. Earth. Sci. Rev.,2002,58(1):51-84
    [134]Mullin J W. Crystallization,3rd Ed. [M]. Oxford:Butterworth Heinemann Press,1992. 264-267
    [135]唐力君,郑绵平,刘建华.碳酸盐型盐湖卤水的模拟太阳池结晶试验[J].地球学报,2009,30(2):249-255
    [136]Mullin J.W., Nyvlt J., Programmed cooling of batch crystallizers [J] Chem. Eng. Sci., 1971,26(3):369-377
    [137]Jones A.G.., Mullin J.W., Programmed cooling crystallization of potassium sulfate solutions [J]. Chem. Eng. Sci.,1974,29(l):105-118
    [138]Jones A.G. Optimal operation of a batch cooling crystallizer [J]. Chem. Eng. Sci.,1974, 29(5):1075-1087
    [139]贾之慎.无机及分析化学[M].北京:高等教育出版社.2008
    [140]刘振海.热分析导论[M].北京:化学工业出版社.1991
    [141]姜信真.气液反应理论与应用基础[M].北京:烃加工出版社.1989,28-39
    [142]蔡俊青,丛继坤,谭朝阳,曹吉林.Ca(OH)2-CO2-H2O三相反应宏观动力学研究[J].河北工业大学学报,2006,35(1):30-33
    [143]Diego Gomez-Diaz, Jose M. Navaza, Begona Sanjurjo.Analysis of mass transfer in the precipitation process of calcium carbonate using a gas/liquid reaction[J]. Chem. Eng. J., 2006,116(3):203-209
    [144]Pao-Chi Chen, S.M. Liu, C.J. Jang, R.C. Hwang, Y.L. Yang, J.S. Lee, J.S. Jang. Interpretation of gas-liquid reactive crystallization data using a size-independent agglomeration model [J]. J. Cryst. Growth,2003,257(3-4):333-343
    [145]Kazuya Tamura, Hideki Tsuge, Characteristics of multistage column crystallizer for gas-liquid reactive crystallization of calcium carbonate [J]. Chem. Eng. Sci.,2006, 61(17):5818-5826
    [146]Sung Hoon Kang, Sang Goo Lee, Wang Mo Jung, et al. Effect of Taylor vortices on calcium carbonate crystallization by gas-liquid reaction [J]. J. Cryst. Growth,2003, 254(1-2):196-205
    [147]朱万诚,陈建峰,王玉红.超重力环境中合成微细晶须碳酸钙及其表征[J].化学物理学报,2004,17(2):175-178
    [148]CliffordY. Tai, Chia-te Tai, Hwai-shen Liu. Synthesis of submicron barium carbonate using a high-gravity technique[J]. Chem. Eng. Sci.,2006,61(22):7479-7486
    [149]KarolinaK edra-Krolik, Pawe Gierycz. Precipitation of nanostructured calcite in a controlled multiphase process[J]. J. Cryst. Growth,2009,311(14):3674-3681
    [150]房永广,梁志诚,彭会清.超细粉体材料的制备技术现状及应用形势[J].化工矿物与加工,2005(3):34-36
    [151]陈桂光,骆广生,徐建鸿,汪家鼎.膜分散沉淀法制备硫酸钡超细颗粒[J].清华大学学报(自然科学版),2004,44(3):315—318
    [152]赵华,刘洪杰,朱建伟,等.微反应器制备纳米硫酸钡研究[J].无机盐工业,2008,40(1):29-31
    [153]周彦昭.微乳液法制备纳米粉体综述[J].陕西科技大学学报,22(5):167-170
    [154]鞠景喜,曾昌凤,张利雄,徐南平.微通道反应器在微一纳米材料合成中的应用研究进展[J].化工进展,2006,25(2):152-157
    [155]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社.149-150
    [156]Che, S., Sakurai,O., Shinnozaki, K., Mizutani, N. Particle structure control through intraparticle reactions by spray pyrolysis [J]. J. Aerosol Sci.,1998,29(3):271-278
    [157]Yang, S.Y., Kim S.G. Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis [J]. Powder Technol.2004,146(3):185-192
    [158]Eslamian, M., Ashgriz N. Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying [J]. Powder Technol.2006,167(3):149-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700