腺病毒介导的反义细胞外信号调节激酶2基因治疗抑制肾小管上皮—间充质转化并延缓大鼠移植肾肾病
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨细胞外信号调节激酶2(extracellular signal regulated kinase 2,ERK2)对肾小管上皮细胞向间充质转化的调控效应;建立大鼠肾移植模型,探讨腺病毒介导的反义ERK2(Adenovirus-mediated antisense ERK2,Adanti-ERK2)对大鼠移植肾肾病的延缓作用。
     方法:(1)构建反义ERK2腺病毒载体Adanti-ERK2及对照病毒Ad-LacZ。(2)以结缔组织生长因子(connective tissue growth factor,CTGF)刺激肾小管上皮细胞,观测肾小管上皮细胞表型变化及ERK2蛋白表达情况。(3)Adanti-ERK2按不同转染强度(multiplicity of infection,MOI)转染肾小管上皮细胞,确定最适转染强度。按干预因素不同将肾小管上皮细胞分为对照组(无干预因素)、Ad-LacZ组(最适MOI的Ad-LacZ)、CTGF组(加入终浓度为5ng/ml的CTGF)和Adanti-ERK2组(加入终浓度为5ng/ml的CTGF和最适MOI的Adanti-ERK2)。将肾小管上皮细胞培养72h后,细胞免疫化学法检测各组上皮细胞表型蛋白E-Cadherin和间充质细胞表型蛋白Vimentin、α-SMA的表达,Western blot法检测各组ERK2蛋白的表达;Boyden小室在第一、三和第五天检测各组肾小管上皮细胞迁移能力的变化。(4)建立Fisher344大鼠至Lewis大鼠的慢性移植肾肾病(chronic allograft nephropathy,CAN)模型。按不同干预因素将受体大鼠分为对照组、Ad-LacZ组和Adanti-ERK2组。在移植前,对照组供肾给予HTK液灌注;Ad-LacZ组给予含有1×10~9pfu Ad-LacZ的HTK液灌注;Adanti-ERK2组给予含有1×10~9pfu Adanti-ERK2的HTK液灌注。在移植术后24周,取移植肾脏进行病理学观察;免疫组织化学法检测肾小管上皮细胞E-Cadherin、Vimentin、α-SMA和TβRI的表达以及CD4~+T、CD8~+T、ED-1~+细胞的间质浸润情况;ELISA法检测血清中TGF-β1的含量。
     结果:(1)成功地构建了反义ERK2和LacZ腺病毒载体。(2)肾小管上皮细胞在CTGF刺激72h后,上皮细胞表型E-Cadherin表达减少,而间充质细胞表型蛋白Vimentin和α-SMA表达增加,肾小管上皮细胞在CTGF的作用下转化为间充质细胞。在CTGF刺激肾小管上皮细胞表型转化过程中伴随有ERK2蛋白的表达上调。(3)与MOI为50和200相比较,腺病毒载体以转染强度100转染肾小管上皮细胞2天后,有95%的细胞表达绿色荧光;并且在转染后第一天和第二天,细胞存活率与对照组和MOI 50组无显著差异,确定最适MOI值为100。(4)Adanti-ERK2组以Adanti-ERK2(MOI 100)转染组肾小管上皮细胞后,在CTGF刺激下其上皮细胞表型蛋白E-Cadherin表达较对照组未发生明显的变化,Vimentin和α-SMA的表达较CTGF组明显减少;同时伴有ERK2蛋白表达的下调。(5)Boyden小室检测发现,各组细胞在第一天迁移至滤膜对侧的细胞数目无差异;在第三天CTGF组细胞迁移数开始高于其他三组;在第五天迁移出细胞数明显高于其他各组(CTGF组VS对照组,Ad-LacZ组和Adanti-ERK2组:45.1±1.9 VS12.7±1.4,11.6±1.7和14.6±1.6;P<0.05),而Adanti-ERK2组与对照组和Ad-LacZ组间差异无统计学意义(Adanti-ERK2组VS对照组:14.6±1.6 VS 12.7±1.4,P>0.05;Adanti-ERK2组VSAd-LacZ组:14.6±1.6 VS 11.6±1.7,P>0.05)。(6)大鼠肾移植受体鼠在移植术后24周,对照组和Ad-LacZ组移植肾呈现典型的CAN表现,间质中CD4~+T、CD8~+T和ED-1~+细胞的浸润明显。在Adanti-ERK2组移植肾肾小球硬化不明显,间质纤维化病变轻微,间质内有少量CD4~+T、CD8~+T、ED-1~+细胞的浸润。(7)在受体鼠移植术后24周,对照组和Ad-LacZ组移植肾病变区,肾小管上皮细胞E-Cadherin表达减少(对照组VS Adanti-ERK2组:71.6±6.1 VS 160.7±11.1;P<0.05)肾间质内Vimentin(对照组VS Adanti-ERK2组:110.3±7.2 VS 47.8±6.5;P<0.05)和α-SMA表达显著增多。Adanti-ERK2组移植肾小管上皮细胞E-Cadherin表达基本正常,Vimentin和α-SMA表达未见明显的增多。(8)在移植术后24周,对照组和Ad-LacZ组血清中TGF-β1含量明显高于Adanti-ERK2组,同时移植肾组织中伴有TβR I(对照组VSAdanti-ERK2组:146.4±10.2 VS 82.6±6.5;P<0.05)表达增加。
     结论:肾小管上皮细胞通过上皮—间充质转化途径增加了肌成纤维细胞的来源,其对移植肾术后纤维化的进程有着重要的意义。在体外,CTGF可以诱导肾小管上皮细胞发生向间充质细胞转化,以腺病毒介导的反义ERK2基因治疗可以有效地阻断CTGF诱导的肾小管上皮细胞向间充质细胞转化;ERK2信号转导通路对CTGF诱导的肾小管上皮-间充质转化有调控作用。在体内以腺病毒介导的反义ERK2的基因治疗可以延缓移植肾肾病的进展,对移植肾具有保护作用。这种保护机制可能与减少炎性细胞的浸润、下调TGF-β1等致纤维化因子及其受体的表达以及抑制肾小管上皮细胞向间充质细胞的转化有关。针对ERK2信号转导通路的基因治疗为防治肾脏纤维化提供可能的新的治疗靶点。
Objective: To investigate the ERK2 signal pass way on Epithelial Mesenchymal Transition in vitro and in vivo and the effects of Adanti-ERK2 attenuated CAN in kidney allografts was well examined.
     Methods: (1) The Adanti-ERK2 and Ad-LacZ were generated. (2)The renal tubular epithelial cells were transfected by Ad-antiERK2 with multiplicity of infection (MOI) 50, 100 and 200 for 1h, followed by the green fluorescence observation 2 days later. The live cells ratio was detected 24h and 48h later. (3)The cultured renal tubular epithelial cells were divided into four groups: control group (no gene transfer); Ad-LacZ group (transfected with Ad-LacZ); CTGF-treated group (treated with CTGF at a final concentration of 5 ng/ml); and Adanti-ERK2 group (treated with CTGF at a final concentration of 5 ng/ml and Adanti-ERK2 with moderate MOI). The cells were collected at 72h time points. Immunohistochemistry was used to detect the E-Cadherin, Vimentin andα-SMA; Western-blot was used to detect the ERK2 in cells. Boyden Chamber was used to detect the migration of the renal tubular epithelial cells at 1d, 3d and 5d. (4)Male Lewis (LEW, RT11) rat received male Fisher (F344, RT11v1) renal allograft. The recipients were divided into three groups: control group; Ad-LacZ group and Adanti-ERK2 group. All recipients were sacrificed for grafts and serum at 24 weeks after transplantation. Morphometric analysis was used to determine the fibrosis of grafts. Immunohistochemistry was used to detect the expression of E-Cadherin, Vimentin,α-SMA and TβRⅠ. The infiltration of CD4~+ T, CD8~+ T lymphocyte and ED-1~+ monocytes was well detected in the same way. ELISA was used to detect TGF-β1 in serum.
     Results: (1) Over 95% renal tubular epithelial cells expressed green fluorescence aftertransfected by Ad-antiERK2 (MOI 100) for 2 days. The live cell ratio at 2 and 4 days had nodifference from those of the control group. So the moderate MOI was 100. (2) Comparedwith CTGF-treated group, there were more E-Cadherin, and less Vimentin expressed in thecell of Adanti-ERK2 group. Theα-SMA was detected in the cells of CTGF-treated group.For the expression of E-Cadherin, Vimentin,α-SMA, there were no diference between theAdanti-ERK2 group with the control and the Ad-LacZ groups. (3)On the first two days, themigration of renal tubular epithelial cells in the four groups was no difference, there were nocells migrated through the pores to the opposite side of the transwell filters. Since from 3d,the transformed cells began to migrate through the pores to the opposite side of filters in theCTGF-treated group. In the 5d, compared with CTGF-treated group, there were markedlyless transformed cells in the opposite side of filters in Adanti-ERK2 group. (4)The grafts incontrol group and Ad-LacZ group showed with CAN. There were less E-Cadherin in renaltubular epithelial cells in control group but more Vimentin andα-SMA. In Adanti-ERK2group, the fibrosis was ameliorated and less T lymphocytes and ED-1~+ monocytes infiltratedin the interstitium. The expression of E-Cadherin was no markedly difference inAdanti-ERK2 group and in normal rats. (5)Compared with the control groups, theexpression of TGF-β1 and TβR I in Adanti-ERK2 group were down-regulated.
     Conclusions: Epithelial-Mesenchymal transition (EMT) plays an important role in the progress of chronic allograft nephropathy (CAN). In vitro, Adanti-ERK2 gene therapy can prevent CTGF induing Epithelial Mesenchymal Transition of renal tubular epithelial cells. In vivo, Adanti-ERK2 gene therapy protects renal allograft and attenuates graft fibrosis, which may be correlated with the decreased renal tubular epithelial mesenchymal transition, the decreased infiltration of CD4~+ T lymphocyte, CD8~+ T lymphocyte and ED-1~+ monocytes in renal interstitium, and the down-regulated TGF-(31 expression. In conclusion, our results suggest Adanti-ERK2 gene therapy inhibits tubular EMT both in vitro and in vivo, and attenuates CAN in kidney allografts. It is possible to develop elaborate molecular drug(s) to treat CAN in the future, as the ERK signaling pathway may be a promising novel efficient therapeutic target.
引文
1.Womer K L,Lee R S,Madsen J C,et al.Tolerance and chronic rejection.Philos Trans RSoc Lond B Biol Sci,2002,356(1409):727-738.
    2.Gong N,Dong C,Chen Z,Chen X,Guo H,Zeng Z,Ming C,Klaus Chen Z.Adenovirus-mediated antisense-ERK2 gene therapy attenuates chronic allograftnephropathy.Transplant Proc.2006 Dec;38(10):3228-30.
    3.宫念樵,明长生,郭晖,陈忠华。慢性移植肾肾病的临床病理学特点与免疫抑制剂转换治疗。中华器官移植杂志,2007,28(7):420-424。
    4.Dong C,Gong N,Chen Z,Chen X,Xu Q,Guo H,Zeng Z,Ming C,Chen ZK.Antisense ERK1/2 oligodeoxynucleotide gene therapy attenuates graft arteriosclerosis of aortic transplant in a rat model.Transplant Proc.2006 Dec;38(10):3304-6
    5.Tang WW,Ulich TR,Lacey DL,Hill DC,Qi M,Kaufman SA,Van GY,Tarpley JE,Yee JS.Platelet-derived growth factor-BB induces renal tubulointerstitial myofibroblast formation and tubulointerstitial fibrosis.Am J Pathol.1996 Apr;148(4):1169-80.
    6.乔海泉,朱预,姜洪池,孟令忠,丛林,刁洪伟。胰腺和肾脏在联合移植中排斥反应的比较。中华实验外科杂志,1997(04),233-234。
    7.Gruessner RW,Nakhleh R,Tzardis P,Schechner R,Platt JL,Gruessner A,Tomadze G,Najarian JS,Sutherland DE.Differences in rejection grading after simultaneous pancreas and kidney transplantation in pigs.Transplantation.1993 Dec;56(6):1357-64.
    8.Hayry P,Mennander A,Tiisala S,Halttunen J,Yilmaz S,Paavonen T.Rat aortic allografts:an experimental model for chronic transplant arteriosclerosis.Transplant Proc.1991 Feb;23(1 Pt 1):611-2.
    9.Hayry P,Yilmaz S.Role of growth factors in graft vessel disease.Transplant Proc.1995 Jun;27(3):2066-7.
    10.Li J,Han X,Jiang J,Zhong R,Williams GM,Pickering JG,Chow LH.Vascular smooth muscle cells of recipient origin mediate intimal expansion after aortic allotransplantation in mice.Am J Pathol.2001 Jun;158(6):1943-7.
    11.Simper D,Stalboerger PG,Panetta C J,Wang S,Caplice NM.Smooth muscle progenitor cells in human blood.Circulation.2002 Sep 3;106(10):1199-204.
    12.Hu Y,Davison F,Ludewig B,Erdel M,Mayr M,Url M,Dietrich H,Xu Q.Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients,but not bone marrow progenitor cells.Circulation.2002 Oct 1;106(14):1834-9.
    13.Tanaka K,Sata M,Hirata Y,Nagai R.Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries.Circ Res.2003 Oct 17;93(8):783-90.
    14.Shimizu K,Sugiyama S,Aikawa M,Fukumoto Y,Rabkin E,Libby P,Mitchell RN.Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy.Nat Med.2001 Jun;7(6):738-41.
    15.Joosten SA,Sijpkens YW,van Kooten C,Paul LC.Chronic renal allograft rejection:pathophysiologic considerations.Kidney Int.2005 Jul;68(1):1-13.
    16.Ivanyi B.Transplant capillaropathy and transplant glomerulopathy:ultrastructural markers of chronic renal allograft rejection.Nephrol Dial Transplant.2003 Apr;18(4):655-60.
    17.Liu Y.Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance,molecular mechanism,and therapeutic intervention.J Am Soc Nephrol.2004 Jan;15(1):1-12.
    18.Greenburg G,Hay ED.Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells.J Cell Biol.1982 Oct;95(1):333-9.
    19.黄英茂,宋天宝。组织学与胚胎学,43-44。人民卫生出版社,2005。
    20.Boyer B,Valles AM,Edme N.Induction and regulation of epithelial-mesenchymal transitions.Biochem Pharmacol.2000 Oct 15;60(8):1091-9.
    21.Vongwiwatana A,Tasanarong A,Rayner DC,Melk A,Halloran PF.Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am J Transplant. 2005 Jun;5(6):1367-74.
    22. Kalluri R, Neilson EG Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003 Dec; 112(12): 1776-84.
    23. Strutz F, Muller GA. Transdifferentiation comes of age. Nephrol Dial Transplant. 2000 Nov;15(11): 1729-31.
    24. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001 Oct;159(4):1465-75.
    25. Robertson H, Ali S, McDonnell BJ, Burt AD, Kirby JA. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J Am Soc Nephrol. 2004 Feb;15(2):390-7.
    26. Gong N, Zhao Y, Dong C, Chen ZK. Negative costimulatory molecules: the proximal of regulatory T cells? Med Hypotheses. 2006;67(4):841-7.
    27. Guillonneau C, Aubry V, Renaudin K, Seveno C, Usal C, Tezuka K, Anegon I. Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade. Transplantation. 2005 Aug 27;80(4):546-54.
    28. Shirasugi N, Adams AB, Durham MM, Lukacher AE, Xu H, Rees P, Cowan SR, Williams MA, Pearson TC, Larsen CP. Prevention of chronic rejection in murine cardiac allografts: a comparison of chimerism- and nonchimerism-inducing costimulation blockade-based tolerance induction regimens. J Immunol. 2002 Sepl;169(5):2677-84.
    29. Shimizu K, Schonbeck U, Mach F, Libby P, Mitchell RN. Host CD40 ligand deficiency induces long-term allograft survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis. J Immunol. 2000 Sep 15;165(6):3506-18.
    30. Guillot C, Guillonneau C, Mathieu P, Gerdes CA, Menoret S, Braudeau C, Tesson L, Renaudin K,Castro MG,Lowenstein PR,Anegon I.Prolonged blockade of CD40-CD40 ligand interactions by gene transfer of CD40Ig results in long-term heart allograft survival and donor-specific hyporesponsiveness,but does not prevent chronic rejection.J Immunol.2002 Feb 15;168(4):1600-9.
    31.Larsen CP,Elwood ET,Alexander DZ,Ritchie SC,Hendrix R,Tucker-Burden C,Cho HR,Aruffo A,Hollenbaugh D,Linsley PS,Winn KJ,Pearson TC.Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways.Nature.1996 May 30;381 (6581):434-8.
    32.Koch M,Joosten SA,Mengel M,van Kooten C,Paul LC,Nashan B.Adoptive transfer of primed CD4+ T-lymphocytes induces pattern of chronic allograft nephropathy in a nude rat model.Transplantation.2005 Apr 15;79(7):753-61.
    33.Obata F,Yoshida K,Ohkubo M,Ikeda Y,Taoka Y,Takeuchi Y,Shinohara N,Endo T,Baba S.Contribution of CD4+ and CD8+ T cells and interferon-gamma to the progress of chronic rejection of kidney allografts:the Th1 response mediates both acute and chronic rejection.Transpl Immunol.2005 Mar;14(1):21-5.
    34.宫念樵,刘云,朱兰,王海灏,王大卫,张伟杰,陈知水,程敦秀,叶启发。CD8+细胞强化骨髓细胞输注免疫调节效应及机制。中国现代医学杂志。2005(19),2906-2908。
    35.Bottinger EP,Bitzer M.TGF-beta signaling in renal disease.J Am Soc Nephrol.2002 Oct;13(10):2600-10.
    36.Massague J.How cells read TGF-beta signals.Nat Rev Mol Cell Biol.2000 Dec;1(3):169-78.
    37.Schnaper HW,Hayashida T,Hubchak SC,Poncelet AC.TGF-beta signal transduction and mesangial cell fibrogenesis.Am J Physiol Renal Physiol.2003 Feb;284(2):F243-52.
    38.Strutz F,Zeisberg M,Ziyadeh FN,Yang CQ,Kalluri R,Muller GA,Neilson EG.Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation.Kidney Int.2002 May;61 (5):1714-28.
    39.Li JH,Wang W,Huang XR,Oldfield M,Schmidt AM,Cooper ME,Lan HY.Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway.Am J Pathol.2004 Apr;164(4):1389-97.
    40.赵波,刘云,宫念樵,叶启发。脂质体载体pcDNA3-TGF-β1基因治疗延长同种心脏移植物存活的研究。中国现代医学杂志,2005(12),3721-3726。
    41.Cheng O,Thuillier R,Sampson E,Schultz G,Ruiz P,Zhang X,Yuen PS,Mannon RB.Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis.Am J Transplant.2006 Oct;6(10):2292-306.
    42.Chen MM,Lam A,Abraham JA,Schreiner GF,Joly AH.CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes:a potential role in heart fibrosis.J Mol Cell Cardiol.2000 Oct;32(10):1805-19.
    43.Duncan MR,Frazier KS,Abramson S,Williams S,Klapper H,Huang X,Grotendorst GR.Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis:down-regulation by cAMP.FASEB J.1999 Oct;13(13):1774-86.
    44.Cruzado JM,Lloberas N,Torras J,Riera M,Fillat C,Herrero-Fresneda I,Aran JM,Alperovich G,Vidal A,Grinyo JM.Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats.Diabetes.2004 Apr;53(4):1119-27.
    45.陈强胜,马超龙。结缔组织生长因子与肾纤维化的关系。国际移植与血液净化杂志,2006(6):15-8。
    46.Healy E,Leonard M,Madrigal-Estebas L,O'Farrelly C,Watson A J,Ryan MP.,Factors produced by activated leukocytes alter renal epithelial cell differentiation.Kidney Int.1999 Oct;56(4):1266-9.
    47.Robinson MJ,Cobb MH.Mitogen-activated protein kinase pathways.Curr Opin Cell Biol.1997 Apr;9(2):180-6.Review.
    48.Widmann C,Gibson S,Jarpe MB,Johnson GL.Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.Physiol Rev.1999
    Jan;79(1):143-80.
    49.陈曦林,宫念樵,董冲,陈知水,叶启发。MAPK反义寡核苷酸诱导大鼠成纤维细胞凋亡的研究。中国现代医学杂志,2005(17),2573-2576。
    50.陈曦林,宫念樵,陈知水,丁召。 阻断ERK2信号转导通路对PDGF-BB诱导血管平滑肌细胞增殖、迁移和表达TGF-βl的影响。中华实验外科杂志,2008,25(11):1424-1426。
    51.董冲,陈知水,宫念樵,陈曦林,郭晖。反义细胞外信号调节激酶对移植物血管的保护作用。中华器官移植杂志,2006(02),99-101。
    52.Gong N,Li G,Xiao J,Guo H,Ye Q.Impact of MAPK cascade pathway and P53 pathway upon liver transplant.J Huazhong Univ Sci Technolog Med Sci.2005;25(5):555-7.
    53.宫念樵,叶启发,李国逊,张伟杰,郭晖,夏穗生。肾脏移植后慢性移植物肾病相关基因C-H-ras、TGF-β1、HSP70和HSP90的表达。华中科技大学学报(医学版),2006,35(5):617-619。
    54.宫念樵,肖建生,叶启发,夏穗生。慢性移植物肾病组织补体C4d沉积的意义。中国现代医学杂志。2005(07),1003-1008。
    55.Terasaki PI,Cai J.Humoral theory of transplantation:further evidence.Curr Opin Immunol.2005 Oct;17(5):541-5.
    56.Moll S,Pascual M.Humoral rejection of organ allografts.Am J Transplant.2005 Nov;5(11):2611-8.
    57.Vincent-Salomon A,Thiery JP.Host microenvironment in breast cancer development:epithelial-mesenchymal transition in breast cancer development.Breast Cancer Res.2003;5(2):101-6.
    58.Xue C,Plieth D,Venkov C,Xu C,Neilson EG.The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis.Cancer Res.2003 Jun 15;63(12):3386-94.
    59. Neilson EG, Plieth D, Venkov C. Epithelial-mesenchymal transitions and the intersecting cell fate of fibroblasts and metastatic cancer cells. Trans Am Clin Climatol Assoc. 2003; 114:87-100.
    60. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002 Jun;2(6):442-54.
    61. Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003 Aug;4(8):657-65.
    1.Kalluri R,Neilson EG.Epithelial-mesenchymal transition and its implications for fibrosis.J Clin Invest.2003 Dec;112(12):1776-84.
    2.Boyer B,Valles AM,Edme N.Induction and regulation of epithelial-mesenchymal transitions.Biochem Pharmacol.2000 Oct 15;60(8):1091-9.
    3.Dinev D,Jordan BW,Neufeld B,et al.Ext racellular signal regulated kinase5 (ERK5)is required for t he differentiation of muscle cells.EMBO,2001,2:829-834.
    4.Liu Y.Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance,molecular mechanism,and therapeutic intervention.J Am Soc Nephrol.2004 Jan;15(1):1-12.
    5.Greenburg G,Hay ED.Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells.J Cell Biol.1982 Oct;95(1):333-9.
    6.Yang J,Liu Y.Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis.Am J Pathol.2001 Oct;159(4):1465-75.
    7.Cheng O,Thuillier R,Sampson E,et al.Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis.Am J Transplant.2006 Oct;6(10):2292-306.
    8.Duncan MR,Frazier KS,Abramson S,et al.Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis:down-regulation by cAMP.FASEB J.1999 Oct;13(13):1774-86.
    9.Bottinger EP,Bitzer M.TGF-beta signaling in renal disease.J Am Soc Nephrol.2002 Oct;13(10):2600-10.
    10.Schnaper HW,Hayashida T,Hubchak SC,et al.TGF-beta signal transduction and mesangial cell fibrogenesis.Am J Physiol Renal Physiol.2003 Feb;284(2):F243-52.
    11.张春,朱忠华,刘建社,等.结缔组织生长因子对肾小管上皮细胞转分化的调节机制.中华医学杂志,2005,85(41):2920-2925.
    12.Gong N,Dong C,Chen Z,et al.Adenovirus-mediated antisense-ERK2 gene therapy attenuates chronic allograft nephropathy.Transplant Proc.2006 Dec;38(10):3228-30.
    1.Bedi S,Vidyasagar A,Djamali A.Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis[J].Transplant Rev (Orlando),2008,22(1):1-5.
    2.Abdel Wahab N,Mason R M.Connective tissue growth factor and renal diseases:Some answers,more questions[J].Curr Opin Nephrol Hypertens,2004,13(1):53-58.
    3.Dinev D,Jordan B W,Neufeld B,et al.Extracellular signal regulated kinase5 (ERK5)is required for t he differentiation of muscle cells[J].EMBO,2001,2(9):829-834.
    4.Robinson F L,Whitehurst A W,Raman M,et al.Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1[J].J Biol Chem,2002,17(17):14-44.
    5.董冲,刘云,宫念樵,等.反向克隆法大鼠anti-ERK2腺病毒载体构建[J].中国现代医学杂志,2006,1 6(1):21-23.
    6.Liu Y.Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance,molecular mechanism,and therapeutic intervention[J].J Am Soc Nephrol,2004,15(1):1-12.
    7.Hertig A.Epithelial-mesenchymal transition of the renal graft.Nephrol Ther.2008,4(Suppl 1):S25-S28.
    8.Strutz F,Okada H,Lo C W,et al.Identification and characterization of a fibroblastmarker:FSP1[J].J Cell Biol,1995,130(2):393-405.
    9.Cheng O,Thuillier R,Sampson E,et al.Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis[J].Am J Transplant,2006,6(10):2292-2306.
    10.Duncan M R,Frazier K S,Abramson S,et al.Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis:down-regulation by cAMP[J].FASEB J,1999,13(13):1774-1786.
    11.Bottinger E P,Bitzer M.TGF-beta signaling in renal disease[J].J Am Soc Nephrol.2002,13(10):2600-2610.
    12.Schnaper H W,Hayashida T,Hubchak S C,et al.TGF-beta signal transduction and mesangial cell fibrogenesis[J].Am J Physiol Renal Physiol,2003,284(2):F243-252.
    13.张春,朱忠华,刘建社,等.结缔组织生长因子对肾小管上皮细胞转分化的调节机制[J].中华医学杂志,2005,85(41):2920-2925.
    14.Healy E,Leonard M,Madrigal-Estebas L,et al.Factors produced by activated leukocytes alter renal epithelial cell differentiation[J].Kidney Int,1999,56(4):1266-1269.
    15.Gong N,Dong C,Chen Z,et al.Adenovirus-mediated antisense-ERK2 gene therapy attenuates chronic allograft nephropathy[J].Transplant Proc,2006,38(10):3228-3230.
    1.Nankivell B J,Chapman JR.Chronic allograft nephropathy:current concepts and future directions.Transplantation,2006,81(5):643-654.
    2.Dinev D,Jordan BW,Neufeld B,et al.Ext racellular signal regulated kinase5 (ERK5)is required for t he differentiation of muscle cells.EMBO,2001,2:829-834.
    3.Robinson FL,Whitehurst AW,Raman M,et al.Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1.J Biol Chem 17:14-44,2002.
    4.董冲,刘云,宫念樵,等.反向克隆法大鼠anti-ERK2腺病毒载体构建.中国现代医学杂志,2006,16:21-23.
    5.Lee S:An improved technique of renal transplantation in the rat.Surgery,1967,61:771-773.
    6.Racusen LC,Solez K,Colvin RB,et al.The Banff 97 working classification of renal allograft pathology.Kidney Int 1999;55:713-723.
    7.K.Solez,R.B.Colvin,L.C.Racusen,et al.Banff'05 Meeting Report:Differential Diagnosis of Chronic Allograft Injury and Elimination of Chronic Allograft Nephropathy (‘CAN’).Am J Transplant,2007,7:518-526.
    8.董冲,陈知水,宫念樵,等.反义细胞外信号调节激酶对移植物血管的保护作用.中华器官移植杂志,2006,27(2):99-101.
    9.Xi-Lin Chen,Zhi-Shui Chen,Zhao Ding,et al.Antisense extracellular signal-regulated kinase-2 gene therapy inhibits platelet-derived growth factor-induced proliferation,migration and transforming growth factor-β_1 expression in vascular smooth muscle cells and attenuates transplant vasculopathy.Transplant International 21(1),30-38.
    10.Hayashida T,PonceletAC,Hubchak SC,et al.TGF-betal activates MAP kinase in human mesangial cells:a possible role in collagen expressionl Kidney Int,1999,56:1710-7201.
    11.Ensminger SM,Spriewald BM,Witzke O,et al.Indirect allorecognition can play an important role in the development of transplant arteriosclerosis.Transplantation,2002, 73: 279-286.
    12. Fischbein MP, Yun J, Laks H, et al. Role of CD8 + lymphocytes in chronic rejection of t ransplanted hearts. J Thorac Cardiovasc Surg, 2002,123: 803-809.
    13. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003 Dec; 112(12): 1776-84.
    14. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001 Oct; 159(4):1465-75.
    15. Davis BH, Chen A, Beno DW. Raf and mitogen - activated protein kinase regulate stellate cell collagen gene expression[J ]. J Biol Chem, 1996,271(19) : 11039 -11042.
    16. Axmann A, Seidel D, Reimann T, et al. Transforming growth factor betal -induced activation of the Raf - MEK - MAPK signaling pathway in ratlung fibroblasts via a PKC - dependent mechanism [J]. Bicohem BiophysRes Commun, 1998, 249 (2) : 456-460.
    17. Baluja P, Haragsim L, Laszik Z.Chronic allograft nephropathy. AdvChronic KidneyDis, 2006, 13(1): 56-61.
    18. Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002 Oct; 13(10): 2600-10.
    1. Wali RK, Weir MR. Chronic allograft dysfunction: can we use mammalian target of rapamycin inhibitors to replace calcineurin inhibitors to preserve graft function? Curr Opin Organ Transplant. 2008 Dec;13(6):614-21.
    2. Golshayan D, Pascual M.Tolerance-inducing immunosuppressive strategies in clinical transplantation: an overview.Drugs. 2008;68(15):2113-30.
    3. Yarlagadda SG, Klein CL, Jam A.Long-term renal outcomes after delayed graft function. Adv Chronic Kidney Dis. 2008 Jul; 15(3):248-56.
    4. Bani-Hani AH, Campbell MT, Meldrum DR, Meldrum KK. Cytokines in epithelial-mesenchymal transition: a new insight into obstructive nephropathy. J Urol. 2008 Aug;180(2):461-8. Epub 2008 Jun 11.
    5. Gressner OA, Rizk MS, Kovalenko E, Weiskirchen R, Gressner AM. Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go? J Gastroenterol Hepatol. 2008 Jul;23(7 Pt 1):1024-35. Epub 2008 May 26.
    6. Burns WC, Kantharidis P, Thomas MC.The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs. 2007; 185(1-3):222-31.
    7. Strutz F, Okada H, Lo CW, et al: Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130: 393-405,1995
    8. Horster MF, Braun GS, Huber SM: Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79: 1157-1191,1999
    9. Bedi S, Vidyasagar A, Djamali A.Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant Rev (Orlando). 2008 Jan;22(l):l-5.
    10. Saal S, Harvey SJ.MicroRNAs and the kidney: coming of age.Curr Opin Nephrol Hypertens. 2009 May 6.
    11. Chea SW, Lee KB.TGF-beta mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease.Yonsei Med J. 2009 Feb 28;50(l): 105-11.
    12. Xu G, Liu A, Liu X.Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules.Nephrology (Carlton). 2008 Dec;13(8):694-701
    13. Strippoli R, Benedicto I, Perez Lozano ML, Cerezo A, Lopez-Cabrera M, del Pozo MA.Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snaill pathway.Dis Model Mech. 2008 Nov-Dec;l(4-5):264-74
    14. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R.Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.J Am Soc Nephrol. 2008 Dec;19(12):2282-7.
    15. Hertig A.Epithelial-mesenchymal transition of the renal graft]Nephrol Ther. 2008 Jun;4 Suppl1:S25-S28.
    16. Ng YY, Huang TP, Yang WC, et al: Tubular epithelialmyofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54: 864-876, 1998
    17. Yang J, Liu Y: Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159: 1465-1475, 2001
    18. Yang J, Liu Y: Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 13: 96-107, 2002
    19. Iwano M, Plieth D, Danoff TM, et al: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110: 341-350, 2002
    20. Oldfield MD, Bach LA, Forbes JM, et al Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108: 1853-1863, 2001
    21. Li Y, Yang J, Dai C, et al: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 112:503-516,2003
    22. Zeisberg M, Hanai J, Sugimoto H, et al: BMP-7 counteracts TGF-betal-induced epithelial- to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964-968, 2003
    23. Ng YY, Fan JM, Mu W, et al: Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol Dial Transplant 14:2860-2872, 1999
    24. Inoue T, Okada H, Takenaka T, Watanabe Y, Suzuki H.A case report suggesting the occurrence of epithelial-mesenchymal transition in obstructive nephropathy.Clin Exp Nephrol. 2009 Apr 15.
    25. Rastaldi MP, Ferrario F, Giardino L, et al: Epithelial- mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62: 137-146, 2002
    26. Nadasdy T, Laszik Z, Blick KE, et al: Tubular atrophy in the end-stage kidney: A lectin and immunohistochemical study. Hum Pathol 25: 22-28,1994
    27. Yang J, Dai C, Liu Y: Hepatocyte growth factor gene therapy and angiotensin Ⅱ blockade synergistically attenuate renal interstitial fibrosis in mice. J Am Soc Nephrol 13:2464-2477,2002
    28. Yang J, Shultz RW, Mars WM, et al: Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110:1525-1538,2002
    29. Strutz F, Muller GA: Interstitial pathomechanisms underlying progressive tubulointerstitial damage. Kidney Blood Press Res 22: 71-80,1999
    30. Eddy AA: Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7: 2495-2508,1996
    31. Nishida M, Fujinaka H, Matsusaka T, et al: Absence of angiotensin Ⅱ type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest 110:1859-1868,2002
    32. Okada H, Ban S, Nagao S, et al: Progressive renal fibrosis in murine polycystic kidney disease: An immunohistochemical observation. Kidney Int 58: 587-597,2000
    33. Zavadil J, Bitzer M, Liang D, et al: Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 98: 6686-6691,2001
    34. Li Y, Yu YP, Yang J, et al: Alterations in gene expression during tubular epithelial to myofibroblast transition induced by transforming growth factor-pl [Abstract]. J Am Soc Nephrol 13: 120A,2002.
    35. Jechlinger M, Grunert S, Tamir IH, et al: Expression profiling of epithelial plasticity in tumor progression. Oncogene 22: 7155-7169, 2003
    36. Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, Birembaut P, Gilles C.Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs.2007;185(l-3):61-5.
    37. Aresu L, Rastaldi MP, Scanziani E, Baily J, Radaelli E, Pregel P, Valenza F.Epithelial-mesenchymal transition (EMT) of renal tubular cells in canine glomerulonephritis.Virchows Arch. 2007 Nov;451(5):937-42.
    38. Kattla JJ, Carew RM, Heljic M, Godson C, Brazil DP. Protein kinase B/Akt activity is involved in renal TGF-betal-driven epithelial-mesenchymal transition in vitro and in vivo.Am J Physiol Renal Physiol. 2008 Jul;295(l):F215-25.
    39. Fan JM, Huang XR, Ng YY, et al: Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factorbetal- dependent mechanism in vitro. Am J Kidney Dis 37: 820-831, 2001
    40. Cheng S, Lovett DH: Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162: 1937-1949, 2003
    41. Zeisberg M, Bonner G, Maeshima Y, et al: Renal fibrosis: Collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 159: 1313-1321,2001
    42. Gao X, Li J, Huang H, Li X.Connective tissue growth factor stimulates renal cortical myofibroblast-like cell proliferation and matrix protein production.Wound Repair Regen. 2008 May-Jun;16(3):408-15.
    43. Robertson H, Wong WK, Talbot D, Burt AD, Kirby JA: Tubulitis after renal transplantation: Demonstration of an association between CD103+T cells, transforming growth factorP(1) expression and rejection grade. Transplantation 71: 306-313, 2001
    44. Rostapshova EA, Burns JM, Bartlett ST, Hadley GA: Integrinmediated interactions influence the tissue specificity of CD8+cytolytic T lymphocytes. Eur J Immunol 28: 3031-3039,1998
    45. Robertson H, Kirby JA: Post-transplant renal tubulitis: The recruitment, differentiation and persistence of intra-epithelial T cells. Am J Transplant 3: 3-10, 2003
    46. Hadley GA, Charandee C, Weir MR, Wang D, Bartlett ST, Drachenberg CB:CD103+CTL accumulate within the graft epithelium during clinical renal allograft rejection. Transplantation 72: 1548-1555, 2001
    47. Shimizu A, Yamada K, Sachs DH, Colvin RB: Persistent rejection of peritubular capillaries and tubules is associated with progressive interstitial fibrosis. Kidney Int 61: 1867-1879,2002
    48. Wong WK, Robertson H, Carroll HP, Ali S, Kirby JA: Tubulitis in renal allograft rejection: Role of TGF-|3and IL-15 in development and maintenance of CD103+ intraepithelial T cells. Transplantation 75: 505-514,2003
    49. Lai YG, Gelfanov V, Gelfanova V, Kulik L, Chu CL, Jeng SW, Liao NS: IL-15 promotes survival but not effector function differentiation of CD8+ TCRintestinal intraepithelial lymphocytes. J Immunol 163: 5843-5850, 1999
    50. Song EW, Zou HQ, Yao YS, Proudfoot A, Antus B, Liu SY, Jens L, Heemann U: Early application of Met-RANTES ameliorates chronic allograft nephropathy. Kidney Int 61: 676-685,2002
    51. Tullius SG, Nieminen M, Bechstein WO, Jonas S, Steinmuller T, Qun Y, Pratschke J, Graser E, Sinha P, Volk HD, Neuhaus P, Tilney NL: Contribution of early acute rejection episodes to chronic rejection in a rat kidney retransplantation model. Kidney Int 53: 465-472, 1998
    52. Bottinger EP, Bitzer M: TGF-_ signaling in renal disease. J Am Soc Nephrol 13: 2600-2610, 2002
    53. Schramek H, Feifel E, Marschitz I, et al: Loss of active MEK1-ERK1/2 restores epithelial phenotype and morphogenesis in transdifferentiated MDCK cells. Am J Physiol Cell Physiol 285: C652-C661,2003
    54. Masszi A, Di Ciano C, Sirokmany G, et al: Central role for Rho in TGF-betal-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol 284: F911-F924, 2003
    55. Wu C, Dedhar S: Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J CellBiol 155: 505-510, 2001
    56. Strippoli R, Benedicto I, Perez Lozano ML, Cerezo A, Lopez-Cabrera M, del Pozo MA.Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snaill pathway.Dis Model Mech. 2008 Nov-Dec;1(4-5):264-74.
    57. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition.J Biol Chem. 2008 Nov 28;283(48):33437-46.
    58. Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME.The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbetal responses in human proximal-tubule epithelial cells.Biochem J. 2006 Jan 15;393(Pt 2):601-7.
    59. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP.Integration of TGF-beta/Smad and Jagged 1/Notch signalling in epithelial-to-mesenchymal transition.EMBO J. 2004 Mar 10;23(5):l 155-65.
    60. Dijke P, Miyazono K, Heldin CH: Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 25: 64-70, 2000
    61. Li JH, Zhu HJ, Huang XR, et al: Smad7 inhibits fibrotic effect of TGF-(3 on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 13: 1464-1472,2002
    62. Wu C: ILK interactions. J Cell Sci 114:2549-2550,2001
    63. Persad S, Dedhar S: The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Rev 22: 375-384, 2003
    64. Delcommenne M, Tan C, Gray V, et al: Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrinlinked kinase. Proc Natl Acad Sci U S A 95: 11211-11216, 1998
    65. 65 Fukuda T, Guo L, Shi X, et al: CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. J Cell Biol 160: 1001-1008, 2003
    66. Troussard AA, Mawji NM, Ong C, et al: Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 278: 22374-22378, 2003
    67. Grille SJ, Bellacosa A, Upson J, et al: The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63: 2172-2178, 2003
    68. D'Amico M, Hulit J, Amanatullah DF, et al: The integrinlinked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3beta and cAMP-responsive element-binding protein-dependent pathways. J Biol Chem 275: 32649-32657,2000
    69. Troussard AA, Costello P, Yoganathan TN, et al: The integrin linked kinase (ILK) induces an nvasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene 19: 5444-5452,2000
    70. Deng JT, Van Lierop JE, Sutherland C, et al: Ca2_- independent smooth muscle contraction. A novel function for integrin-linked kinase. J Biol Chem 276: 16365-16373,2001
    71. Rodrigues-D(?)ez R, Carvajal-Gonz(?)lez G, Sanchez-L(?)pez E, Rodr(?)guez-Vita J, Rodrigues D(?)ez R, Selgas R, Ortiz A, Egido J, Mezzano S, Ruiz-Ortega M.Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin Ⅱ. Role of ROCK and MAPK pathways.Pharm Res. 2008 Oct;25(10):2447-61.
    72. Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ.MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.Mol Cell Biol. 2008 Nov;28(22):6773-84.
    73. Hewitson TD, Wu HL, Becker GJ: Interstitial myofibroblasts in experimental renal infection and scarring. Am J Nephrol 15: 411-417, 1995
    74. Bhaskaran M, Reddy K, Radhakrishanan N, et al: Angiotensin Ⅱ induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol 284: F955-F965, 2003
    75. Yang J, Liu Y: Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 284: F349-F357, 2003
    76. Yang J, Dai C, Liu Y.A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.J Am Soc Nephrol. 2005 Jan;16(l):68-78.
    77. Klahr S: The bone morphogenetic proteins (BMPs). Their role in renal fibrosis and renal function. J Nephrol 16: 179-185, 2003
    78. Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH, Kim YL, Kang DH.HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol. 2009 Mar;20(3):567-81.
    79. Liu Y, Rajur K, Tolbert E, et al: Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney Int 58: 2028-2043, 2000
    80. Yang J, Dai C, Liu Y: Systemic administration of naked plasmid encoding hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene Ther 8: 1470-1479, 2001
    81. Wang S, Hirschberg R: BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284: F1006-F1013, 2003
    82. Dudas PL, Argentieri RL, Farrell FX.BMP-7 fails to attenuate TGF-beta 1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells.Nephrol Dial Transplant. 2009 May;24(5):1406-16.
    83. Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, ten Dijke P, van der Pluijm G.TGF-beta and BMP7 interactions in tumour progression and bone metastasis.Clin Exp Metastasis. 2007;24(8):609-17.
    84. Motazed R, Colville-Nash P, Kwan JT, Dockrell ME.BMP-7 and proximal tubule epithelial cells: activation of multiple signaling pathways reveals a novel anti-fibrotic mechanism.Pharm Res. 2008 Oct;25(10):2440-6.
    85. Nguyen TQ, Goldschmeding R.Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis?Pharm Res. 2008 Oct;25(10):2416-26.
    86. Sugimoto H, Grahovac G, Zeisberg M, Kalluri R.Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes. 2007 Jul;56(7):1825-33.
    87. Nagatoya K, Moriyama T, Kawada N, et al: Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 61: 1684-1695, 2002
    88. Benigni A, Zoja C, Corna D, et al: Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 14: 1816-1824, 2003
    89. Gore-Hyer E, Shegogue D, Markiewicz M, et al: TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol 283: F707-716, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700