数字化及快速成形术在全髋表面置换假体定位的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     全髋关节置换术(total hip arthroplasty,THA)目前已成为骨科最常见的手术之一,其目的是解除患者髋部疼痛、重建运动功能,对老年患者有非常良好的效果。随着生物医用材料研制和医学的迅速发展,以及人们对生活水平、医疗保健、康复水平的要求日益提高,人工关节的需求越来越广泛。但是,对于有髋关节病变的中青年人群来说,常规全髋置换术存在较高的早期翻修率,尤其在那些男性、从事活动量较大的工作、在术后参加体育运动的人群中。而髋关节表面置换在这个问题上具有独特优势:创伤小、术后活动度好、能保留较多股骨侧骨量等。髋关节表面置换早20世纪50年代就开始应用于临床,但是由于手术技术不成熟、易造成股骨颈骨折、聚乙烯臼杯易磨损、假体存活率较低等原因,在相当长的时期并不被看好。而常规全髋关节置换术的中长期结果也不令人满意。近年来,随着材料学的进步和技术细节的改进,髋关节表面置换在临床应用逐渐增多。
     全髋关节置换手术中假体位置一直是术后关节稳定性的关键因素。传统全髋关节置换中颈干角基本上由假体本身的设计来决定,而髋表面置换则取决于股骨侧假体的内外翻放置。务必要避免柄干角内翻或假体位置过度前倾,否则会引起应力的传导、分布异常,甚至出现股骨颈骨折等并发症。髋臼假体的准确植入与否不仅是保持术后关节稳定的关键因素,而且还对骨盆的骨质溶解、聚乙烯内衬材料的磨损和假体松动产生影响。位置不当除可引发早期脱位,还是疼痛和松动的原因之一。假体置入时使用定位器虽然能够提供一定的定位参考,但目前使用的定位器尚不能达到比较准确的定位要求,仍需术者目测纵轴及矢状轴,存在较大的经验依赖性,往往会带来假性安全感。
     自计算机辅助设计(computer aided design,CAD)和计算机辅助工程(computer aided engineering,CAE)技术引入医学领域,目前数字医学已成为现代医学的重要组成部分,从而促使医学技术向个性化、精确化、微创化方向快速发展。由于数字化技术的导入,数字医学成像系统及计算机系统可将患者的影像模型化,建立个性化三维图像模型。并应用数字可视技术实现术前准确定位、术中精确导航,从而使手术更加规范,增加了手术的可靠性与安全性,使临床医师处理复杂手术的难题迎刃而解。
     医学图像重建软件Mimics、Amira等具有功能强大的高级数据可视化系统,利用螺旋CT提供的人体薄层断面清晰图像,通过对一系列的二维图像进行边界识别等分割处理,可重新还原被检物体的三维图像。Imageware为全球四大逆向工程软件之一,具有强大的测量数据处理、误差检测功能、自由曲线曲面编辑功能,能以直觉而快速的方式进行曲线、曲面的建构与调整。可以处理大量的点云数据,根据这些点云构建的曲面具有良好的品质和曲面连续性。快速成型技术(Rapid Prototyping Technology)简称RP技术,集成了现代数控技术、计算机辅助设计/制造(CAD/CAM)技术、激光技术及材料科学领域的最新成果,不受产品外形复杂程度和曲面所限制,在医学领域应用中最为广泛。打破了传统的解剖结构观察、并创新了手术设计模式。
     本课题是利用患者术前螺旋CT数据资料,通过三维重建、逆向工程设计、并结合快速成形技术构建出个体化定位导向模板,以指导表面髋关节置换时髋臼及股骨侧假体的安放,为解决临床医学中长期困扰人们的“量身定制”问题提供了有效的方法和制作手段。
     目的
     1.依据患者的骨盆螺旋CT影像学资料,探讨利用Amira与Imageware软件并结合髋臼的表面解剖特征,设计定位髋臼假体最佳方位的数字化个性模板。
     2.依据一侧髋关节有病变患者的骨盆螺旋CT影像学资料,探讨利用Amira与Imageware软件并结合健侧髋臼及股骨头特征来确定患侧髋关节正常旋转中心,通过设计患侧髋关节假体的数字化个性定位模板,以保证置换的表面型假体尽可能恢复正常解剖位置。
     3.根据设计出的数字化模型利用快速成型技术制出实物模型,术中将模型与髋臼、股骨头表面相匹配对假体置入方向进行定位,术后利用X线摄片进行测量观察,并与常规法术中假体定位结果比较评价其定位的精确性。为今后指导表面髋关节置换手术设计和手术操作提供依据。
     方法
     1.正常髋臼旋转中心及假体方位的确定:收集一例行16排螺旋CT的成人骨盆连续断层扫描资料,CT扫描参数:120kV、200mAs,层厚5mm,矩阵512×512,扫描范围由髂嵴上缘至坐骨结节。将扫描数据输入个人计算机的Amira4.1重建软件,以1mm层距进行三维重建,经自动或手动阈值分割后采用表面重建方法SSD(surface shade display)三维重建出完整骨盆的骨骼结构。再根据不同部分骨骼的不同阈值范围将一侧髋臼的三维重建模型单独提取出来,以STL格式保存。将该格式的髋臼模型导入Imageware12.1软件进行分析。(1)提取患侧髋臼表面的月状面部分的点云数据,通过拟合求出最适球体,其球心即为正常的髋臼旋转中心;(2)设定理想的髋臼假体方位为外展角45°、前倾角15°。将球心设为原点,以直立位下过该球心的人体重垂线为基线,先在冠状面向外旋转45°角,再在过此线与冠状面相交的垂面内向前旋转15°,此时线的位置即为髋臼假体的中轴线;(3)提取患侧髋臼表面点云,设定髋臼月状面软骨层厚度为2mm,因软骨组织在CT中成像受限,故需将生成的与髋臼月状面形态一致的曲面向内偏置2mm以保证良好的匹配性。将生成的髋臼曲面与定位中轴线的曲面拟合为一个整体结构,生成数字化定位模板。
     2.病变髋关节旋转中心及表面髋假体方位的确定:术前均进行16排螺旋CT扫描,扫描范围由髂嵴上缘至股骨中上段,将扫描数据输入个人计算机的Amira4.1软件,以1mm层距进行三维重建,经自动或手动阈值分割后采用表面重建方法SSD构建出完整骨骼结构。再根据不同部分骨骼的不同阈值范围将健侧、患侧髋臼及股骨分别提取出来,以STL格式保存。将该格式不同部位的重建模型均导入Imageware12.1软件进行分析。(1)提取正常侧髋臼、股骨头的球形表面点云,分别拟合出各自最适球体,其球心即为正常的髋臼、股骨头旋转中心。确定出骨盆的镜像平面,利用镜像原理,定位患侧髋臼、股骨头的正常旋转中心;(2)设定理想的髋臼方位为外展角45°、前倾角15°。以直立位下过患侧髋臼旋转中心的人体重垂线为基线、以中心为原点,先在冠状面内向外旋转45°角,再在过此线与冠状面的垂直面内向前旋转15°,此时线的位置即为患侧髋臼假体的中心轴;(3)以患侧股骨头旋转中心为基点、以正常的股骨颈前倾角、颈干角为标准,生成一条通过旋转中心的轴线,即为患侧股骨颈的中轴线。在前倾角平面内,以旋转中心为圆心,将中轴线外展约5~10°,本研究中统一设定理想的假体柄干角为135°,此时线的位置即为股骨假体柄的最佳置入方向;(4)分别提取患侧髋臼、股骨头表面点云,结合各自确定的中轴线位置,将曲面模型与确定中轴线的曲面结构拟合生成各自的数字化定位模型。
     3.定位模型的临床应用:(1)2008年1月~6月筛选出7例陈旧性股骨颈骨折(5例经颈型、2例头下型)且CT显示髋臼无明显破坏的患者,无其他合并伤及手术禁忌症。术前病程均1年内。其中男3例,女4例,年龄63~71岁。临床表现为髋部疼痛、行走困难。Harris评分26~48分,平均37分。(2)2008年1月~11月筛选6例单侧髋关节有病变需行关节置换的患者,其中男4例,女2例。年龄30~60岁。无其他合并疾病及手术禁忌症。临床表现为髋部疼痛,行走困难,影响工作和生活。Harris评分22~43,平均30分。术前均进行16排螺旋CT扫描,第(1)组患者扫描范围为髂嵴上缘至坐骨结节,为便于进行髋臼假体角度的测量,本组采用常规全髋关节假体置换,只需设计髋臼假体的定位模型;第(2)组患者扫描范围为髂嵴上缘至股骨中上段,本组采用全髋表面型假体置换。根据不同患者的数据资料分别设计出各自的个性化定位模板,以.igs格式导入RapidForm2004软件,快速成型机生成模型。术中通过将定位模型与髋臼、股骨头表面形态结构准确贴合即可确定假体的放置位置。术后拍摄患侧髋关节标准位X线片,进行影像学数据测量。收集同期由同一位主任医师术中以常规法完成关节假体定位的类似病例,术前均以髋臼前倾角15°、外展角45°、柄干角135°为预定目标值,对术后X线片结果进行影像学数据测量,分析两组数据进行评估。
     结果
     1.利用软件Amira4.1可三维重建出真实的数字化骨盆模型;利用软件imageware12.1进行分析,可在数字化三维骨盆模型上确定出正常髋臼的旋转中心;并可根据设定的假体外展角、前倾角确定其中轴线,即假体的位置;结合髋臼表面形态特征及假体中轴线位置即可设计出髋臼假体的定位模板;通过对数字化模型不同角度的旋转观察,定位模板与髋臼凹表面吻合良好,符合正常生理解剖位置。
     2.利用数字化骨盆模型及软件imageware12.1,根据镜像原理,通过确定正常侧髋臼、股骨头旋转中心可重建出患侧髋臼、股骨头的正常旋转中心;再根据设定的髋臼假体外展、前倾角度及股骨头表面假体的柄干角、前倾角确定各自假体的中轴线;结合患侧髋臼及股骨头的表面形态特征及各自假体的中轴线位置即可设计出患侧髋臼、股骨头表面型假体的定位模板,使患侧髋关节置换后恢复正常解剖位置。
     3.收集临床数据资料,应用SPSS13.0统计学软件进行处理。各组数据均呈正态分布,计量资料以均数±标准差表示,检验水准为双侧α=0.05。各组数据与假体不同方位角的设定标准值比较采用单样本t检验,结果显示常规定位法在髋臼假体外展角、前倾角、股骨侧假体柄干角与设定的对应标准值之间差异均有统计学意义(依次对应为t=2.840,P=0.019;t=4.157,P=0.002;t=2.700,P=0.043)。而模板定位法在上述三种角度与对应的标准值之间差异均无统计学意义(依次对应为t=1.700,P=0.127;t=2.184,P=0.072;t=0.768,P=0.477)。采用独立样本t检验对常规法定位组与模板法定位组的数据进行比较,结果显示二者在对髋臼假体外展角、前倾角、股骨侧假体柄干角定位的结果之间差异均有统计学意义(依次对应为t=2.912,P=0.011;t=2.486,P=0.025;t=2.707,P=0.022)。因此,在全髋关节表面置换对髋臼假体外展角、前倾角、股骨侧假体柄干角定位中,采用常规定位法结果误差较大,而使用术前设计的个性化模板则定位准确,可达到预期结果,效果优于前者。
     结论
     1.应用Amira及Imageware软件对螺旋CT扫描图像进行三维构建、分析,可设计出正常髋臼假体的数字化个性定位模板。
     2.应用Amira及Imageware软件,根据三维重建的数字化骨盆模型,可构建出病变髋关节行表面髋置换时定位假体的数字化个性模板。
     3.临床应用结果表明术前设计、构建及利用快速成形技术制作的个性化假体定位模板可对不同患者表面髋关节假体的植入精确定位,达到预期效果。同时能简化术中操作,避免了因主、客观因素造成的误差。
Backgroud
     At present,total hip arthroplasty(THA) has become one of most common operation,its goal is to relieve the patient'pain in the hip joint and reconstruct motor function.With the development of living standard,medical treatment and health care, requirement for artificial joint is more popular.However,as for young adults with hip arthropathy,it had higher overhauling rate for THA.Total hip resurfacing arthroplasty has been considered as an alternative to total hip replacement for adult patients diagnosed with osteoarthritis of hip or congenital hip dysplasia.Relative to conventional total hip arthroplasty,the conspicuous advantage of this procedure is preservation of femoral proximal bone that is convenient for revision if failure occurs, and others include increased range of motion,low dislocation rates and so on. Whereas,femoral neck fracture is recognized as a primary postoperative complication. It attributes to faults that appear a varus position of the femoral component and notching of the superior aspect of the femoral neck.
     In present years,with the improvement of materialogy,total hip resurfacing arthroplasty(THRA) has a increasing clinical application.In THRA,prothetic location is the key point for post-operative joint stability.Neck-shaft angle is determined by the design of prothesis itself in conventional hip arthroplasty,but it is determined by valgus or varus placement of femoral prothesis in THRA.When the prothesis is inserted by convertional positioning device,some help can be porvided. But accurate location can not be obtained with these devices which applied in the present.So it depended on experience at a great degree.
     When computer aided design(CAD) and cmoputer aided engineering(CAE) technology was led into medical domain,digital medicine has become a important ingredient of modern medicine.It spurs medical technology to develop to individualization,fidelity and mini-invasion trend.Confidence and safety have be enhanced,clinical doctors can deal with complicated operation easily.Full-resolution picture of body slice can be provided by spiral CT.Three-diamentional visional model can be reconstructed by soft Mimics,Amira and so on.Imageware is one of the four major retro-engineering software in the global.It has great function about data measurement,error detecting and contour editing.Rapid Prototyping Technology integrates modern numerical control technology,CAD/CAM technology,laser technique and new outcome of material science domain into a whole.It is widespread applied in medical domain.
     In this topic,we utilized preoperative spiral CT data to reconstruct individualized locating tageting template by means of three-dimensional reconstruction software,retro-engineering project software and rapid prototyping. The template can guide acetabular and femoral prothetic implant in total hip resurfacing arthroplasty.This provided a effective method for solving medical individualized problem.
     Objective
     1.To explore how to design the best direction of prosthetic repalcement by applying software Amira4.1 and software Imageware12.1 according to the patient's spiral CT data.
     2.According to the patient's spiral CT data,by utilizing software Amira4.1 and software Imageware12.1,to explore how to determine the normal hip rotation centre of abonormal side which depended on the character of acetabula and femoral head on normal side.It is very possible to recover the normal anatomical position after the prosthetic replacement.
     3.Entity model was made by rapid prototyping technology according to designed digitalized model.Model was matched to the surface of acetabula and femoral head in operation.The location of prosthesis was determined.Measurement was done by X-ray photograph postoperatively.We evaluated the accuracy of location compared with conventional method.Operative design and procedure was directed by means of this method in total hip resurfacing arthropalsty.
     Methods
     1.To determine the normal acetabular rotation centre and the prosthetic location. Data was collected which was scanned by 64-slice spiral CT machine.Data was inputted into personal computer and reconstucted by software Amira4.1.Acetabular three-diamensions model on one side was extracted according to different liminal value,preserved by STL format.Analysis was done by import acetabular digitalized model into imageware12.1.
     2.Definition of hip rotation centre and hip resurfacing prosthetic location.The steps were same as the former.Then analysis were made in software imageware12.1. Firstly,extract the spot-cloud data of actabular and femoral head surface on normal side.The fittest globe were produced respectively.The global centre can be considered as the acetabular or femoral head centre respectively.Secondly,presume the ideal acetabular location displayed as abductted angle 45°and anteversed angle 15°.Then,individualized digitalized locating template was made by combining actabular contour model and axial location.
     3.Clinical application of locating template.(1) From January 2008 to June 2008 we have selected seven patients with femoral neck fracture on one side and no obvious destruction in acetabula displayed on CT,whose symptom was so obvious that required total hip arthroplasty.All of the patients who were chosed in the study were candidates,both clinically and radiographically.Otherwise,we should consider some aspects of patients such as age,bone quality and so on.These patients' ages were ranging from sixty-three to seventy-one years.These patients were considered as one group which compared with the other group whose patients received conventioinal operation.(1) From January 2008 to November 2008 we have selected six patients with pathological changes on one hip side,who displayed acetabular pain, walk difficulty,affection for work or life.The Harris score was 22-43.All patients had received resurfacing arthroplasty.During the same time interval,we collected this kind of patients who received operation by the same surgeon,these served as the control group for the study.All surgeries were performed by the senior author through an posterolateral approach.The procedure is the same as usual process.When femoral head was dislocated and exposed well,we matched the locating template to surface of femoral head as well as possible.And Kirschner wire was inserted into femoral neck according to template.We evaluated the axial location of femoral component(showed by K-wire) with anteroposterior(A-P) and lateral position Photographs in operation by C-arm machine.The location of the wire was correct.All patients received X-ray photograph during 7-10 days period post-operatively.In order to obtain relatively accurate data,efforts should be made to decrease the error derived from photograph course.There are concerns about the angle of projection,patients' position.Standard positive photograph of hip joint must be taken,which required projecting line vertical to patients' body and centred by the hip joint center.Patients should be in supine position and inward turning 10-15°approxiately for abnormal limb.In A-P radiographs the stem-shaft angle was measured between the axial line of femur and the extension line of component stem with measuring tool of software Adobe Photoshop.
     Results
     1.Digital pelvic model can be reconstructed by software Amira4.1.By means of software Imageware12.1,acetabular rotational centre can be determined on three-dimensional pelvic model.Depending on assume the ideal prosthetic angle,the axis of prosthesis can be ascertained.Combined these results,we can design the locating template for acetabular prosthesis.The coincidence was satisfied.
     2.By meas of digital pelvic model and software Imageware12.1,the normal rotational centre of acetabular and femoral head on abnormal side was reconstructed by determined the rotational centre of normal acetabula and femoral head according to mirror imaging theory.On the basis of abductted angle,anteversed angle and stem-shaft angle which we designed beforehand,the axis of acetabular and femoral prosthesis can be defined.Depending on these results,the locating template for actabuar and femoral head prosthesis can be designed.This can make the abnormal hip joint recover normal anatomic position after hip replacement.
     3.Analysis was performed by SPSS13.0.Data were all dispayed mormal distribution.The level of significance was defined as P values<0.05 with 95% confidence intervals.Every group data was compared with setting certified value by single sample T-test.There were all obvious differences in each groups with regard to abduction angle and anteversion angle of acetabula,femoral component stem-shaft angles(respective corresponding value t=2.840,P=0.019;t=4.157,P=0.002;t=2.700, P=0.043).There were all no differences in each groups with regard to above-mentioned three kinds of angles by locating with template method(respective corresponding value t=1.700,P=0.127;t=2.184,P=0.072;t=0.768,P=0.477).Data between template locating group and conventional one was compared by independent sample T-test.There were all obvious differences with regard to abduction angle and anteversion angle of acetabula,femoral component stem-shaft angles between the two groups(respective corresponding value t=2.912,P=0.011;t=2.486,P=0.025;t=2.707, P=0.022).As a result,major error existed by conventional method,and accurate result can be obtained with locating template by designed pre-operatioin.The effect was superior to the former.
     Conclusion
     1.To reconstruct three-demensional model and analyze correlative data by means of spiral CT presentation with software Amira and Imageware,the digitized ndividualized locating template can be designed.
     2.Using software Amira and the Imageware,according to the three-dimensional reconstruction model of digitized pelvis,digitized localization template can be constructed for abnormal hip joint which required total hip resurfacing arthroplasty.
     3.Clinical result indicated that the individualized locating template for prosthesis,which was made by preoperative design,reconstruction and rapid prototyping,can orient the implant hip resurfacing prosthesis accurately for various patients.The measure can simplify procedure in operation,avoid the error caused by subjective and objective factors.
引文
[1]Duffy GP,Berry DJ,Rowland C,et al.Primary uncemented total hip arthroplasty in patients <40 years old:10- to 14-year results using first-generation proximally porous-coated implants.J Arthroplasty,2001,16:140-144.
    [2]Daniel J,Pynsent PB,McMinn DJ.Metal-on-metal resurfacing of the hip in patients under the age of 55 years with osteoarthritis.J Bone Joint Surg Br,2004,86:177-184.
    [3]Amstutz HC,Beaule PE,Dorey FJ,et al.Metal-on-metal hybrid surface arthroplasty:two to six-year follow-up study.J Bone Joint Surg Am,2004,86-A:28-39.
    [4]Treacy RB,McBryde CW,Pynsent PB.Birmingham hip resurfacing arthroplasty.A minimum follow-up of five years.J Bone Joint Surg Br,2005,87:167-170.
    [5]Glyn-Jones S,Gill HS,McLardy-Smith P,et al.Roentgen stereophotogrammetric analysis of the Birmingham hip resurfacing arthroplasty.A two-year study.J Bone Joint Surg Br,2004,86:172-176.
    [6]Siguier M,Judet T,Siguier T,et al.Preliminary results of partial surface replacement of the femoral head in osteonecrosis.J Arthroplasty,1999,14:45-51.
    [7]Watanabe Y,Shiba N,Matsuo S,et al.Biomechanical study of the resurfacing hip arthroplasty:finite element analysis of the femoral component.J Arthroplasty,2000,15:505-511.
    [8]Kishida Y,Sugano N,Nishii T,et al.Preservation of the bone mineral density of the femur after surface replacement of the hip.J Bone Joint Surg Br,2004,86:185-189.
    [9]Kurtz S,Ong K,Lau E,et al.Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030.J Bone Joint Surg Am,2007,89:780-785.
    [10]Davis ET,Gallie P,Macgroarty K,et al.The accuracy of image-free computer navigation in the placement of the femoral component of the Birmingham Hip Resurfacing:a cadaver study.J Bone Joint Surg Br,2007,89:557-560.
    [11]Hart R,Svab P,Filan P.Intraoperative navigation in hip surface arthroplasty:a radiographic comparative analysis study.Arch Orthop Trauma Surg,2008,128:429-434.
    [12]Bader R,Scholz R,Steinhauser E,et al.The influence of head and neck geometry on stability of total hip replacement:a mechanical test study.Acta Orthop Scand,2004,75:415-421.
    [13]Schlenzka D,Laine T,Lund T.[Computer-assisted spine surgery:principles,technique,results and perspectives].Orthopade,2000,29:658-669.
    [14]Arand M,Hartwig E,Kinzl L,et al.Spinal navigation in tumor surgery of the thoracic spine:first clinical results.Clin Orthop Relat Res,2002:211-218.
    [15]Zheng G,Marx A,Langlotz U,et al.A hybrid CT-free navigation system for total hip arthroplasty.Comput Aided Surg,2002,7:129-145.
    [16]Leenders T,Vandevelde D,Mahieu G,et al.Reduction in variability of acetabular cup abduction using computer assisted surgery:a prospective and randomized study.Comput Aided Surg,2002,7:99-106.
    [17]Jasty M,Freiberg AA.The use of a high-hip center in revision total hip arthroplasty.Semin Arthroplasty,1995,6:103-108.
    [18]Barrack RL,Burnett SJ.Preoperative planning for revision total hip arthroplasty.J Bone Joint Surg Am,2005,87:2800-2811.
    [19]Silva M,Lee KH,Heisel C,et al.The biomechanical results of total hip resurfacing arthroplasty.J Bone Joint Surg Am,2004,86-A:40-46.
    [20]李军伟,邱贵兴,翁习生,等.髋关节发育不良继发骨关节炎患者的人工全髋关节置换.中华外科杂志,2005,43:255-258.
    [21]Bozic KJ,Freiberg AA,Harris WH.The high hip center.Clin Orthop Relat Res,2004:101-105.
    [22]史振才,李子荣,孙伟.髋关节发育不良患者全髋关节置换术的髋臼中心化.中华外科杂志,2004,42:1412-1415.
    [23]Suh KT,Cheon SJ,Kim DW.Comparison of preoperative templating with postoperative assessment in cementless total hip arthroplasty.Acta Orthop Scand,2004,75:40-44.
    [24]Pagnano W,Hanssen AD,Lewallen DG,et al.The effect of superior placement of the acetabular component on the rate of loosening after total hip arthroplasty.J Bone Joint Surg Am,1996,78:1004-1014.
    [25]戴雪松,严世贵,等.全髋关节置换术中的髋臼外展角和磨损的关系.中华骨科杂志,2002.22:257-260.
    [26]Hirakawa K,Mitsugi N,Koshino T,et al.Effect of acetabular cup position and orientation in cemented total hip arthroplasty.Clin Orthop Relat Res,2001:135-142.
    [27]Schmalzried TP,Guttmann D,Grecula M,et al.The relationship between the design,position,and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis.J Bone Joint Surg Am,1994,76:677-688.
    [28]Barrack RL.Dislocation after total hip arthroplasty:implant design and orientation.J Am Acad Orthop Surg,2003,11:89-99.
    [29]Kennedy JG,Rogers WB,Soffe KE,et al.Effect of acetabular component orientation on recurrent dislocation,pelvic osteolysis,polyethylene wear,and component migration.J Arthroplasty,1998,13:530-534.
    [30]Coventry MB,Ilstrup DM,Wallrichs SL.Proximal tibial osteotomy.A critical long-term study of eighty-seven cases.J Bone Joint Surg Am,1993,75:196-201.
    [31]Lewinnek GE,Lewis JL,Tarr R,et al.Dislocations after total hip-replacement arthroplasties.J Bone Joint Surg Am,1978,60:217-220.
    [32]朱俊峰,沈海琦.人工全髋关节置换定位系统研究与应用新进展.中华创伤骨科杂志,2005.7:567-570.
    [33]王海涛.髋臼帽定位器的研制.骨与关节损伤杂志,2004,19:527-527.
    [34]Romanowski JR,Swank ML.Imageless navigation in hip resurfacing:avoiding component malposition during the surgeon learning curve.J Bone Joint Surg Am,2008,90 Suppl 3:65-70.
    [35]Noble PC,Sugano N,Johnston JD,et al.Computer simulation:how can it help the surgeon optimize implant position?.Clin Orthop Relat Res,2003:242-252.
    [1]Beaule PE,Harvey N,Zaragoza E,et al.The femoral head/neck offset and hip resurfacing.J Bone Joint Surg Br,2007,89:9-15.
    [2]Silva M,Lee KH,Heisel C,et al.The biomechanical results of total hip resurfacing arthroplasty.J Bone Joint Surg Am,2004,86-A:40-46.
    [3]McGrory BJ,Morrey BF,Cahalan TD,et al.Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty.J Bone Joint Surg Br,1995,77:865-869.
    [4]Devane PA,Robinson EJ,Bourne RB,et al.Measurement of polyethylene wear in acetabular components inserted with and without cement.A randomized trial.J Bone Joint Surg Am,1997,79:682-689.
    [5]Charles MN,Bourne RB,Davey JR,et al.Soft-tissue balancing of the hip:the role of femoral offset restoration.Instr Course Lect,2005,54:131-141.
    [6]Davey JR,O'Connor DO,Burke DW,et al.Femoral component offset.Its effect on strain in bone-cement.J Arthroplasty,1993,8:23-26.
    [7]Sakai T,Sugano N,Ohzono K,et al.Femoral anteversion,femoral offset,and abductor lever arm after total hip arthroplasty using a modular femoral neck system.J Orthop Sci,2002,7:62-67.
    [8]Beaule PE,Lee JL,Le Duff MJ,et al.Orientation of the femoral component in surface arthroplasty of the hip.A biomechanical and clinical analysis.J Bone Joint Surg Am,2004,86-A:2015-2021.
    [9]Long JP,Bartel DL.Surgical variables affect the mechanics of a hip resurfacing system.Clin Orthop Relat Res,2006,453:115-122.
    [10]Amstutz HC,Beaule PE,Dorey FJ,et al.Metal-on-metal hybrid surface arthroplasty:two to six-year follow-up study.J Bone Joint Surg Am,2004,86-A:28-39.
    [11]Beaule PE,Dorey FJ,LeDuff M,et al.Risk factors affecting outcome of metal-on-metal surface arthroplasty of the hip.Clin Orthop Relat Res,2004:87-93.
    [12]Shimmin AJ,Back D.Femoral neck fractures following Birmingham hip resurfacing:a national review of 50 cases.J Bone Joint Surg Br,2005,87:463-464.
    [13]纪盛章,程喜定,等.股骨颈前倾角三维CT测量方法.中华骨科杂志,2001,21:187-188.
    [14]柯映林,肖尧先,等.反求工程CAD建模技术研究.计算机辅助设计与图形学学报,2001,13:570-575.
    [15]黄雪梅,林艳萍,王成焘.基于逆向工程的个性化人工膝关节CAD建模.机械设计与研究,2004,20:81-82.
    [16]王殊轶,钱省三,孟石,等.面部三维特征提取与分类.中国组织工程研究与临床康复,2008,12:7657-7660.
    [17]何叶松,付森,洪洋,等.人体颅脑计算机三维模型的创建.中国医学物理学杂志,2008.25:887-889.
    [18]段彦静,孙文磊.逆向工程在医学上的应用.中华现代影像学杂志,2005,2:1007-1009.
    [19]Pileicikiene G,Varpiotas E,Surna R,et al.A three-dimensional model of the human masticatory system,including the mandible,the dentition and the temporomandibular joints.Stomatologija,2007,9:27-32.
    [20]Wang Z,Teng Y,Li DC,et al.[A new custom-made artificial articular cartilage of femoral condyle based on rapid prototyping technique:a case report].Zhonghua Wai Ke Za Zhi,2004,42:746-749.
    [21]Teng Y,Wang Z,Li D.[Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique:three-dimensional reconstruction of femoral condyle].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2004,18:257-260.
    [1]叶铭,王成焘,孙坚.个性化医学内植物设计与制造.机械设计与研究,2003,19:43-45.
    [2]Eggbeer D,Bibb R,Evans P.Toward identifying specification requirements for digital bone-anchored prosthesis design incorporating substructure fabrication:a pilot study.Int J Prosthodont,2006,19:258-263.
    [3]Lee SJ,Jang KH,Spangberg LS,et al.Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping.Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2006,101:668-674.
    [4]刘光富.快速成形技术的医学应用与前景.机电一体化,2003,9:13-16.
    [5]Pradhan R.Planar anteversion of the acetabular cup as determined from plain anteroposterior radiographs.J Bone Joint Surg Br,1999,81:431-435.
    [6]Beaule PE,Dorey FJ,LeDuff M,et al.Risk factors affecting outcome of metal-on-metal surface arthroplasty of the hip.Clin Orthop Relat Res,2004:87-93.
    [7]Beaule PE,Amstutz HC.Orientation of the femoral component in surface arthroplasty of the hip.J Bone Joint Surg Am,2005,87:1162.
    [8]肖增明,詹新立,李世德,等.半髋表面置换治疗股骨头缺血性坏死的近、中期疗效分析.中华骨科杂志,2005,25:716-720.
    [9]Silva M,Lee KH,Heisel C,et al.The biomechanical results of total hip resurfacing arthroplasty.J Bone Joint Surg Am,2004,86-A:40-46.
    [10]Loughead JM,Chesney D,Holland JP,et al.Comparison of offset in Birmingham hip resurfacing and hybrid total hip arthroplasty.J Bone Joint Surg Br,2005,87:163-166.
    [11]Daniel J,Pynsent PB,McMinn DJ.Metal-on-metal resurfacing of the hip in patients under the age of 55 years with osteoarthritis.J Bone Joint Surg Br,2004,86:177-184.
    [12]Amstutz HC,Beaule PE,Dorey FJ,et al.Metal-on-metal hybrid surface arthroplasty:two to six-year follow-up study.J Bone Joint Surg Am,2004,86-A:28-39.
    [13]Treacy RB,McBryde CW,Pynsent PB.Birmingham hip resurfacing arthroplasty.A minimum follow-up of five years.J Bone Joint Surg Br,2005,87:167-170.
    [14]Bernsmann K,Langlotz U,Ansari B,et al.[Computer-assisted navigated acetabulum placement in hip prosthesis implantation-application study in routine clinical care].Z Orthop Ihre Grenzgeb,2000,138:515-521.
    [15]Hassan DM,Johnston GH,Dust WN,et al.Accuracy of intraoperative assessment of acetabular prosthesis placement.J Arthroplasty,1998,13:80-84.
    [16]Davis ET,Gallie P,Macgroarty K,et al.The accuracy of image-free computer navigation in the placement of the femoral component of the Birmingham Hip Resurfacing:a cadaver study.J Bone Joint Surg Br,2007,89:557-560.
    [17]Beaule PE,Lee JL,Le Duff MJ,et al.Orientation of the femoral component in surface arthroplasty of the hip.A biomechanical and clinical analysis.J Bone Joint Surg Am,2004,86-A:2015-2021.
    [18]Leenders T,Vandevelde D,Mahieu G,et al.Reduction in variability of acetabular cup abduction using computer assisted surgery:a prospective and randomized study.Comput Aided Surg,2002,7:99-106.
    [19]Matziolis G,Krocker D,Weiss U,et al.A prospective,randomized study of computer-assisted and conventional total knee arthroplasty.Three-dimensional evaluation of implant alignment and rotation.J Bone Joint Surg Am,2007,89:236-243.
    [20]Cobb JP,Kannan V,Brust K,et al.Navigation reduces the learning curve in resurfacing total hip arthroplasty.Clin Orthop Relat Res,2007,463:90-97.
    [21]DiGioia AM 3rd,Blendea S,Jaramaz B.Computer-assisted orthopaedic surgery:minimally invasive hip and knee reconstruction.Orthop Clin North Am,2004,35:183-189.
    [22]Long JP,Bartel DL.Surgical variables affect the mechanics of a hip resurfacing system.Clin Orthop Relat Res,2006,453:115-122.
    [23]Radcliffe IA,Taylor M.Investigation into the effect of varus-valgus orientation on load transfer in the resurfaced femoral head:a multi-femur finite element analysis.Clin Biomech(Bristol,Avon),2007,22:780-786.
    [24]Mont MA,Seyler TM,Ulrich SD,et al.Effect of changing indications and techniques on total hip resurfacing.Clin Orthop Relat Res,2007,465:63-70.
    [25]Amstutz HC,Campbell PA,Le Duff MJ.Fracture of the neck of the femur after surface arthroplasty of the hip.J Bone Joint Surg Am,2004,86-A:1874-1877.
    [26]Marker DR,Seyler TM,Jinnah RH,et al.Femoral neck fractures after metal-on-metal total hip resurfacing:a prospective cohort study.J Arthroplasty,2007,22:66-71.
    [27]Hess T,Gampe T,Kottgen C,et al.[Intraoperative navigation for hip resurfacing.Methods and first results].Orthopade,2004,33:1183-1193.
    [28]Hodgson A,Helmy N,Masri BA,et al.Comparative repeatability of guide-pin axis positioning in computer-assisted and manual femoral head resurfacing arthroplasty.Proc Inst Mech Eng[H],2007,221:713-724.
    [1]Amstutz HC,Grigoris P,Dorey FJ.Evolution and future of surface replacement of the hip.J Orthop Sci.1998;3(3):169-186.
    [2]Beaul(?) PE,Amstutz HC.Orientation of the femoral component in surface arthroplasty of the hip.J Bone Joint Surg Am,2005,87:1162.
    [3]Beaul(?) PE,Dorey FJ,LeDuff M,et al.Risk factors affecting outcome of metal-on-metal surface arthroplasty of the hip.Clin Orthop Relat Res,2004,(418):87-93.
    [4]肖增明,詹新立,李世德,等.半髋表面置换治疗股骨头缺血性坏死的近、中期疗效分析.中华骨科杂志,2005,25(12):716-720.
    [5]Kennedy JG,Rogers WB,Soffe KE,et al.Effect of acetabular component orientation on recurrent dislocation,pelvic osteolysis,polyethylene wear,and component migration.J Arthroplasty,1998,13(5):530-534.
    [6]Callaghan JJ,Forest EE,Olejniczak JP,et al.Charnley total hip arthroplasty in patients less than fifty years old.A twenty to twenty-five-year follow-up note.J Bone Joint Surg Am,1998,80(5):704-714.
    [7]Nadzadi ME,Pedersen DR,Callaghan JJ,et al.Effects of acetabular component orientation on dislocation propensity for small-head-size total hip arthroplasty.Clin Biomech(Bristol,Avon).2002,17(1):32-40.
    [8]D'Lima DD,Urquhart AG,Buehler KO,et al.The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios.J Bone Joint Surg Am,2000,82(3):315-321.
    [9]McCollum DE,Gray WJ.Dislocation after total hip arthroplasty.Causes and prevention.Clin Orthop Relat Res,1990,261:159-170.
    [10]Robert L,Barrack MD,RStephen J,etal.Preoperative planning for revision total hip arthroplasty[J].J Bone Joint Surg,2005,87(12):2800-2811.
    [11]Mauricio Silva MD,Kee Haeng Lee MD,Christian Heisei MD.The biomechanical results of total hip resurfacing arthroplasty[J].J Bone Joint Surg,2004,86(1):40-46.
    [12]金今,陈宾,徐宏光,等.人工全髋关节置换术术前的模板测量与术后评估[J].实用骨科杂志,2005,11:398-401.
    [13]李军伟,邱贵兴,翁习生,等.髋关节发育不良继发骨关节炎患者的人工全髋关节置换[J].中华外科杂志,2005,43:255-258.
    [14]毛宾尧,胡裕桐,司全明,等.植骨髋臼成形的人工全髋关节置换治疗髋关节发育不良[J].中国矫形外科杂志,2004,12:1445-1449.
    [15]张洪,周一新,黄野,等.髋臼内壁截骨术在发育不良髋关节全髋置换髋臼重建中的应用[J].中华骨科杂志,2005,23:223-226.
    [16]史振才,李子荣,孙伟.髋关节发育不良患者全髋关节置换术的髋臼中心化[J].中华外科杂志,2004,42:1412-1415.
    [17]Kuen TS,Sang JC,Dae WK.Comparison of preoperative templating with postoperative assessment in cementless total hip arthroplasty[J].Acta Orthop Scand,2004,75:40-44.
    [18]Crawford JR,Palmer SJ,Wimhurst JA,Villar RN.Bone loss at hip resurfacing:a comparison with total hip arthroplasty.Hip Int.2005,15:195-198.
    [19]J.Girard,M.Lavigne,P.-A.Vendittoli,et al.Biomechanical reconstruction of the hip:a randomised study comparing total hip resurfacing and total hip arthroplasty.J Bone Joint Surg Br,2006,88:721-726.
    [20]Ball ST,Le Duff MJ,Amstutz HC.Early results of conversion of a failed femoral component in hip resurfacing arthroplasty.J Bone Joint Surg Am.2007;89:735-741.
    [21]Kishida Y,Sugano N,Nishii T,Miki H,Yamaguchi K,Yoshikawa H.Preservation of the bone mineral density of the femur after surface replacement of the hip.J Bone Joint Surg Br,2004,86:185-189.
    [22]Amstutz HC,Su EP,Le Duff MJ.Surface arthroplasty in young patients with hip arthritis secondary to childhood disorders.Orthop Clin North Am.2005;36:223-230,x.
    [23]Hart AJ,Scott G.Hip resurfacing following previous proximal femoral osteotomy.Hip Int.2005,15:119-122.
    [24]Treacy RB,McBryde CW,Pynsent PB.Birmingham hip resurfacing arthroplasty.A minimum follow-up of five years.J Bone Joint Surg Br.2005,87:167-170.
    [25]ANTONY J.HODGSON1,KEVIN B.INKPEN1,MARK SHEKHMAN,et al.Computer-assisted femoral head resurfacing.Computer Aided Surgery,2005,10(5/6):337-343.
    [26]A Hodgson,N Helmy,B A Masri,et al.Comparative repeatability of guide-pin axis positioning in computer-assisted and manual femoral head resurfacing arthroplasty.Engineering in Medicine,2007,221(7):713-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700