大气颗粒物滞留时间的测量方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文系统阐述了大气颗粒物滞留时间(Residence Time of Atmospheric Aerosol,RTAA)的研究意义、研究背景、研究方法及研究现状。根据国内外的研究进展,选定~(210)Po/~(210)Pb和~(210)Bi/~(210)Pb的活度比与大气气溶胶滞留时间的关系作为主要研究内容,并把推导利用~(210)Po/~(210)Pb、~(210)Bi/~(210)Pb、~(214)Bi/~(214)Pb活度比及~(210)Po、~(210)Bi的α、β活度增长特性计算RTAA的公式作为关键研究点。同时,建立实验测量模型,设计气溶胶采样方案。用大流量粒径分级气溶胶采样器,采集上海市郊区不同粒径大气颗粒物;同时用ELPI监测该采样点大气颗粒物的粒径分布。分别用α谱仪工作站、低本底环境γ谱仪和低本底α、β探测器测量不同粒径大气颗粒物样品的~(210)Po、~(210)Pb和~(210)Bi活度值,对测量结果进行分析研究。最后把测量値代入推导的计算公式,分别计算不同粒径大气颗粒物的滞留时间,讨论~(210)Po、~(210)Pb和~(210)Bi的活度粒径分布、颗粒物滞留时间及其对环境污染的影响。
     在RTAA估算方法的研究中,先通过研究大气颗粒物中222Rn子体活度比与颗粒物平均寿命之间的关系,建立了基于活度比估算RTAA的方法,推导了计算公式,并在相对理想条件下的氡室进行了实验验证。得到了当氡浓度稳定为1.816 kBq/m~3时,由~(214)Bi/~(214)Pb活度比计算出的RTAA为112.17分钟,与氡室的平均换气时间(104.17分钟)相当,从而证明~(214)Bi/~(214)Pb, ~(210)Bi/~(210)Pb或~(210)Po/~(210)Pb用于估算RTAA的方法及公式是正确的。
     在深入研究中,针对目前国际上利用~(210)Bi/~(210)Pb活度比测量和计算RTAA偏小,而利用~(210)Po/~(210)Pb得到的RTAA偏大的几个问题,提出了利用大气颗粒物中~(210)Po和~(210)Bi的活度增长关系进行RTAA测量计算的新思路,重点研究了新思路涉及的RTAA计算的新方法,通过假设和建立新的测量模型,利用巴特曼公式的原理,推导了利用~(210)Po和~(210)Bi的活度增长特性估算RTAA计算公式,然后用衰变数据对公式进行了大量的理论数据计算和证明,同时利用新公式对国外典型的实验数据进行了分析研究,最后得出改进后的方法计算RTAA更准确且简单可行的结论。
     为了得到实际的测量计算数据证明方法的实用性,研究中根据方法内容的具体要求,确定了实验测量研究的技术路线、实验手段和方案。利用Staplex公司的M235冲击式大流量颗粒物采样器,ELPI气溶胶测量仪,高纯锗γ谱仪、BH1216型α、β低本底测量仪和α谱仪工作站,分别采集和测量大气颗粒物的粒径分布、活度分布和RTAA的相关数据。测得采样期间上海市嘉定区采样点的样品中大气颗粒物TSP的~(210)Pb体积比活度为1.0629~3.6324mBq/m~3,平均值为1.7720 mBq/m~3,其在不同粒径上的分布范围为:0.02995~0.7740 mBq/m~3。大气颗粒物中TSP的~(210)Pb质量比活度为6.4798~13.4339mBq/mg,平均值为8.6511 mBq/mg,其在不同粒径上的分布范围为:0.8898~15.4429 mBq/mg。研究发现大气颗粒物中~(210)Pb的体积比活度及质量比活度的最大値均落在0.49~0.95um粒径范围,此粒径范围内的~(210)Pb的体积比活度含量占TSP中总含量的37%,加上~(210)Pb在粒径小于0.49um的颗粒物中占TSP中总含量的26.2%,则有占TSP总含量63.2%的~(210)Pb处在粒径小于0.95um(近似PM1.0)的颗粒物中,占TSP总含量91.97%的量在PM1.5中,PM3.0中的~(210)Pb占TSP总含量的94.97%。
     实验中用α、β低本底测量仪或α谱仪工作站测量大气颗粒物中~(210)Bi和~(210)Po的活度增长特性,并把测量数据代入到新方法的计算公式中,进行实际RTAA的估算,最终得到采样期间上海市嘉定区的大气颗粒物TSP的平均RTAA为25天左右,随着粒径的减小,颗粒物的滞留时间明显增加,粒径Dp>7.2um的颗粒物MRT为16.95天,粒径Dp<0.49um的颗粒物MRT为32.33天。
     论文最后对整个研究实验中可能的误差进行了分析计算,给出了主要研究目标RTAA的大致误差,并对总结提出了有待进一步研究的问题。
The significant meanings, backgrounds, methods and present conditions of research for Residence Time of Atmospheric Aerosol(RTAA) were systematically expounded in this paper. Relations between activities of ~(210)Po/~(210)Pb, ~(210)Bi/~(210)Pb and RATT were mainly discussed, in which the formula to calculate RTAA with activity ratios of ~(210)Po/~(210)Pb、~(210)Bi/~(210)Pb、~(214)Bi/~(214)Pb and theα,βactivity growth characteristics of ~(210)Po and ~(210)Bi was the key parts. Ambient aerosols with different diameters were collected with a high-volume sampler (Staplex, Model235, <0.49( m) , 0.49~0.95( m) , 0.95~1.50( m) , 1.50~3.00( m) , 3.00~7.20( m),>7.20( m) of particle aerodynamic cutoff diameters). Electrical low pressure impactor (ELPI) was used to investigate the size distributions of particulates. The activities of ~(210)Po、~(210)Pb and ~(210)Bi were detected by anαspectrometer workstation, a low-background-γ-spectrometer and low-background detectors. Put the results into the formulas and then get RATT. At last, the influences on RATT and environmental of size distributions of ~(210)Po、~(210)Pb and ~(210) activities were discussed.
     In the study of RTAA estimation, firstly, the method of estimating RTAA based on activity quotient was established by studying the relationship between airborne particle’s 222Rn daughter activity quotient and particle’s mean life, and computing formula was deduced. Then above mentioned were verified in the radon chamber under relative optimal conditions. Through the experiment, it was found that, when the radon concentration is steadily equal to 1.816 kBq/m~3, the RTAA calculated by the activity quotient of ~(214)Bi/~(214)Pb is 112.17 minutes, which is equivalent to the mean ventilation time of radon chamber(104.17 minutes). Consequently, it was proved that it is right to estimate the method and formula of RTAA by using ~(214)Bi/~(214)Pb, ~(210)Bi/~(210)Pb or ~(210)Po/~(210)Pb.
     In the deep research, first of all, aiming at the international problems that the RTAA is lower measured and calculated by the activity quotient of ~(214)Bi/~(214)Pb, but higher when using the activity quotient of ~(210)Bi/~(210)Pb, new measuring thinking and method were proposed. Secondly, the mainly research about the new method of estimating RTAA was deduced by assuming and establishing new measuring model using the Betman principle. Thirdly, the formula was simulatively computed and proved by using decay data. Then typical experimental data abroad was analyzed by using the new formula. In the end, it was found that the value calculated by using the method improved is more correct and simple.
     To prove the practicability of the method with actual data from measurement and calculation, we selected reasonable technique routine, experimental media and experiment design for the experiment according to those specific requirements of the method.
     We collected atmospheric particulate matter with Staplex M235 Impact Large Flow Particulate Samplers, obtained the size distribution by ELPI aerosol measuring instrument, and then got the Specific Activity-particle size distribution of atmospheric particulate matter and relevant data of RTAA by high-purity-Geγ-spectrometer, BH1216-typeα,βlow-background measuring instrument andα-spectrometer workstation.
     The volume specific activity of ~(210)Pb in the TSP(Total Suspended Particle) collected in Shanghai JiaDing is 1.0629~3.6324mBq/m~3 with a mean value 1.7720 mBq/m~3, and the range of different particle size is 0.02995 ~ 0.7740 mBq/m~3.
     The mass specific activity of ~(210)Pb in the TSP is 6.4798~13.4339mBq/mg with a mean value 8.6511mBq/m~3, and the range of different particle size is 0.8898~15.4429 mBq/m~3.
     It is found that the maximum value of volume specific activity and mass specific activity of ~(210)Pb appeared in particle size 0.49~0.95um, with the volume specific activity accounting for 37% in TSP. The concentration of ~(210)Pb in particle size less than 0.49um accounts for 26.2% in TSP, so 63.2% of ~(210)Pb in TSP appears in particle size less than 0.95um(approximately PM1.0), 91.97% in PM1.5 and 94.97% PM3.0.
     The activity property of ~(210)Po and ~(210)Bi were detected by low-backgroundα、βCounter or anα-spectrometer workstation. Put the results into the new formulas and then get RATT. The mean RATT is found to be 25 days in the TSP collected in ShangHai JiaDing and RATT increases obviously with particle size decreasing. The mean RATT is 16.95 days in particle size more than 7.2um and 32.33 days in particle size less than 0.49um.
     The error of the whole experiment is given in the last part of the paper.
引文
[1].何强,井文涌,王翊亭.环境学导论,第二版.北京:清华大学出版社. 1998.
    [2].卢正永.气溶胶科学引论.北京:原子能出版社,2000.
    [3]. Ulrich Poschl. Atmospheric aerosols:composition, transformation, climate and health effects. Angew. Chem. Int. Ed, 2005(44):7520~7540.
    [4].米歇尔﹒雅罗.天气、气候和我们呼吸的空气:保护人类健康和环境,陵水气象,陵水黎族自治县气象局编.2009(3) :96~103.
    [5].强亦忠主编,简明放射化学教程(修订第三版),原子能出版社,1999.6.
    [6]. Baulig, A.,et al.,2003. Biological effects of atmospheric particles on human bronchial epithelial cells: comparison with diesel exhaust particles. Toxicology in Vitro 17, 567~573.
    [7]. Obot, C. J., et al., 2002. Surface components of airborne particulate matter induce macrophage apoptosis through scavenger receptors. Toxicology and Applied Pharmacology 184, 98~106.
    [8]. Kijnzli, N., et al., 2000. Public health impact of outdoor traffic-related air pollution: a European assessment. Lancet 365, 795~801.
    [9]. Auana, K., et al., 2004. Exposure-response functions for health effects of ambient air pollution applicable for China: a Meta analysis. Science of the Total Environment 329, 3~16.
    [10]. Neas, L. M., 2000. Fine particulate matter and cardiovascular disease. Fuel Processing Technology 151, 669~674.
    [11]. Pope, C. A., et al., 1995. Particulate air pollution as a predictor of mortality in a prospective study of U. S. adults. Am Respir Crit Care Med 151,669~674.
    [12]. Dockery, et al.,1993. An association between air pollution and mortality in six U. S. Cities. New England Journal of Medicine 329, 1753~1759.
    [13]. Li, X., et al., 2003. Preliminary studies on the source of PM10 aerosolparticles in the atmosphere of Shanghai City by analyzing single aerosol particles. Nuclear Instruments and Methods in Physics Research 210B, 412~417.
    [14]. Yue Weisheng, et al., 2006. Characterization of PM2.5 in the ambient air of shanghai city by analyzing individual particles. Science of the Total Environment 368, 916~925.
    [15]. World Health Organization.2002 1 The World Health Report 2002:Reducing Risks,Promoting Healthy Life[R].Geneva. Volume 30, Issue 2, March 2004, Pages 170~172.
    [16].卢正勇主编,《气溶胶科学引论》,原子能出版社,2000,10 .
    [17].强亦忠主编,简明放射化学教程(修订第三版),原子能出版社,1999.6.
    [18]. Baulig, A.,et al.,2003. Biological effects of atmospheric particles on human bronchial epithelial cells: comparison with diesel exhaust particles. Toxicology in Vitro 17, 567~573.
    [19]. Obot, C. J., et al., 2002. Surface components of airborne particulate matter induce macrophage apoptosis through scavenger receptors. Toxicology and Applied Pharmacology 184, 98~106.
    [20]. Kijnzli, N., et al., 2000. Public health impact of outdoor traffic-related air pollution: a European assessment. Lancet 365, 795~801.
    [21]. Auana, K., et al., 2004. Exposure-response functions for health effects of ambient air pollution applicable for China: a Meta analysis. Science of the Total Environment 329, 3~16.
    [22]. Dockery, et al.,1993. An association between air pollution and mortality in six U. S. Cities. New England Journal of Medicine 329, 1753~1759.
    [23]. Neas, L. M., 2000. Fine particulate matter and cardiovascular disease. Fuel Processing Technology 151, 669~674.
    [24]. Pope, C. A., et al., 1995. Particulate air pollution as a predictor of mortality in a prospective study of U. S. adults. Am Respir Crit Care Med 151,669~674.
    [25]. Y. Y. Ebaid, A. E. M. Khater,Determination of 210Pb in environmental samples,Journal of Radioanalytical and Nuclear Chemistry, Vol. 270, No.3 (2006) 609~619.
    [26]. Nancy A. Marley, Jeffrey S. Gaffney, Paul J. Drayton,Mary M. Cunningham, Kent A. Orlandini, and Rajendra Paode 2000 Aerosol Science and Technology 32:569~583.
    [27]. C. Due?as, M. C. Fernández, J. Carretero.7Be and 210Pb concentrations in air in Málaga (Spain),Journal of Radioanalytical and Nuclear Chemistry, Vol. 257, No. 2 (2003) 249~253.
    [28]. Li, X., et al., 2003. Preliminary studies on the source of PM10 aerosol particles in the atmosphere of Shanghai City by analyzing single aerosol particles. Nuclear Instruments and Methods in Physics Research 210B, 412~417.
    [29]. Yue Weisheng, et al., 2006. Characterization of PM2.5 in the ambient air of shanghai city by analyzing individual particles. Science of the Total Environment 368, 916~925.
    [30]. Ebaid Y Y, Khater A E M. Butyl hydroxytoluene (BHT)-induced oxidative stress: Effects on serum lipids and cardiac energy metabolism in rats. Journal of Radio analytical and Nuclear Chemistry Volume 57, January 2006, Pages 221~226.
    [31]. Duenas C, Fernandez M C, Carretero J 2003 Journal of Radio analytical and Nuclear Chemistry 257,249~254.
    [32]. Baskaran M, Shaw G E 2001 Aerosol Science 32,443~448.
    [33]. Papastefanou C 2006 nuclides Applied Radiation and Isotopes 64,93~97.
    [34].卜清军,肖振学.天津滨海新区大气污染物滞留时间影响因素浅析.环保前线,2008(5):48~50.
    [35].王荟,王格慧,高士祥,王连生.南京市大气颗粒物春季污染的特征.中国环境科学2003,23(1):55~59.
    [36]. Jinzhou Du*, Jing Zhang, Jing Zhang, Yunfeng Wu. Deposition patterns oftmospheric 7Be and 210Pb in coast of East China Sea, Shanghai, China, Atmospheric Environment 42 (2008) 5101–5109.
    [37]. Dai Zhijun? Du Jinzhou? Li Jiufa? Li Weihua? Chen Jiyu Runoff characteristics of the Changjiang River during 2006: effect of extreme drought and the impounding of the Three Gorges Dam(2008)?? Geophysical Research Letters? 35? L07406? doi: 10.1029 / 2008 GL033456.
    [38]. J.Z. Du and D.K.Huang?A comment on "Measurement of the radioactivity of 238U? 226Ra? 210Pb? 228Th? 232Th? 228Ra? 137Cs and 40K in tea using gamma-spectrometry”by S. Harb?Journal of Radioanalytical and Nuclear Chemistry? Vol. 274? No.1 (2007) 63–66.
    [39]. J. Z. Du? H. D. Mu? H. Q. Song? S. P. Yan? Y. J. Gu? J. Zhang.100 years of Sediment History of Heavy Metalsin Daya Bay? China?Water Air Soil Pollut? 190: 343–351.
    [40].林俊,刘卫,李燕,等.大气气溶胶粒径分布特征与气象条件的相关性分析,气象与环境学报, 25(1), 2009, 1~5.
    [41].林俊,刘卫,李燕,等.上海市郊区大气细颗粒和超细颗粒物中元素粒径分布研究,环境科学, 2009(4):31~35.
    [42].徐明厚,郑楚光,冯荣,等.煤燃烧过程中痕量元素排放的研究现状.中国电机工程学报,2001,21(10):33~38.
    [43].赵毅,沈艳梅.燃煤过程中亚微米颗粒物形成及防治的研究进展,2008,14(5):46~49.
    [44].唐孝炎,大气环境化学,北京.高等教育出版社,1991,351~354.
    [45]. Danielsen E F.Stratosphere-Tropospheric exchange based upon radioactivity,Ozone,and potential vorticity.J.Atmos.Sic. 1968 (25):503~518.
    [46].朱厚玲汤洁郑向东天然放射性核素7Be和210Pb在大气示踪研究中的应用气象科技2003,31(3):98~103.
    [47]. Larsen R and Freely H.seasonal variations of 7Be and 210Pb at Mauna loaand Barrow. Geophysical Monitoring for Climatic Change,Summery report.1985,14:127~130.
    [48].白占国万国江王生长等黔中岩溶山区表图层的分布特征及其侵蚀示踪研究自然科学进展,1997,7(1):66~74.
    [49].刘广山用HPGeγ谱方法测量大气颗粒物中放射性同位素大气环境科学技术进展第十届全国大气环境学术会议文集昆明,1998:270~274.
    [50]. Thomas J W 1972 Health Phys 23 783~786.
    [51]. Vaughan C T,William C G 1999 Connecticut Journal of Geophysical Research 104,11593~11598.
    [52]. C. Papastefanou 2006 Applied Radiation and Isotopes 64,93~99.
    [53]. AHMAD E. NEVISSI 1991 Journal of Radioanalytical and Nuclear Chemistry 148,121~126.
    [54]. A.A.Ahmed A.Mohamed A.E.Ali A.Barakat M.Abd El-Hady A.El-Hussein 2004 Journal of Environmental Radioactivity 77,275~280.
    [55]. K.Murray Matthewsa Chang-Kyu Kimb Paul Martin 2007 Applied Radiation and Isotopes 65,267~275.
    [56]. Vaughan C T,William C G 1999 Connecticut Journal of Geophysical Research 104,11593~11598.
    [57].卢希庭.原子核物理.北京:原子能出版社.2002.
    [58].杨福家,王炎森,陆福全.原子核物理.上海:复旦大学出版社,1993.
    [59].于孝忠,巫柱中,张觐等.核辐射物理学.北京:原子能出版社,1995.
    [60].蔡崇贵,放射性递次衰变系列中长期平衡公式的证明.大学物理,2005,24 (8):81~86.
    [61]. S.E.Poet H.E.Moore E.A.Martell 1972 Journal of Geophysical Research Lead 210, Bismuth 210, and Polonium 210 in the Atmosphere: Accurate Ratio Measurement and Application to Aerosol Residence Time Determination. 77(33) 6515~6527 .
    [62]. M. Baskaran Glenn E. Shaw 2001 Aerosol Science 32 443. Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be . Volume 32, Issue 4, April 2001, Pages 443~452.
    [63]. D.McNeary M.Baskaran 2007 Journal of Geophysical Research McNeary, D., and M. Baskaran (2007), Residence times and temporal variations of 210Po in aerosols and precipitation from southeastern Michigan, United States, J. Geophys. Res., 112, D04208, doi:10.1029/2006JD007639.
    [64].赵玉慧等,电热板消解法与微波消解法溯定大气颗拉物Cu、Pb元素的对比.光谱实验室,2009,26(3):602~604.
    [65]. Anand S J S, Rangarajan C. Studies on the Activity Ratios of Polonium-210 to Lead-210 and their Dry-Deposition Velocit ies at Bombay in India. J. Envirom. Radioact ivity, 1990. 11: 235. Volume 11, Issue 3, 1990, Pages 235~250.
    [66].中国气象局监测网络司编译.世界气象组织:全球大气监测143期.北京:气象出版社,2003.
    [67].张庆文等钋法找铀.原子能出版社,1988年09月第1版.
    [68].周青芝,南华大学2008年硕士毕业毕业论文.
    [69].陈健俤,何志杰,洪锦泉,乐仁昌,叶全意,周宝庸2009对理想条件下Rn及其子体垂直运移实验数据的再分析.物理学报58:5350~5354.
    [70]. Du J Z ? Mu H D ? Song H Q ? Yan S P ? Gu Y J ? Zhang J 2008 China Water Air Soil Pollut 190 343.100 years of Sediment History of Heavy Metals in Daya Bay, China. 343~351
    [71]. Gladys B. Mutangadura , World Health Report 2002: Reducing Risks, Promoting Healthy Life: World Health Organization, Geneva, 2002, 250 pages, US$ 13.50, ISBN 9-2415-6207-2 Agricultural Economics, Volume 30, Issue 2, March 2004, Pages 170~172.
    [72]. Obot C J Toxicology and Applied Pharmacology Surface Components of Airborne Particulate Matter Induce Macrophage Apoptosis throughScavenger Receptors. Volume 184, Issue 2, 15 October 2002:98~106 .
    [73]. Ebaid Y Y, Khater A E M Determination of 210Pb in environmental samples. Journal of Radioanalytical and Nuclear Chemistry 2006(270): 609~619.
    [74]. Duenas C, Fernandez M C, Carretero J 2003 Journal of Radioanalytical and Nuclear Chemistry.7Be and 210Pb concentrations in air in Málaga (Spain). Volume 257, Number 2, August 2003 , Pages 249~253(5).
    [75]. Baskaran M, Shaw G E 2001 Aerosol Science.Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. Volume 32, Issue 4, April 2001, Pages 443~452.
    [76]. Papastefanou C 2006 nuclides Applied Radiation and Isotopes Residence time of tropospheric aerosols in association with radioactive nuclides. Volume 64, Issue 1, January 2006, Pages 93~100.
    [77].卜清军,肖振学.天津滨海新区大气污染物滞留时间影响因素浅析.天津科技, 2008(5): 48~50.
    [78].王荟,王格慧,高士祥2003中国环境科学23(1):55~59.
    [79]. Du J Z , Huang D K 2007 Journal of Radioanalytical and Nuclear Chemistry 274 63.J. Z. Du? H. Q. Song? D. H. Mu? D. J. Li? S. P. Yan? Y. J. Gu?Sorption/desorption of radioruthenium on the surface sediments?of Daya Bay? China?J.Radioanal. Nucl. Chem.? 2007? 273(1)? 119~122.
    [80]. Du J Z , Zhang J , Wu Y F 2008 China Atmospheric Environment 42 5101Deposition patterns of atmospheric 7Be and 210Pb in Coast of East China Sea?Volume 42, Issue 20, June 2008, Pages 5101~5109.
    [81]. Du J Z ? Mu H D ? Song H Q ? Yan S P ? Gu Y J ? Zhang J 2008 China Water Air Soil Pollut 190 343.
    [82].陈健俤,何志杰,洪锦泉,乐仁昌,叶全意,周宝庸.对理想条件下Rn及其子体垂直运移实验数据的再分析.物理学报2009 (58 ):5350~5354.
    [83].谭延亮,肖德涛,赵桂芝.理想条件下氡及其子体垂直运移实验数据分析,2008物理学报5452~5457.
    [84].乐仁昌,林刚勇理想条件下氦氡团簇离子垂直移动速度的理论计算.物理学报2005,54:4113~4116.
    [85].贾文懿,乐仁昌,吴允平2003物理学报理想条件下氡及其子体运移新理论及其运移方程. 52 :2457~2460.
    [86]. http://www.epa.gov/air/oaq_caa.html/.
    [87].中国环境状况公报(2006年).
    [88]. http://cdc.cma.gov.cn/ ,中国气象科学数据共享服务网.
    [89]. Blifford I.H Meeker G O A factor analysis model of large scale pollution 1967(1) .Volume 1, Issue 2, March 1967, Pages 147~157.
    [90]. Hopke PK.Gladney E S.Gordon GE The use of multivariate analysis to idenfy sources of selected elements in the Boston urban aerosol 1976(8).Volume 10, Issue 11, 1976, Pages 1015~1025.
    [91]. Grande J A.Borrego J.Morales J A A study of heavy metal pollution in the Tinto-Odiel estuary in southwestern Spain using factor analysis 1999(10).1095~1101.
    [92]. Salvador P.Artiano B.Alonso D G Identification and charanterisation of sources of PM10 in Madrid(Spain)by statistical methods 2003(3).Atmospheric Environment Volume 38, Issue 3, January 2004, Pages 435~447.
    [93]. Anand, S.J.S. and Rangarajan, C., 1990. Studies on the activity ratios of Polonium-210 to Lead-210 and their dry-deposition velocities at Bombay in India. J. Environ. Radioact. 11, pp. 235–250.
    [94]. Anand, S.J.S., Rangarajan, C. and Mishra, U.C., 1988. Aerosols residence time calculations using 210Bi:210Pb ratios of atmospheric particles. In: Wagner, P.E. and Vali, G., Editors, 1988. Lecture Notes in Physics on Atmospheric Aerosols and Nucleation, Springer, Berlin, pp. 289–290.
    [95]. Burton, W.M. and Stewart, N.G., 1960. Use of long-lived natural radioactivity as an atmospheric tracer. Nature 186, pp. 584–589.
    [96].王明星,用因子分析法研究大气气溶胶的来源.大气科学1985(1):73~81.
    [97].张远航,唐孝炎,毕木天.兰州西固地区气溶胶污染源的鉴别1987(3) :83~90.
    [98].杨丽萍,陈发虎.兰州市大气降尘污染物来源研究.环境科学学报2002(4).499~502.
    [99].胡伟,魏复盛.中国4城市空气颗粒物元素的因子分析.中国环境监测2003(3).39~42.
    [100].柯昌华,金文刚.钟秦.徐峰.玉溪市中心城区TSP源解析研究.安全与环境学报2003(5):40~43.
    [101].刘广山,黄奕普.海洋生物样品基质γ射线质量衰减系数辐射防护通讯1999年10月第19卷第5期27~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700