用于辐射剂量学的小鼠体素模型建立及其器官剂量分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物照射实验是电离辐射生物效应研究的重要手段,相比较平均剂量而言,实验动物的器官剂量可为生物效应评价、剂量-效应关系研究提供更丰富的信息和依据。动物器官剂量难以采用物理方法直接测量。近年来,随着断层成像技术的发展,基于体素模型与蒙特卡罗技术的器官剂量模拟计算方法已日趋成熟,并已在辐射防护人体剂量学中得到了应用,而目前以生物效应评价为目的的动物器官剂量计算还处于起步阶段,缺乏体素模型及器官剂量评价数据。
     本文针对小鼠建立体素模型,采用蒙特卡罗技术获得了光子、中子外照射情况下小鼠的器官剂量转换系数,分析并总结了小鼠的器官剂量分布规律。主要研究结果及结论包括:
     1、采用Matlab7.0和Photoshop8.0图像处理软件软件对质量为28 g的雄性小鼠断层序列彩色解剖图片(418张)进行了图像配准、识别与分割,然后利用Visual C++与可视化工具包(VTK)编程对小鼠进行三维重建,建立了一个体素精度为0.2 mm×0.2 mm×0.2 mm、体素数量为9,424,000的小鼠体素模型,模型中含有14个关键器官或组织,分别为:皮肤、骨骼、眼睛、心脏、肺、肝、肾、肾上腺、胃、脾、胰腺、睾丸、膀胱、肌肉等。
     2、采用Matlab 7.0软件和蒙特卡罗程序MCNP混合编程,确定了小鼠体素模型中每个体素的空间几何位置和物理属性,并编写了小鼠体素模型的MCNP输入文件,使得小鼠体素模型可以与蒙特卡罗方法结合进行粒子输运模拟。
     3、针对蒙特卡罗程序MCNP,论文深入研究了基于体素模型的光子、中子外照射器官剂量计算方法,总结了不同光子、中子能量情况下物理模型及计数类型选择的规律,为获得准确的小鼠器官剂量提供了方法学基础。
     4、利用MCNP程序,分别模拟计算了五种照射几何条件(左侧向、右侧向、腹背向、背腹向、各向同性)下,光子能量为0.01MeV~10MeV共22个能量点、中子能量为10-9MeV~20MeV共37个能量点的小鼠器官剂量转换系数,并以表格的形式给出了计算结果及其不确定度。此套转换系数是小鼠剂量学的基础数据,在照射条件已知时,可以用来获得小鼠的器官剂量。
     5、深入分析讨论了照射几何条件、粒子能量、器官的位置、形状、大小及小鼠个体差异对小鼠器官剂量的影响,结果表明小鼠器官剂量在这些因素的影响下,光子外照射时同一个器官的器官剂量差异最高可达50%~60%,而中子外照射时差异最高可达100%~120%。
     6、构建了一个小鼠剂量学理论研究平台,利用该平台可以模拟计算光子、中子及其他粒子(如电子、质子)内外照射情况下的小鼠剂量学数据。
Animal irradiation experiment is vital to study biological effects of radiation. Compared with the average dose, the organ dose of animal can provide more plentiful information and basis for evaluating biological effects and dose-effect relation research. The animal organ dose is difficult to be measured directly by physical methods. In recent years, with the development of tomograph imaging technologies, the organ dose calculation methods based on the voxel model and Monte Carlo technique have been increasingly maturing and have been used for human dosimetry in radiation protection. However, the organ dose calculations aiming at evaluation of biologicial effects are being on the beginning stage, which lacks voxel models and organ dose data.
     In this paper, a voxel model of mouse was constructed, a set of mouse organ dose conversion coefficients for external photon and neutron irradiation were obtainded by using Monte Carlo method, and the mouse organ dose distribution also was analyzed and concluded. The main results and conclusions are as follows:
     1. At first, a series of image processes including registration, identification and segmentation were carried out for a total of 418 color images of successive cryosections of a normal male mouse, 28g in weight by using Matlab 7.0 and Photoshop 8.0 software.Then 3D reconstruction of the mouse model was achieved through programming with Visual C++ and Visualization Toolkit (VTK). After these, a mouse voxel model comprised by total number of 9,424,000 voxels, each of which is size of 0.2mm×0.2mm×0.2mm, was constructed. The model contained 14 key organs or tissues including skin, bone, eye, brain, heart, lungs, liver, kidneys, adrenal glands, stomach, spleen, pancreas, bladder, testis and muscle.
     2. The location and physical property of each voxel in the mouse model were confirmed through coupled programming with Matlab 7.0 and Monte Carlo code MCNP. The input file of the mouse voxel model used in MCNP was achieved to perform particle transport simulation by combining the mouse voxel model and Monte Carlo method.
     3. As for the Monte Carlo code MCNP, the organ dose calculation methods of voxel model used for external photon and neutron irradiation were thoroughly investigated and the selection rules of physical models and tally types for different energy of photon and neutron were also concluded,which provide basis of methodology for acquiring correct mouse organ dose .
     4. Monte Carlo simulation with MCNP was carried out to obtain mouse organ dose conversion coefficients for 22 external monoenergetic photon beams (0.01MeV ~10 MeV) and 37 external monoenergetic neutron beams(10-9MeV~20MeV) under five different irradiation geometry conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). The results and uncertainty were given in form of table. The set of organ dose conversion coefficients are basic data of mouse dosimetry and can be used to acquire organ dose when irradiation conditions have been known.
     5. The paper have discussed the organ dose difference affected by a series of factors including irradiation geometry conditions, particle energy, location, shape and size of organ, the individual difference. The results show that the organ dose difference can reach almostly 50%~60% for photon irradiation and 100%~120% for neutron irradiation.
     6. A platform for theoretical study of mouse dosimetry was constructed, which can be used to simulate and calculate the mouse dosimetry data for photon, neutron and other particles (such as electron and proton) irradiation under internal and external irradiation conditions.
引文
[1]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运中的应用,科学出版社,1980,第一版,7-12.
    [2] International Commission on Radiological Protection. Report of the task group on Reference Man.ICRP Publication23, 1975.
    [3] Snyder WS,Ford MR,Warner GG,et al.Estimates of absorbed fractions for monoenerg -etic photon source uniformly distributed in various organs of a heterogeneous phanto -m. Medical Internal Radiation Dose Committee (MIRD) Pamphlet No.5, Revised ,1978.
    [4] Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources. OakRidge,TN:Oak Ridge National Laboratory,Report No. ORNL/ TM-8381N1, 1987.
    [5] Stabin MG,Watson EE,Cristy M,et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. OakRidge,TN:Oak Ridge National Laboratory,Report No. ORNL /TM-12907, 1995.
    [6] Kramer R, Zankl M,Williams G, et al. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods, Part 1: The male (ADAM) and female (EVA) adult mathematical phantoms. Munchen:Gesellschaft fur Strahlenund Umweltforschung mbH,GSF Bericht S-885,1982.
    [7] Gibbs SJ, Pujol A, Chen TS, et al. Patient risk from interproximal radiography. Oral Surgery, Oral Medicine,Oral Pathology,1984,58:347-354.
    [8] Williams G, Zankl M, Abmayr W, et al.The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods. Phys Med Biol,1986,31:449-452.
    [9] Zubal IG, Harrel CR , Smith EO, et al. Computerized three-dimensional segmented human anatomy.Med Phys,1994,21:299-302.
    [10] Jones DG. A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiat Prot Dosim,1997,72:21-29.
    [11] Petoussi-Henss N, Zankl M. Voxel anthropomorphic models as a tool for internal dosimetry. Radiat Prot Dosim,1998,79:415-418.
    [12] Petoussi-Henss N, Zankl M, et al.The GSF family of voxel phantoms. Phys Med Biol, 2002,47: 89-106 .
    [13] Xu XG, Chao TC, Bozkurt A. VIP-Man: An image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Phys,2000,78:476-486.
    [14] Lee C, Lee C, Park S, et al. Development of the two Korean adult tomographic computational phantoms for organ dosimetry.Med Phys, 2006,33:380-390.
    [15] Jia XH, Xu F, Huang ZX, Zeng Z, et al. Estimates of space radiation exposure to astronauts using male voxel model based on MRI.航天医学与医学工程, 2008,21(4):299-303.
    [16] Zhang BQ, Ma JZ, Liu LY, and Cheng JP. CNMAN: a chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set. Radiat Prot Dosim,2007,124(2):130-136.
    [17] Li JL, Qiu R, Zhang Z, et al. Organ dose conversion coefficients for external photon irradiation using the chinese voxel phantom (cvp). Radiat Prot Dosim,2009,135 (1):33-42.
    [18] Caon M. Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys, 2004,24:22–235.
    [19] Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed, Eng, 2007,9: 471-500 .
    [20] Kinase S. Voxel-Based Frog Phantom for Internal Dose Evaluation. Journal of Nucle- ar Science and Technology, 2008, 45(10):1049-1052.
    [21] Hui TE, Fisher DR, Kuhn JA, et al. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer, 1994, 73(0):951-957.
    [22] Flynn AA, Green AJ, Pedley RB, et al. A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res, 2001, 156(1):28-35.
    [23] Hindorf C, Ljungberg M, Strand S-E. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med, 2004,45:1960-1965.
    [24] Funk T, Sun MS, Hasegawa BH. Radiation dose estimate in samll animal SPECT and PET. Med Phy,2004,31:2680-2686.
    [25] Konijnenberg MW, Bijster M, Krenning EP, et al. A stylized computational model ofthe rat for organ-dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y,111In,or 177Lu. J Nucl Med, 2004, 45(7):1260-1269.
    [26] Kolbert KS, Watson T, Matei C, et al. Murine S factors for livers, spleen, and Kidney. J Nucl Med, 2003, 44(5):784-791.
    [27] Stabin MG, Peterson TE, Holburn GE, et al. Voxel-based mouse and rat models for internal dose calculations. J Nucl Med, 2006, 47(4):655-659.
    [28] Segars WP, Tsui BMW, Frey EC, et al. Development of a 4D digital mouse phantom for molecular imaging research. Mol Imaging Biol, 2004, 6(3):149-159.
    [29] Bitar A, Lisbona A, Thedrez P, et al. A voxel-based mouse for internal dose calculation -s using Monte Carlo simulations (MCNP). Phys Med Biol, 2007, 52(4):1013-1025.
    [30] Wu L, Zhang GZ, Luo QM, et al. An image-based rat model for Monte Carlo organ dose calculations. Med Phys, 2008, 35(8):3759-3764.
    [31]陈武凡,秦安,江少峰,冯前进,郝立巍.医学图像分析的现状与展望.中国生物医学工程学报,2008,27(2):175-181.
    [32]卢振泰,陈武凡.基于多尺度卡尔曼滤波的医学图像配准算法.计算机工程与设计,2008,29(19):4982-4984.
    [33]衣文文,常发亮,胡彦磊.一种基于互信息的三级医学图像配准策略.航天医学与医学工程,2008,21(6):518-522.
    [34]刘丽,苏敏.基于小波变换和互信息的医学图像配准.中国图像图形学报, 2008, 13(6):1171-1176.
    [35]常学义,孙秋冬,任煜,陈玮.基于MATLAB的图像配准方法.上海第二工业大学学报,2006,23(4):303-308.
    [36]朱朝杰,王仁礼,董广军.MATLAB环境下遥感影像配准与融合技术研究.测绘工程,2006,15(6):57-59.
    [37]苏秀云,裴国献,余斌等.基于标记点使用Photoshop和Matlab软件实现中国数字人连续断层图像的自动配准.南方医科大学学报,2007,27(12):1884-1891.
    [38]梁洪有,余涛,顾行发.基于MATLAB图像处理工具箱IPT函数的遥感图像配准.测绘与空间地理信息.2008,31(5):8-11.
    [39]乐宋进,武和雷,胡泳芬.图像分割方法的研究现状与展望.南昌水专学报,2004, 23(2):15-20.
    [40]方忠民.医学图像分割技术新进展.长沙大学学报,2008,22(5):94-97.
    [41]王瓛,郭秀花.医学图像处理中有关图像分割的新技术.北京生物医学工程,2008, 27(4):440-443.
    [42]卫娜,李向东,黄殿忠,王政.基于纹理特征和GRBF网络的医学图像分割.医疗卫生装备,2008,29(11):25-27.
    [43]陈湘文,赵卫东,李吉超.一种新的基于区域竞争模型的水平集医学图像分割方法.计算机应用,2008,28(4):995-998.
    [44]哈章,李传富,王金萍,周康源,杨振森.一种新型的医学图像分割评价方法.北京生物医学工程,2008,28(4):385-388.
    [45]卢振泰,吕庆文,陈武凡.基于最大互信息量的图像自动优化分割.中国图像图形学报,2008,13(4):658-661.
    [46]王太一,韩子玉,实验动物解剖图谱,辽宁美术出版社,2000,第一版:376-388.
    [47] International Commission on Radiological Protection.The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 ,2007.
    [48]祁俐娜,罗述谦.基于VTK的医学图像三维重建.北京生物医学工程,2006,25 (1):1-5.
    [49]张翔,肖小玲,张爱华.基于VTK库的人脑三维可视化面绘制.长江大学学报(自然版),2006,3(1):75-76.
    [50]王树秀,雷声,常发亮.利用VTK实现DICOM医学图像三维重建.信息技术与信息化,2008,5:15-116.
    [51]吴松峻,彭复员.基于VTK的二维轮廓线的三维可视化重建.计算机与现代化, 2004,10:111-113.
    [52]李婧,李昌华.基于VTK的体会制系统实现.现代软件技术,2008,12:88-97.
    [53] VisualizationToolkit. http://www.vtk.org.
    [54] William JS,Kenneth MM, Lisa SA, et al.The VTK users guide.Kitware,2000.
    [55]唐泽圣等,三维数据场可视化,清华大学出版社,1999.
    [56] Hirayama H, Namito Y, Bielajew AF,et al. The EGS5 code system. SLAC-730,2005.
    [57] Eruopean Organization for Nuclear Research. Geant-Detector Description and Simul- ation Tool. Geneva:CERN,1993.
    [58] Ferrari A, Sala PR, Fasso A, et al. Fluka:a muti-particle transport code. Geneva: CERN,2005
    [59] Briesmeister, JF. MCNP-a general Monte Carlo N-particle transport code, version 4C. LA-13709-M ,2000.
    [60]陈卓,刘晓平,施灿辉,郑善良,吴宜灿.基于MCNP的医学仿真计算建模方法研究.系统仿真学报,2004,16(10):2153-2156.
    [61]张斌全,马吉增,程建平,刘立业.体素模型在Monte Carlo模拟计算中的描述.清华大学学报(自然科学版),2007,41(S1):1085-1088.
    [62]张志涌.精通MATLAB 6.5版.北京航空航天大学.2003,第一版.
    [63] International Commission on Radiological Units and Measurements. Tissue substitute- s in radiation dosimetry and measurement. ICRU Report 44, 2003.
    [64] International Commission on Radiation Units and Measurements. Photon, proton, and neutron interaction data for body tissues. ICRU Report 46 ,1992.
    [65] International Commission on Radiological Protection.Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74.1996.
    [66] International Commission on Radiological Units and Measurements. Conversion coef- ficients for use in radiological protection against external radiation. ICRU Report 57, 1998.
    [67] Valery T, Xu XG. Foetal dose conversion coefficients for ICRP-compliant pregnant models from idealised proton exposures. Radiat Prot Dosim, 2009,133(2): 65-72.
    [68] Shi CY, Xu XG. Development of a 30-week pregnant female tomographic model from CT-images for Monte Carlo organ dose calculations. Med. Phys,2004,31:2491-2497.
    [69] Chao TC, Bozkurt A, Xu XG. Conversion coefficients based on the VIP-Man anatomi- cal model and EGS4-VLSI code for external monoenergetic photons from 10 keV to 10 MeV. Health Phys, 2001,81:163-168.
    [70] Zankl M, Fill U, Petoussi-Henss N, Regulla D, Organ dose conversion coefficients for external photon irradiation of male and female voxel models.Phys Med Biol, 2002, 47:2367-2385 .
    [71] Zhang GZ, Luo QM, Zeng SQ, Liu Q.The development and application of the visible chinese human model for monte carlo dose calculations. Health Phys, 2008, 94(2):118-125.
    [72]范佳锦,李君利,程建平,郑钧正,张建峰.蒙特卡罗法内照射剂量计算中不同物理模型的比较.核电子学与探测技术,2003,23(6):507-509.
    [73] Fill UA,Zankl M, Petoussi-Henss N, Siebert M, et al. Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys, 2004, 86, 253-272.
    [74] Qiu R, Li JL, Zhang Z, Liu LY, et al. Dose conversion coefficients based on the chinese mathematical phantom and mcnp code for external photon irradiation. Radiat Prot Dosim, 2009,134(1): 3-12.
    [75] Alghamdi AA, Ma A, Tzortzis M, Spyrou NM. Neutron fluence to dose conversion coefficients in an anthropomorphic phantom. Radiat Prot Dosim, 2005,115(1-4): 606-611.
    [76] Stewart RD,Tanner JE, Leonowich JA.An extended tabulation of effective dose equiv- alent from neutrons incident on a male anthropomorphic phantom. Health Phys, 1993, 65(4): 405-413.
    [77] Taranenko V, Xu XG.. Fluence-to-absorbed dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models. Phys. Med. Biol, 2008,53:1425-1446.
    [78] Bozkurt A,Chao TC,Xu XG.. Fluence-to-dose conversion coefficients from monoene- rgetic neutrons below 20 MeV based on the VIP-MAN anatomical model. Phys Med Biol, 2000,45:3059-3079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700