图像与视频编码中消除编码效应的后处理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像和视频压缩技术在很大程度上减小了图像和视频的存储容量和传输带宽,促进了图像和视频业务的广泛应用。但压缩也导致图像和视频中出现了编码效应,如块效应、振铃、蚊子效应等。这些编码效应的存在破坏了原有图像的空域平滑性,降低了解码后图像的主观和客观质量。图像和视频的后处理可以显著地消除编码效应,提高图像的主观和客观质量。本文的主要工作是针对消除“DCT+量化”过程所导致的编码效应,提出了一些后处理算法:本文首先研究了DCT域块效应消除算法;然后提出了空域块效应消除算法;接着提出了振铃效应的消除算法;最后提出了与解码器相结合的后处理方案,用于消除视频编码中出现的块效应和振铃效应等编码效应。本文的主要创新成果包括:
     提出了一种DCT域渐进块效应消除算法(PDCT-BAR)。该算法根据解码DCT系数块的频率特征参数来对偏移DCT系数块中的系数进行限制,以消除块效应。偏移的DCT块中可能存在由块效应引起的高频系数,通过不断构造偏移的DCT块,并且自适应地约束偏移块中的这些高频分量,从而达到了消除块效应的目的。此外,在完成块偏移和系数收缩后,使用量化约束来修剪处理后的DCT系数。与其他使用偏移块的块效应消除算法不同的是,PDCT-BAR算法的每一次偏移过程都构造了具有不同偏移位置的偏移块。实验表明,通过对多个偏移位置块的处理,PDCT-BAR算法不仅可以有效的去除块效应,而且能很好的保存图像本身的纹理细节,处理后图像无论PSNR质量还是视觉质量都令人满意。
     提出了一种基于DCT域自适应滤波的块效应消除算法(DCT-AFBAR)。在DCT-AFBAR算法中,首先推导出四组用于DCT域滤波的系数矩阵,然后根据解码块的频率特征参数来选取当前DCT块滤波所使用系数矩阵,最后将相应的DCT系数块与选好的系数矩阵进行相乘,即得到消除了块效应的DCT系数块。该算法的优点在于避免了计算复杂度非常高的偏移DCT系数块计算。为了进一步减小计算复杂度,文中还测试了只对部分DCT系数进行处理的情况,DCT-AFBAR算法的性能仍令人满意。实验表明:DCT-AFBAR算法无论是在图像主观、客观质量、还是计算复杂度上都比同类算法有显著的改进。
     提出了一种基于空域自适应滤波的块效应消除算法(SAFBAR)。SAFBAR通过对DCT-AFBAR算法进行推导和改进,将DCT域滤波转化为空域滤波。SAFBAR算法根据解码块的频率特征参数自适应地选取滤波器参数来进行滤波。为了避免真实边缘被模糊,该块效应消除算法还联合多个块边界的梯度信息来区分块效应与真实边缘。随后文中又对SAFBAR算法进行简化得到MSAFBAR算法。MSAFBAR算法对SAFBAR算法中的滤波器参数进行了简化,并将浮点型滤波运算变为整数型滤波运算。为了避免在DCT域计算解码块的频率特征参数,文中进一步提出使用近似变换或梯度变化信息来计算解码块的频率特征参数。实验表明:在不同比特率下,MSAFBAR算法在PSNR性能均优于其他算法。特别值得注意的是,MSAFBAR算法不但在比特率非常低的时候能提升解码图像的PSNR,而且当比特率较高的时候也能提升解码图像的PSNR质量。
     结合灰度变换和低通滤波提出了一种新的振铃效应消除算法。该算法首先根据解码块的频率特征参数来选取需要进行振铃效应消除的候选块;然后对块内象素的灰度值进行分析,为该块的处理计算出相应的块级参数,包括一个加权系数和两个目标灰度值;接着通过灰度变换将块内每个象素的灰度值向相应的目标灰度值逼近,并同时采用低通滤波得到平滑结果,最后通过块级加权系数将灰度变换和低通滤波的结果进行加权。为了防止象素被过度处理,还对处理后象素的取值范围进行了限制。实验表明:对于振铃效应明显的图像,经过算法处理后,图像的PNSR质量和视觉效果得到了很大的提升。
     针对视频压缩码流解码后视频序列中的编码效应,本文提出了与解码器相结合的后处理方案。该方案利用了解码过程中的一些信息,并针对不同帧类型来计算解码块的频率特征参数,然后利用该参数来指导块效应消除和振铃效应消除。与同类算法相比,本文的算法对I、P、B帧类型都取得了令人满意的效果。
Image and video compression technology could greatly reduce the image/video storage volume and the transmission bandwidth, thus boost the widely application of image and video. However, the compression technology also introduces coding artifacts, such as the blocking artifacts, the ringing artifacts and the mosquito artifacts etc. These artifacts to some extent destroy the spatial smoothness of the original content, and degrade both the objective and the subjective quality of the reconstructed image/video. In order to alleviate the coding artifacts and improve the quality of the reconstructed image/video, it is essential to combine post-processing with the decoding process of image/video. This dissertation focuses on several algorithms reducing the coding artifacts caused by the conventional“DCT + Quantization”in the image/video compression procedure. Firstly, the deblocking algorithm in the DCT domain; secondly the deblocking algorithm in the spatial domain; then the deringring algorithm and lastly the postprocessing to reduce the coding artifacts in video. The originality innovations of this dissertation includes:
     Progressive DCT domain blocking artifacts reduction (PDCT-BAR). This algorithm reduces the blocking artifacts by constraining coefficients in the shifted DCT blocks according to frequency characteristic parameters of the decoded DCT blocks. The undesired high frequency components, mainly caused by the blocking artifacts, are constrained by progressively constructing the shifted DCT blocks and adaptively shrinking the high frequency coefficients in the shifted blocks. Then the DCT coefficients are clipped by the quantization constraint set. Comparing with other deblocking algorithms related with shifted blocks, the algorithms in this dissertation constructed shifted blocks with different shifting position in each shifting. Experiments show the PDCT-BAR algorithm could both effectively reduce the blocking artifacts and highly preserve the details in the original image by take the advantage of different shifted blocks. The post-processed images give satisfying PSNR and visual quality.
     DCT domain adaptive filtering of blockiness artifacts reduction (DCT-AFBAR). First, four groups of filter coefficients matrix for DCT domain deblocking are deduced. Then frequency characteristic parameters are extracted to instruct the selection of the filter coefficients matrix. The selected filter coefficients matrix multiplied with the DCT coefficients and the blocking artifacts is alleviated in the filtered DCT blocks. One advantage of this algorithm is the reduction of heavy computation burden of calculating the shifted blocks. Beside, in order to further reduce the computation complexity, partial process to the DCT block is also tested in this dissertation, and the result is also acceptable. Experiments show: the DCT-AFBAR algorithm outperforms the similar algorithms both in objective/subjective quality and computation complexity.
     Spatial adaptive filtering of blockiness artifacts reduction (SAFBAR). SAFBAR is the deduction and improvement of DCT-AFBAR, the DCT domain filtering is transformed into spatial filtering. SAFBAR extracts frequency characteristic parameters to instruct the selection of filter coefficients. To avoid blurring of the real edge, this algorithm also combined the gradient information of several block boundaries to distinguish the blockiness and the real edge. MSAFBAR is a modified SAFBAF algorithm, the filter coefficient is simplified. So that the floating point calculation is converted into integer calculation. Furthermore, to avoid the DCT domain calculation of frequency characteristic parameters, approximate transform or gradient variation information are used to approximate the frequency characteristic parameters. Experiments show: MSAFBAR outperforms other algorithms in PSNR under a wide range of bitrates.
     A ringing artifacts reduction algorithm is proposed, which combines gray level transform and low-pass filtering. This algorithm selects candidate blocks by the frequency characteristic parameters. The parameters for block level, includs one weighting value and two trageted gray level values. The gray level transform approximates the grey level values of pixels to the targeted value; and the low pass filtering gives another smoothed output. Then weighting the output of gray level transform and the low-pass filtering to get the result without ring artifacts. To avoid excessive processing, the result is limited to give the untimate result. Experiments show: the proposed algorithm is especially effective in PNSR and visual quality of the decoded images.
     This dissertation also propose a scheme of post-processing with decoder to alleviate the coding artifact in the decoded video bitstream. This scheme utilize some informations of decoding process to calculate the frequency characteristic parameters for different frame types, then the parameters are utilized to instruct the deblocking and deringring. The proposed algorithm is satisfying for I, B and P frame types as compared to like algorithms.
引文
[1] Wallace. The JPEG still picture compression standard. Communication of the ACM, 1991.
    [2] ISO/IEC, 15443-1:information technology - JPEG 2000 image coding system---Part I: Core coding system 2000.
    [3] ISO/IEC 11172, Coding of Moving pictures and associated audio for digital storage media at up to about 1.5Mbits/s, Aug.1993.
    [4] ISO/IEC JTC1/SC29/WG11/13818, Generic coding of moving pictures and associated audio information (MPEG-2), Geneva, Nov. 1994.
    [5] 钟玉琢,王琪等,MPEG-2 运动图像压缩标准编码国际标准及 MPEG 的新进展,北京:清华大学出版社,2002, pp.327-332.
    [6] ISO/IEC JTC1/SC29/WG11/14496, Information technology, coding of audio-visual objects, Committee draft, March 1998.
    [7] ITU-T Recommendation, H.263: video coding for low bit rate communication, International Telecommunication Union, 1998.
    [8] ITU-T Rec.H.263++, Video Coding for Low Bit-rate Communication, Aug. 1999.
    [9] ITU-T Rec.H.264, Advanced video coding for generic audiovisual services, Mar. 2005.
    [10] H. C. Reeves and J. S. Lim, Reduction of blocking effects in image coding. Optical Engineering, Jan./ Feb. 1984,Vol.23(1),pp.33-37
    [11] K.-H. Tzou, Post-filtering of transform-coded images, in:Proc. SPIE Applications of Digital Image Processing XI, Vol. 974, 1988, pp. 121-126.
    [12] Michael Yuen, H.R.Wu, A survey of hybrid MC/DPCM/DCT video coding distortions, Signal Processing, 1998, Vol.70, pp.247-278.
    [13] C. A. Segall and A. K. Katsaggelos, Pre- and post-processing algorithms for compressed video enhancement, Proc. of the Asilomar Conference on Signals and Systems, Pacic Grove, Oct. 2000, Vol2(2), pp. 1369-1373.
    [14] K.Ranmchandran and M. Vetterli, Rate-Distortion Optimal fast thresholding complete JPEG/MPEG decoder compatibility, IEEE Trans. Image Processing, Sept. 1994, Vol.3(5), pp. 700-704.
    [15] B. Ramamurthi and A. Gersho, Nonlinear space variant postprocessing of block coded images, IEEE Trans. Acoust. Speech Signal Processing. Oct.1986, Vol.34 (5), pp. 1258-1267.
    [16] K. Sauer, Enhancement of low bit-rate coded images using edge detection and estimation,Comput. Vision Graphics Image Process., 1991, Vol.53(1), pp. 52–62.
    [17] C. J. Kuo and R. J. Hsieh, Adaptive postprocessing for block encoded images, IEEE Trans. Circuits Systems Video Technol. Aug. 1995, Vol. 5(4), pp. 298–304.
    [18] Y. L. Lee, H. C. Kim, and H. W. Park. Blocking effect reduction of JPEG images by signal adaptive filtering. IEEE Trans. Image Processing, 1998, Vol.7(2), pp. 229-234.
    [19] Andre Kaup. Reduction of Ringing Noise in Transform Image Coding Using a Simple Adaptive Filter. IEE Electronics Letters, 1998, Vol.34(22), pp.2110-2112.
    [20] Kong, H-S; Vetro, A.; Sun, H., Edge Map Guided Adaptive Post-Filter for Blocking and Ringing Artifacts Removal, IEEE International Symposium on Circuits and Systems (ISCAS), May. 2004, Vol. (3), pp. 929-932.
    [21] Kim Sung Deuk, Yi Jacyoun, Kim Hyun Mun, et al. A deblocking filter with two separate modes in block-based video coding. IEEE Trans. Circuits and Systems for Video Technology, Feb.1999, Vol. 9(1), pp.156-160.
    [22] Shen-Chun Tai, Ying-Ru Chen, Cheng-Yi Chen and Yu-Hung Chen, Low Complexity Deblocking Method for DCT Coded Video Signals, IEE Pro. Vision, Image, and Signal Processing, Feb. 2006, Vol. 153(1), pp. 46-56.
    [23] Y.-K. Lai, J. Li, and C.-C. J. Kuo, Image enhancement for low bit rate JPEG and MPEG coding via postprocessing, in SPIE. Visual Communication and Image Processing ’96, Mar. 1996. pp. 1483-1494.
    [24] Changick Kim, Adaptive post-filtering for reducing blocking and ringing artifacts in low bit-rate video coding. Signal processing: Image communication, Aug. 2002, Vol. 17(7), pp. 525-535.
    [25] Park H W, Lee Y L. A postprocessing method for reducing quantization effects in low bit-rate moving picture coding. IEEE Trans. Circuits and Systems for Video Technology, Feb.1999,Vol.9(1), pp. 161-171.
    [26] Chung J. Kuo and Rudy J. Hsieh, Adaptive Postprocessor for Block Encoded Images. IEEE Trans. Circuits and Systems for Video Technology, Aug. 1995, Vol. 5(4), pp. 298-304.
    [27] 文伟, 肖志云, 彭思龙, 边缘指导的 BDCT 压缩图像的后处理算法, 计算机辅助设计与图形学学报, Sep. 2005, Vol.17(9), pp.2022-2028.
    [28] 汤戈, 朱立, 徐正全, 沈燕飞, 一种减小块效应的自适应后处理算法, 武汉大学学报信息科学版, Feb. 2002, Vol.27(1), pp.81-84.
    [29] Shizhong Liu, and Alan C. Bovik, Efficient DCT-domain blind measurement and reduction of blocking artifacts, IEEE Trans. Circuits and Systems For Video Technology, Dec. 2002,Vol.12(12), pp. 1139-1149.
    [30] 谢胜利, 周智恒, 一种自适应消除块效应的新算法, 电子学报, Dec.2005, Vol.33(10), pp.1897-1900.
    [31] G. A. Triantafyllidis, M. Vamuska, D. Sampson, etc. An Efficent Algorithm for the Enhancement of JPEG-Coded Images. Computers&Graphics: An International Journal of Systems&Applications in Computer Graphics, Aug. 2003, Vol. 27(4), pp.529-534.
    [32] MPEG-4 Video Verification Model Version 18.0, ISO/IEC JTC1/SC29/WG11, January 2001, Pisa.
    [33] S. H. Oguz ,Y. H. Hu, T. Q. Nguyen. Image Coding Ringing Artifact Reduction Using Morphological Post-Filtering, Proc. IEEE Second Workshop on Multimedia Signal Processing, Redondo Beach, CA, USA, 1998, pp. 628-633.
    [34] T. S. Liu and N. Jayant, Adaptive post-processing algorithms for low bit rate video signals, Proc. IEEE Int. Conf. Acoustic, Speech, And Signal Processing, 1994, pp. 401-404.
    [35] L. Yan, A nonlinear algorithm for enhancing low bit-rate coded motion video sequence, Proc. IEEE Int. Conf. Acoustic, Speech, And Signal Processing, 1994, pp. 923-927.
    [36] Kasezawa, T. Blocking artifacts reduction using discrete cosine transform. IEEE Trans. Consumer Electronics, Feb. 1997, Vol. 43(1), pp. 48-55.
    [37] C. N. Tien and H. M. Hang, Transform-Domain Postprocessing of DCT-Coded Images. Proc. SPIE Visual Communication and Image Processing, 1993, Vol.2094, pp. 1627-1638.
    [38] Choy Steven S O, Chan Yuk-Hee, Siu Wan-Chi. Reduction of block-transform image coding artifacts by using local statistics of transform coefficients. IEEE Trans. Signal Processing Letters, 1997, Vol.4(1): pp.5-7.
    [39] Jeon Byeungwoo, Jeong Jechang. Blocking artifacts reduction in image compression with block boundary discontinuity criterion. IEEE Trans. Circuits and Systems for Video Technology, 1998, Vol.8(3): pp.345-357.
    [40] B. Zeng, Reduction of blocking effect in DCT-coded images using zero-masking techniques, IEEE Trans. Signal Processing, Dec. 1999, Vol. 79(2), pp. 205-211.
    [41] Ying Luo and Rabab K. Ward, removing the blocking artifacts of block-based dct compressed images, IEEE Trans. Image Processing, July 2003, Vol. 12(7), pp. 838-842.
    [42] Tao. Chen, H. R. Wu, and B. Qiu, Adaptive postfiltering of transform coefficients for the reduction of blocking artifacts, IEEE Trans. Circuits and Systems For Video Technology, May 2001, Vol. 11(5), pp. 593-602.
    [43] A. Zakhor, Iterative procedures for reduction of blocking effects in transform image coding,IEEE Trans. Circuits and Systems For Video Technology, Mar. 1992, Vol. 2(1), pp. 91–95.
    [44] Y. Yang, N. P. Galastanos, and A. K. Katsaggelos, Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed images, IEEE Trans. Circuits and Systems For Video Technology, Dec. 1993, Vol. 3(6), pp. 421-432.
    [45] 许志良, 谢胜利, 一种基于人类视觉系统的去块效应算法, 电子与信息学报, Nov.2005, Vol.27(11), pp. 1717-1721.
    [46] B. Niss, Prediction of AC coefficients from the DC values, ISO/IEC JTC1/SC2/WG8 N745, May 1988.
    [47] M.-Y. Shen and C.-C. J. Kuo, Review of postprocessing techniques for compression. artifact removal, Journal of Visual Communication and Image Representation, Mar. 1998, Vol. 9(1),. pp. 2-14.
    [48] Bregman L.M. The method of successive projections for finding a common point of convex sets. Soviet Mathmatics Doklady. Nauk SSSR., 1965, Vol. 3(3), pp.688-692.
    [49] Gubin L.G, Polyak B.T, Raik EN. The method of projections for finding the common point of convex sets. USSR Computational Mathematics and Mathematics Physics. 1967, Vol. 7(7), pp. 1-24.
    [50] D.C. Youla, Generalized Image Restoration by the Method of Alternating Orthogonal Projections. IEEE Trans. Circuits and Systems, 1978, Vol. 5, pp.693-702.
    [51] D. C. Youla and H. Webb, Image Restoration by the Method of Convex Projections: Part I-Theory, IEEE Trans. Medical Imaging, 1982, Vol. 1(2), pp. 81-94.
    [52] S. H. Park and D. S. Kim. Theory of projection. onto the narrow quantization constraint set and its. applications. IEEE Trans. Image Processing, Oct. 1999, Vol. 8(10), pp. 1361-1373.
    [53] Yeonsik Jeong, Inkyeom Kim, and Hyunchul Kang. A Practical Projection-Based Postprocessing of Block-Coded Images with Fast Convergence Rate, IEEE Trans. Circuits and Systems for Video Technology, Oct. 2000, Vol. 10(4), pp. 617-623.
    [54] Hoon Paek; Rin-Chul Kim; Sang-Uk Lee; On the POCS-based postprocessing technique to reduce the blocking artifacts in transform coded images, IEEE Trans. Circuits and Systems for Video Technology, June 1998, Vol. 8(3), pp. 358-367.
    [55] Hoon Paek; Rin-Chul Kim; Sang-Uk Lee; A DCT-based spatially adaptive post-processing technique to reduce the blocking artifacts in transform coded images, IEEE Trans. Circuits and Systems for Video Technology, Feb. 2000, Vol. 10(1), pp. 36-41.
    [56] Yoon Kim, Chun-Su Park, and Sung-Jea Ko, Fast POCS Based Post-Processing Technique for HDTV, IEEE Trans. Consumer Electronics, Nov. 2003, Vol. 49(4), pp. 1438-1447.
    [57] Yoon Kim, Chun-Su Park, and Sung-Jea Ko, Frequency domain post-processing technique based on POCS, IEE Electronics Letters, Oct. 2003, Vol. 39(22), pp. 1583-1584.
    [58] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed images, IEEE Trans. Circuits and Systems for Video Technology, Dec. 1993, Vol. 3(6), pp. 421-432.
    [59] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, Projection-based spatially adaptive reconstruction of block-transform compressed images, IEEE Trans. Image Processing, July 1995, Vol. 4(7), pp. 896-908.
    [60] Y.Yang and N.P. Galatsanos. Removal of compression artifacts using projections onto convex sets and line process modeling. IEEE Trans. Image Processing, Oct. 1997, Vol. 6(10), pp. 1345-1357.
    [61] S. Minami and A. Zakhor. An Optimization Approach for Removing Blocking Efects in transform Coding, IEEE Trans. Circuits and Systems for Video Technology, Apr. 1995, Vol.5(2), pp. 73-82.
    [62] G1 Lakhani and N. Hhong. Derivation of Prediction Equations for Blocking Effect Reduction, IEEE Trans. Circuits and Systems for Video Technology, Apr. 1999, Vol. 9(4), pp. 415-418.
    [63] G A. Triantafyllidis, Dimitrios Tzovaras, and Michael Gerassimos Strintzis. Blocking Artifact Detection and Reduction in Compressed Data, IEEE Trans. Circuits and Systems for Video Technology, Oct. 2002, Vol.12(10), pp. 877-890.
    [64] Mungi Choi and Nikolas P. Galatsanos, Multichannel regularized iterative restoration of motion com ensated image sequences, Journal of Visual Communication and Image Representation, Sept. 1996, Vol. 7(3), pp. 243-258.
    [65] Yongyi Yang, Mungi Choi, and Nikolas P. Galatsanos. New results on multichannel regularized recovery of compressed video. In International Conference on Image Processing, Oct. 1998, Vol.1, pp. 391-395.
    [66] Mungi Choi, Yongyi Yang, and Nikolas P. Galatsanos. Regularized multichannel recovery of compressed video. Int. Conf. Image Processing, Oct. 1997, Vol.1, pp. 271-274.
    [67] Mungi Choi, Yongyi Yang, and Nikolas P. Galatsanos, Multichannel regularized recovery of compressed video sequences, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, Apr. 2001, Vol. 48(4), pp. 376-387.
    [68] Chun-Jen Tsai, Passant Karunaratne, Nikolas P. Galatsanos, and Aggelos Katsaggelos. A compressed video enhancement algorithm. Int. Conf. Image Processing, Oct. 1999.
    [69] Robert L. Stevenson, Barbara E. Schmitz, and Edward J. Delp. Discontinuity preservingregularization of inverse visual problems. IEEE Trans. Systems, Man and Cybernetics, Mar. 1994, Vol. 24(3), pp. 455-469.
    [70] Robert L. Stevenson and Suzan M. Schweizer. Nonlinear filtering structure for image smoothing in mixed-noise environments. Journal of Mathematical Imaging and Vision, Vol. 2, 1992, pp.137-154.
    [71] Thomas P. O'Rourke and Robert L. Stevenson. Improved image decompression for reduced transform coding artifacts. IEEE Trans. Circuits and Systems for Video Technology, Dec. 1995, Vol. 5(6), pp. 490-499.
    [72] Ramon Llados-Bernaus and Robert L. Stevenson. Reduction of coding artifacts in video compression. In Proceeding of the SPIE Conference on Electronic Imaging and Multimedia Systems, Nov. 1996, Vol. 2898, pp. 2-10.
    [73] Robert L. Stevenson. Reduction of coding artifacts in low-bit rate video coding. In Proceedings of the 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro, Brazil, Aug. 1995. pp. 853-857.
    [74] Mark A. Robertson. Computationally efficient post-processing of compressed video streams. Master's thesis, University of Notre Dame, 1998.
    [75] Mark A. Robertson and Robert L. Stevenson. Reducing the complexity of iterative post-processing of video. In Midwest Symposium on Circuits and Systems, Aug. 1998, pp. 399-402.
    [76] Mark A. Robertson and Robert L. Stevenson. Reducing the computational complexity of a MAP post-processing algorithm for video sequences. Proc. IEEE Int. Conf. Image Processing, Oct. 1998, Vol. 1, pp. 372-376.
    [77] Mohammad R. Shahid, Mohamed El-Sharkawy, and Mehmet Ozkan. Reduction of coding artifacts of low-bit rate encoded video. Proc. IEEE Int. Conf. Image Processing, Conf. Proc. on CD-ROM. Causal Productions, South Australia, 1997.
    [78] Jin Li and C.-C. Jay Kuo. Coding artifact removal with multiscale postprocessing. In International Conference on Image Processing, Oct. 1997, Vol. 1, pp. 45-48.
    [79] Jiebo Luo, ChangWen Chen, Kevin J. Parker, and Thomas S. Huang. Artifact reduction in low bit rate DCT-based image compression. IEEE Trans. Image Processing, Sep. 1996, Vol.5(9), pp. 1363-1368.
    [80] Charles Bouman and Ken Sauer. A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Processing, July 1993, Vol. 2(3), pp. 296-310.
    [81] J. Mateos, C. Ilia, B. Jim_enez, R. Molina, and A. K. Katsaggelos. Reduction of blockingartifacts in block transformed compressed color images. Int. Conf. Image Processing, , Oct. 1998, Vol. 1, pp. 401-405.
    [82] Thomas Meier, King N. Ngan, and Gregory Crebbin. Reduction of blocking artifacts in image and video coding. IEEE Trans. Circuits and Systems for Video Technology, Apr. 1999, Vol. 9(3), pp. 490-500.
    [83] 许志良, 谢胜利, 一种基于 MRF 的自适应块效应去除算法, 华南理工大学学报(自然科学版), July 2005, Vol.33(7), pp.15-19.
    [84] Yihong Zhao, Guohua Cheng, Songyu Yu. A postprocessing technique for blocking artifacts reduction in DCT domain. Electronics Letters, Vol.40(19), September 2004, pp.1175-1176.
    [85] 余松煜,周源华,吴时光. 数字图像处理. 北京:电子工业出版社, 1989.
    [86] R. C. Reinninger and J. D. Gibson. Distribution of the two-dimensional DCT coefficients, IEEE Transaction on Communication, 1983, Vol.31(6), pp. 835-839
    [87] B. Haskell, A. Puri, and A. Netravali, Digital Video: An Introduction to MPEG-2. Chapman and Hall, 1997.
    [88] E. Y. Lan, J. W. Goodman, A mathetical analysis of the DCT coefficient distributions for images, IEEE Trans. Image Processing, Oct. 2000, Vol. 9, pp. 1661-1666.
    [89] Z. Guo, O. C. Au, and K. B. Letaief, Parameter estimation for image/video transcoding, IEEE Int. Conf. Circuits and Systems, 2000, Vol. 2, pp. 269-272.
    [90] Byung-Uk Lee, Modelling quantisation error from quantised Laplacian distributions, Electronics Letters, July 2000, Vol. 36(15), pp. 1270-1271.
    [91] O. Werner, Requantization for transcoding of MPEG-2 intraframes, IEEE Trans. Image Process., 1999, Vol. 8(2), pp. 179-191.
    [92] B.Widrow, I. Kollár, and M.-C. Liu, Statistical theory of quantization, IEEE Trans. Instrum. Meas., Apr. 1996, Vol. 45(2), pp. 353-361.
    [93] J. Mateos, A. K. Katsaggelos, and R. Molina, A Bayesian approach for the estimation and transmission of regularization parameters for reducing blocking artifacts, IEEE Trans. Image Process., Jul. 2000, Vol. 9(7), pp. 1200-1215.
    [94] Robertson, M.A., Stevenson, R.L., DCT Quantization Noise in Compressed Images, IEEE Trans. Circuits and Systems for Video Technology, Jan. 2005, Vol. 15(1),pp. 27-38.
    [95] S.-F. Chang and D. G. Messerschmitt, Manipulation and compositing of MC-DCT compressed video, IEEE J. Select. Areas Commun., Jan. 1995, Vol. 13, pp. 1-11.
    [96] P. A. A. Assuncao and M. Ghanbari, A frequency-domain video transcoder for dynamic bitrate reduction of MPEG-2 bit streams, IEEE Trans. Circuits and Systems for Video Technology ,Dec. 1998, Vol. 8(8), pp. 953-967.
    [97] N. Merhav, and V. Bhaskaran, A fast algorithm for DCT-domain inverse motion compensation. Proc. IEEE Int. Conf. Acoustic, Speech, and Signal Processing, 1996. Vo. 4, pp. 2307-2310.
    [98] N. Merhav, and V. Bhaskaran, Fast algorithms for DCT-domain image down sampling and for inverse motion compensation, IEEE Trans. Circuits and Systems for Video Technology , June 1997, Vol. 7(3), pp. 468-476.
    [99] Y. Arai, T. Agui and M. Nakajima, A Fast DCT-SQ Scheme for Images, Trans. of The IEICE, Nov. 1988, Vol. ET1(11), pp. 1095- 1097.
    [100] ftp://ftp.uu.net/graphics/jpeg/jpegsrc6b.tar.gz.
    [101] J. D. McDonnell, R. N. Shorten, and A. D. Fagan, An edge classification based approach to the post-processing of transform encoded images, Proc. Int. Conf. Acoustics, Speech, And Signal Processing, Vol. 5, 1994, pp. 329-332.
    [102] J.Jiwu Huang, Y. Q.Yun Q. Shi, and X.Xianhua Dai, Blocking artifact removal based on frequency analysis, IEE Electronics Letters., Nov. 1998, Vol. 34(24). pp. 2323-2324.
    [103] J. G.John G. Apostolopoulos and N. S.Nikil S. Jayant, Postprocessing for very low bit-rate video compression, IEEE Trans. Image Processing, Aug. 1999, Vol. 8 pp. 1125-1128.
    [104] Jeonghun Yang ; Hyuk Choi ; Taejeong Kim, Noise estimation for blocking artifacts reduction in DCT coded images, IEEE Trans. Circuits and Systems for Video Technology, Oct. 2000, Vol. 10(7), pp.1116-1120.
    [105] Yung-Lyul Lee, HyunWook Park, Loop filtering and post-filtering for low-bit-rates moving picture coding, Signal Processing: Image Communication. June, 2001, Vol. 16(9) pp. 871-890.
    [106] W.E.Lynch, A.R.Reibman, and B. Liu, Edge compensated transform coding, Proc. IEEE Int. Conf. Image Processing, 1994, Vol.1, pp: 105-109.
    [107] R.L.Lagendijk, J.Biemond and D.E.Boekee, Regularized iterative image restoration with ringing reduction, IEEE Trans. Acoust. Speech, Signal Processing, Dec. 1998,Vol.36(12), pp.1874-1887.
    [108] N.F.Law, W.C.Siu and D.Feng, Suppression of ringing artifacts with an adaptive shrinkage algorithm, Proc. Communications, Computers and Signal Processing, IEEE Pacific Rim Conference on, 1999, pp.181-184.
    [109] S.Yao and X.Lin, Post-processing for removing coding artifacts using edge-preserving regularization, Proc. Int. Symposium on Intelligent Multimedia, Video and speech processing, 2001,pp.12-124.
    [110] Y.L.You and M.Kaveh, Ringing reduction in image restoration by orientation-selectiveregularization, IEEE Signal Processing Letters, Feb. 1996, Vol.3(2), pp.29-31.
    [111] A.H.Lettington and Q.H.Hong, Ringing artifact reduction for Poisson MAP superresolution algorithms, IEEE Signal Processing Letters, May, 1995, Vol.2(5), pp.83-84.
    [112] J.Li and C.C.J.Kuo, Coding artifact removal with multiscale postprocessing, Proc. IEEE ICIP Image Processing, 1997, Vol.1, pp.45-48.
    [113] S.Yang, Y.H.Hu, T.Q.Nguyen and D.L.Tull, Maximum-likelihood parameter estimation for image ringing-artifact removal, IEEE Trans. Circuits and Systems for Video Technology, Aug. 2001, Vol.11(8), pp.963-973.
    [114] G.Qiu, MLP for adaptive postprocessing block-coded images, IEEE Trans. Circuits and Systems for Video Technology, Aug., 2000, Vol.10(8), pp1450-1454.
    [115] M.Y.Shen and C.C. J.Kuo, Real time compression artifact reduction via robust nonlinear filtering, Proc. IEEE Int. Conf. Image Processing, 1999, Vol.2, pp: 565-569.
    [116] Shen-Chuan Tai, Yen-Yu Chen, Shin-Feng Sheu, Deblocking filter for low bit rate MPEG-4 video. IEEE Trans. Circuits and Systems for Video Technology. June 2005, Vol. 15(6), pp: 733-741.
    [117] 郑志航,数字电视原理与应用,中国广播电视出版社,2001.
    [118] Moving Pictures Expert Group, MPEG-2 Test Model 5, Doc IS0/IEC JTC1/SC29/WG11/N0400, 1993.
    [119] G. Keesman, R. Hellinghuizen, F. Hoeksema, Transcoding of MPEG bitstreams, Signal Processing: Image Commun., Sep. 1996, Vol. 8(6), pp. 481-500.
    [120] Hang H. and Chen J., Source Model for Transform Video Coder and Its Application—Part I: Fundamental Theory, IEEE Trans. Circuits Syst. Video Technol, Apr. 1997, Vol. 7(2), pp 287-298.
    [121] Chung T. Y. and Jung K. H., Quantization Control for Improvement of Image Quality Compatible with MPEG-2, IEEE Trans. on Consumer Electron., Aug. 1994, Vol. 8(4), pp. 821-826.
    [122] Karademir S., Lambadaris I., Devetsikiotis M., etc., Dynamic Rate Control of VBR MPEG Video Transmission Over ATM Networks, Proceedings of IEEE GLOBECOM’96, 18-22, 1996, Vol. III, pp. 1509-1515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700