不同HMW-GS组成类型春小麦LMW-GS积累及其与品质的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以不同HMW-GS组成类型的多个春小麦品种或品系为材料,采用盆栽和室内分析相结合的方法,研究不同形态氮肥处理下各组低分子量谷蛋白亚基及其总量的形成和积累及其与品质的关系,以及氮肥形态对低分子量谷蛋白亚基积累和籽粒主要品质性状的调节效应。研究结果表明:
     不同HMW-GS组成类型品种,在籽粒灌浆过程中B、C和D组LMW-GS的积累总体上均呈增加的趋势,但D组亚基的积累十分平缓。除东农S18和泉224的C组LMW-GS的积累量在灌浆过程中都比B组的高外,其它品种都表现为B组亚基的积累量比C组的高。
     不同形态氮肥对LMW-GS亚基积累的调节作用因品种而异,与HMW-GS组成类型无关。
     不同形态氮肥对同一品种籽粒蛋白质含量的调节作用不同。年际间同一品种对三种形态氮肥的反应也各异,如东农7757和辽春10号的籽粒蛋白质含量年际间对不同形态氮肥的反应很不稳定,而东农7742、克丰6和Roblin的同一处理籽粒蛋白质含量年际间变化趋势基本一致,对不同形态氮肥的反应年际间比较稳定。两年间,东农7757、克丰6、NKH9和Neepawa的湿面筋含量均以酰胺态氮肥处理为最高,而东农S18和东农S250则以铵态氮肥处理为最高,Roblin的湿面筋含量对三种形态氮肥的反应年际间很稳定,其他品种年际间对氮肥形态的反应不同。
     不同形态氮肥对不同HMW-GS组成类型品种湿面筋含量的调节作用不同,不同品种湿面筋含量对氮肥种类反应也各异。酰胺态氮肥有利于提高2+12亚基组成类型品种东农7757、克丰6和NKH9湿面筋含量,且调节作用年际间表现稳定;铵态氮肥对2+12亚基组成类型品种东农S18和东农S250湿面筋含量的提高有利,而硝态氮肥则对2+12亚基组成类型品种东农S57湿面筋含量的提高有利,且硝态氮肥对其调节作用年际间表现也很稳定。三种形态氮肥对5+10亚基组成类型的品种Roblin、龙辐3和龙麦26湿面筋含量的调节作用无明显差异,年际间也表现同样的变化趋势。
     不同形态氮肥对同一品种沉降值具有一定的调节作用,但调节的程度因品种而异。酰胺态氮肥有利于东农S250、Roblin、东农CV8542和东农S34沉降值的提高,其沉降值是三种形态氮肥处理中最高的,而且这种调节作用年际间比较稳定;硝态氮肥对东农S18和铵态氮肥对龙麦26沉降值的提高有利,且他们的调节作用年际间也比较稳定。三种形态氮肥对辽春10号沉降值的调节作用基本相同,其调节作用年际间十分稳定,尤其是酰胺态氮肥处理。
     研究初步认为,具有2+12亚基组成类型品种表现优质,谷蛋白大聚体的最终积累量要远高于5+10亚基组成类型的优质品种,而且可溶性谷蛋白的最终积累量超过或与5+10亚基组成类型优质品种的相近。
     不同HMW-GS组成类型品种,低分子量谷蛋白亚基总量和可溶性谷蛋白总量比例
    
     东北农业大学农学硕士论文
    一
    对籽粒主要品质性状的作用,因不同形态氮肥处理而异。7+8,2+12亚基组成类型品种,
    酞胺态氮肥处理下,低分子量谷蛋白亚基在可溶性谷蛋白中所占比例越高,越有利于改
    善面筋的质量,对其他品质性状的作用不大:}9,2+12亚基组成类型品种,施用硝
    态氮肥处理时,低分子量谷蛋白亚基总量和可溶性谷蛋白总量比例的提高有利于改善面
    筋的质量;7+8,5+10亚基组成类型品种,酚胺态氮肥处理下,提高低分子量谷蛋白亚
    基总量和可溶性谷蛋白总量的比例,对各项主要品质性状的改善较有利;7+9,5+10亚
    基组成类型品种,无论哪种形态氮肥处理,提高低分子量谷蛋白亚基总量和可溶性谷蛋
    白总量的比例对各项主要品质性状的改善都不利c
     不同形态氮肥处理下,LMW-GS与GMP的比例对不同HMW-GS组成类型品种的
    主要品质性状的作用不同。总的来看,酚胺态氮肥处理的LMW-GS与GMP比例对7+9,
    2刊 和7+9,5+10亚基组成类型品种的面筋质量的作用呈正效应。
     酞铰态氮肥可以同时改善 7+8,2刊 2亚基组成类型品种的面筋质和量,而铰态氮肥
    对7+8,5刊 和7+9,2刊 亚基组成类型品种的面筋质和量具有改善作用。
     一般开花后5大,各品种谷蛋白大聚体己有一定量的积累,且在籽粒整个灌浆过程
    中大多数品种谷蛋白大聚体的积累呈下降趋势。不同亚基组成类型品种的谷蛋白大聚体
    在初始积累量和最终积累量上有差异。
     开花后5天,各品种已积累一定量的可溶性谷蛋白,且随籽粒灌浆进程呈增加的趋
    势。4种HMW-GS组成类型品种,开花后25天内,可溶性谷蛋白积累较平缓,但开花
    后25天至成熟期间,谷蛋白呈快速积累,但积累强度和最终积累水平不同。
     不同HMW-GS组成类型品种,LMW-GS总量对籽粒主要品质性状的调节作用因氮
    肥形态而异。7+8,2+12、7+8,5+10和7+9,5+10亚基组成类型品种均在酚胺态氮肥
    处理下,LMW-GS总量对籽粒主要品质性状具有一定的调节作用,其中 7+8,2+门亚
    基组成类型品种,LMW-GS总量的增加可以明显提高湿面筋含量,但却降低籽粒蛋白
    质含量,降低的幅度要比硝态氮肥和铰态氮肥处理的小,对SDS一沉降值的作用虽呈正
    效应,但作用不明显;7+8,5刊 亚基组成类型品种,低分子量谷蛋白亚基总量的?
The study aimed at the dynamic formation and accumulation of low molecular weight glutenin subunits, the relationship between low molecular weight glutenin subunits and quality, the dynamic formation and accumulation of soluble glutenin and macropolymer glutennin; the relationship between quality and the ratio of LMW-GS to soluble glutenin, the relationship between quality and the ratio of LMW-GS to macropolymer glutenin, the relationship between quality and the ratio of LMW-GS to HMW-GS, and the effects of different form of nitrogen on the accumulation of LMW-GS and the main grain quality parameters . The study aimed at providing theoretical evidences to quality improvement and high yield and superior quality in spring wheat.
    Three forms of nitrogen and 18 cultivars differing in HMW-GS composition were used. The results showed:
    The trend of accumulation of B, C and D group LMW-GS increased in grain-filling in different HMW-GS composition cultivars whereas the trend of accumulation of D group LMW-GS showed smooth. Besides NES18 and Quan224, amount of B group LMW-GS of all cultivars were higher than amount of C group LMW-GS in grain-filling in all cultivars. Effects of different form of nitrogen on LMW-GS were different in cultivars, but not types of HMW-GS composition.
    The effects of different forms of nitrogen on grain protein contents were different. The reactions of the same cultivars to three forms of nitrogen were different in two years. The reactions of grain protein content of NE7757 and Liao 10 to different form of nitrogen were unstable in two years, whereas the grain protein contents of NE7742, KF-6 and Roblin were consistent, and the reactions to different forms of nitrogen were stable in two years. In two years, the wet gluten content of NE7757, KF-6, NKH9and keepawa were the highest under Urea treatment respectively, while NES18 and NES250 were the highest under NH4+-N treatment respectively, and the reactions of the wet gluten contents of poscin to three forms of nitrogen were stable in two years. The reactions of other cultivars to forms of nitrogen were different.
    
    
    
    The effects of different forms of nitrogen on grain wet gluten contents were different in cultivars with different HMW-GS composition. To cultivars with 2+12 subunits composition, Urea treatment were good to increasing wet gluten contents of NE7757, KF-6 and NKH9, and the effects were stable in two years; NH4+-N treatment was good to increasing wet gluten contents of NES18 and NES250; NO3"-N treatment was good to wet gluten contents of NES57, and the effects were stable in two years. To cultivars with 5+10 subunits composition, effects of three form of nitrogen on wet gluten contents of poscin, LF-3 and LM 26 had no significant different, and the trends were similar in two years.
    The reactions of SDS-sedimentation value of the same cultivars to different forms of nitrogen were different among cultivars. Urea treatment was good to increasing SDS-sedimentation value of NES250, poscin, NECV8542 and NE S34, the values were the highest among three forms of nitrogen, and the effects were stable in two years; NO3-N treatment was good to increasing SDS-sedimentation value of NES18 and NH4+-N treatment was good to increasing the SDS-sedimentation value of LM26, and the effects were stable in two years too. Effects of three forms nitrogen on SDS-sedimentation value of LiaolO were similar, and the effects were quite stable in two years, especially Urea treatment.
    The results showed: the quality of the cultivars with 2+12 subunits composition were good, their final accumulation amount of macraopolymer glutenin were much higher than the amount of cultivars with 5+10 subunits'composition, and their final accumulation amount of soluble glutenin were higher than the amount of cultivars with 5+10 subunits composition, at least the two had similar amount.
    Effects of the ratio of total amount of LMW-GS and total amount of soluble gluten on quality were different in three forms of nitrogen in cultivars with different HMW-GS subunits compos
引文
1 杜金哲,春小麦不同品质类型子粒蛋白质组分和亚基形成规律及其与品质的关系,博士学位论文,1998,东北农业大学
    2 杜金哲,李文雄,胡尚连,白祥和,刘锦红,春小麦子粒蛋白质积累和产量形成规律及施氮的调节作用,东北农业大学学报,1999,30(1):1-9
    3 杜金哲,李文雄,胡尚连,白祥和,春小麦不同品质类型氮的吸收转化利用及与子粒产量和蛋白质含量的关系,作物学报,2001,27(2):253-260
    4 董召荣,姚大年,马传喜,徐风,氮素供应对面包小麦产量和品质的影响,安徽农业科学,1995,23(1):31-33
    5 高汝勇,杨学举,刘桂茹,小麦籽粒谷蛋白大聚合体含量的遗传模型分析,河北农业大学学报,2002 25(1):10-12
    6 韩彬,低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响,中国农业科学,1991,24(4):19-25
    7 黄正来,姚大年,马传喜,吴晓华,氮素供应对不同类型小麦品种籽粒产量和品质性状的影响,安徽农业大学学报,1999,26(4):414-418
    8 姬生栋,夏民,吉爱玲,胡铁红,王丹,徐存拴,不同基因型小麦籽粒生育期蛋白质的动态变化,河南师范大学学报(自然科学版),1997,25(4):75-78
    9 荆奇,曹卫星,戴延波,小麦籽粒品质形成特点及调控途径研究进展,耕作与栽培,1999,5:22-25
    10 兰静,不同沉降值测定方法与小麦品质特性间相关性的研究,麦类作物,1998,18(1):27-31
    11 兰静,试验因素对Zeleny和SDS沉降值的影响及其与小麦品质性状关系的研究,黑龙江农业科学,1999,6:5-8
    12 李保云,刘桂芳,王岳光,孙辉,刘广田,小麦高分子量谷蛋白亚基的遗传规律研究,中国农业大学学报,2000,5(1):58~62
    13 李文雄,小麦,1990,黑龙江科技出版社
    14 李文雄,小麦栽培,孙凤舞主编,作物栽培学,1992,东北农学院印刷厂
    15 李文雄,胡尚连,白祥和,小麦规范化栽培,1996,黑龙江科技出版社
    16 李孝良,氮磷钾肥对小麦生长发育及品质的影响,安徽农业技术师范学院学报,1998,12(4):12-14
    17 李兴林,徐风,马传喜,卫增泉,面包小麦品种品质遗传改良的历史和现状,安徽农业大学学报,2000,27(3):265-268
    18 李志西,魏益民,张建国,张国权,小麦蛋白质组分与面团特性和烘焙品质关系的研究,中国粮油学报,1998,13(3):1-5
    19 梁荣奇,张义荣,尤明山,毛善锋,宋建民,刘广田,小麦谷蛋白聚合体的
    
    MS-SDS-PAGE及其与面包烘烤品质的关系,作物学报,2002,28(5):609-614
    20 刘晓冰,春小麦子粒灌浆过程中淀粉蛋白质及其蛋白质组分积累规律和调空措施的研究,博士学位论文,1994,东北农业大学
    21 刘晓冰,春小麦子粒灌浆过程中淀粉和蛋白质积累规律的研究,东北农业大学学报,1995,26(3):220-225
    22 刘晓冰,王光华,杨恕平,李艳华,金剑,不同施肥水平对春小麦籽粒淀粉、蛋白质积累的影响,农业现代化研究,1998,19(3):187-189
    23 刘尊英,郭天财,朱云集,王晨阳,王永华,康国章,田广须,氮素供应对小麦子粒蛋白质组分及积累动态的影响,河南农业大学学报,1999,33(4):317-340
    24 陆燕,马传喜,小麦品种麦谷蛋白亚基的遗传变异分析,安徽农业大学学报,2000,27(2):126~130
    25 罗林广,小麦非醇溶性贮藏蛋白的研究进展,江西农业科学,1994,5(1):66-70
    26 马传喜,姚大年,阮龙,陶永祥,韩峰,柏发梢,小麦品种产量和品质性状相关的研究,安徽农业科学,1997,5:99-101
    27 马传喜,徐风,蒋国梁,面包小麦SDS沉降值的变异及其与蛋白质含量的关系,南京农业大学学报,1997,20(3):110~113
    28 马守才,张改生,刘宏伟,王军卫,多种小麦蛋白质酸性聚丙烯酰胺凝胶电泳方法研究,麦类作物,2000,20(4):55~58
    29 潘幸来,潘前颖,史引红,姚麦萍,高分子量麦谷蛋白亚基的编号、基因、带谱及品质权重,麦类作物,1999,19(5):16-19
    30 茹岩岩,晏月明,小麦谷蛋白亚基基因的PCR鉴定及其在品质改良中的应用,生物工程进展,2001,21(2):10-12
    31 栗站稳,王学路,卢少源,李宗智,小麦主要贮藏蛋白亚基组分在我国种质资源中的分布,北京农业科学,1995,13(6):13-16
    32 孙辉,姚大年,李保云,刘广田,张树臻,普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系,中国粮油学报,1998,13(6):13-16
    33 孙辉,李保云,王岳光,刘广田,利用面粉理化指标预测面包体积,中国粮油学报,1999,14(3):36-39
    34 孙辉,姚大年,李保云,刘广田,张树臻,小麦谷蛋白大聚合体含量的影响因素,麦类作物学报,2000,20(2):23-27
    35 孙辉,李保云,王岳光,张树臻,刘广田,普通小麦谷蛋白亚基与烘烤品质的关系,中国农业大学学报,2000,5(3):18~24
    36 孙辉,王岳光,李保云,刘广田,小麦谷蛋白亚基及其基因多态性研究进展,麦类作物学报,2000,20(1):82~86
    37 孙辉,姚大年,刘广田,张树臻,普通小麦胚乳蛋白质与面包烘烤品质关系的研究利用,(Ⅰ)蛋白质及其各组分的含量与烘烤品质关系的研究利用,中国粮油学报,2001, 16(4):27-30
    
    
    38 孙霞,不同HMW-GS类型春小麦高分子量谷蛋白形成和积累与品质的关系,硕士学位论文,2001,东北农业大学
    39 孙新立,武淑萍,孙海红,张来群,夏育凤,王友爱,多种小麦种子储藏蛋白的电泳分析,西北植物学报,1998,18(3):433—439
    40 孙学永,马传喜,林国平,占国民,蒋明权,普通小麦SDS沉淀值、蛋白质含量及GMP含量的相关性分析,安徽农业大学学报,2002 29(3):1-4
    41 孙彦坤,不同品质类型春小麦产量品质与气象条件关系的研究,博士学位论文,1999,东北农业大学
    42 王兰,刘玉秀,汪宝忠,李雪琴,王景林,储藏期小麦蛋白亚基与加工品质变异关系的研究—小麦储藏过程中蛋白质的变化与面粉品质关系的研究,郑州粮食学院学报,2000,21(2):6-10
    43 王立秋,小麦品质生理研究进展,国外农学—麦类作物,1996,3:31-32
    44 王瑞,麦胚乳贮藏蛋白的组成,遗传特点及其与面包品质的关系,国外农学-麦类作物,1995,4:34-37
    45 王宪泽,小麦种子贮藏蛋白研究进展,种子,1999,1:23-25
    46 王宪泽,李菡,张玲,部分山东小麦品种理化特性和面团品质的差异及相关性的研究,中国粮油学报,1999,14(1):10-13
    47 王宪泽,张玲,部分山东小麦品种低分子量谷蛋白亚基组成及其与品质关系的研究,中国粮油学报,2000,15(1):1-3
    48 王宪泽,李菡,张玲,山东省推广小麦品种HMW-GS组成及其对沉淀值的影响,麦类作物,2000,19(1):39-42
    49 王旭清,王法宏,栽培措施和环境条件对小麦籽粒品质的影响,山东农业科学,1999,1:52-55
    50 王勇,小麦籽粒蛋白质及其组分的遗传研究进展,山东农业大学学报,1998,29(2):243-247
    51 王肇慈,粮油食品品质分析,2000,中国轻工业出版社
    52 吴卫,郑有良,魏育明,周永红,刘登才,兰秀锦,利用谷蛋白分析小麦强优势组合亲本差异,四川农业大学学报,1999,17(2):41-144
    53 吴秀菊,春小麦不同HMW-GS组成类型醇溶蛋白积累及氮肥调节效应,博士学位论文,2002,东北农业大学
    54 吴英奇,籽实蛋白质含量不同的春小麦品种形态和生理研究,国外农学-麦类作物,1995,4:19-21
    55 夏其昌,蛋白质化学研究进展,1999,科学出版社
    56 邢春生,吹泡仪对面粉质量的检测北京市粮食科学研究所(100053)
    57 徐兆飞,张惠叶,张定一,小麦品质及其改良,2000,气象出版社
    58 许自成,段新国,贾志强,小麦沉淀值的研究进展,麦类作物,1998,18(2):27-30
    59 闫旭东,卢少源,李宗智,普通小麦醇溶蛋白和高分子量麦谷蛋白亚基对品质的影
    
    响,华北农学报,1995,10(4):54-58
    60 晏月明,刘广田,S.Prodanovic, G.Surlan-Mominovic,D.Zoric,D.Perovic,小麦谷蛋白亚基的凝胶电泳分离及其品种鉴定,中国粮油学报,1998,13(6):1-5
    61 晏月明,刘广田,小麦醇溶蛋白的遗传与品质改良,麦类作物,1998,18(1):1-5
    62 晏月明,刘广田,S.Prodanovic,D.Zoric,小麦醇溶蛋白和谷蛋白亚基的高效毛细管电泳分离研究,中国粮油学报,1998,13(4):1-4
    63 晏月明,刘广田,毛细管区带电泳分离小麦种子醇溶蛋白的研究,色谱,1998,16(3):252-254
    64 晏月明,刘广田,S.Prodanovic,D.Zoric,小麦醇溶蛋白基因的HPCE和A-P AGE染色体定位及其比较分析,农业生物技术学报,1998,6(2):131-139
    65 晏月明,茹岩岩,余建中,刘广田,中国小麦品种醇溶蛋白Gli-1和Gli-2编码位点等位基因组成分析,农业生物技术学报,2000,8(1):23-27
    66 杨安中,硫肥对小麦产量及品质的影响,土壤通报,2000,31(5):236-238 10杨春梅,王建丽,小麦面筋特性及应用,西部粮油科技,2001,252(1):4-25
    67 张宝军,蒋纪芸,小偃6号小麦子粒蛋白质组分含量形成动态规律及其氮素调节效应的研究,国外农学-麦类作物,1995,5:47-50
    68 张宝军,蒋纪芸,小麦籽粒品质及其影响因素分析,国外农学-麦类作物,1995,4:29-32
    69 张宝军,蒋纪芸,硬粒小麦4286子粒蛋白质及其组分的发育规律及调控技术,国外农学-麦类作物,1995,3:27-30
    70 张宝军 蒋纪芸,施氮时期对硬粒小麦和普通小麦籽粒蛋白质的影响,西北农业学报,1996,5(2):40~42
    71 张彩英,张树华,徐惠贤,小麦品种资源品质聚类分析,河北农业大学学报,1996,19(4):9-12
    72 张宏纪,相同HMW-GS组分小麦品质差异原因及提高品质方法的研究,博士学位论文,2002,东北农业大学
    73 张津立,李硕碧,小麦品种HMW谷蛋白亚基组成的数量分析,麦类作物,1998,18(6):21-24
    74 张艳,何中虎,周桂英,王德森,基因型和环境对我国冬播麦区小麦品质性状的影响,中国粮油学报,1999,14(5):1-4
    75 张廷滨,肖志敏,祁适雨,韩方谱,SDS-PAGE在小麦育种的应用,国外农学-麦类作物,1:5-8
    76 张延滨,小麦高分子量麦谷蛋白亚基近等基因系及其应用研究进展,麦类作物,1999,19(5):13-16
    77 张义荣,尤明山,毛善锋,宋建民,刘广田,小麦谷蛋白聚合体的MS-SDS-PAGE及其与面包烘烤品质的关系,作物学报,2002,28(5):609~614
    78 张元培,展望新世纪优质小麦品种的研究与开发(一),粮食与饲料工业,1998,7:
    
    1-3
    79 赵海滨,肖志敏,张春利,不同HMW麦谷蛋白亚基类型小麦品种(系)的沉降值及其与面筋质和量的关系,麦类作物,1999,19(1):17-20
    80 赵会贤,MARES D.,谷蛋白聚合体大小分布与面粉揉面特性的初步研究学,西北植物学报,1999,19(6):74—80
    81 赵惠贤,胡胜武,吉万全,薛秀庄,郭蔼光,Daryl Mares,小麦谷蛋白聚合体粒度分布与面粉揉面特性关系的研究,中国农业科学,2001,34,(5):465—468 2001,34(5):465—462001,34(5):465—468
    82 赵会贤,郭蔼光,小麦谷蛋白聚合体粒度分布与面粉揉面特性关系的研究,西北农业学报,2001,10(2):27-31
    83 赵会贤,胡胜武,吉万全,麦谷蛋白Glu-1和Glu-3位点基因等位变异对籽粒聚合体蛋白粒度分布的影响,中国农业科学,1998,31(1):69~75
    84 赵乃新,顾小红,兰静,单宏,程爱华,小麦品质性状与蛋白组份含量关系的研究,麦类作物,1998,18(4):4-47
    85 赵首萍,硫对春小麦不同品质类型籽粒蛋白质积累和氨基酸及品质的效应,硕士学位论文,2002,东北农业大学
    86 赵万春,一种提纯小麦低分子量麦谷蛋白亚基的简便方法,国外农学-麦类作物,1995,5,5:22-24
    87 朱金宝,D.Mares,L.O'Brien,小麦谷蛋白亚基的等位基因变异及其对面团和面时间的影响,华北农学报,1997,12(1):7~11
    88 朱金宝,刘广田,张树臻,孙辉,小麦子粒高低分子量谷蛋白亚基极其与品质关系的研究,中国农业科学,29(1):34-39
    89 曹书华,马传喜,软质小麦品质性状极其相关性(网上下载)
    90 Aris Graveland and Pieter Bosveld , Extraction and fractionation of wheat flour protein, J. Sci. Food. Agri, 1982,33:1117-1128
    91 Benedel S., Effects of the lack of protein controlled by genes at the Gli-Dl/Gli-d3 loci on the breadmaking quality of wheat, J. Cereal Science,1992,16:69-79
    92 Brett G. M, Mills E.N.C., Tatham, A.S. Fido, R.J , Shewry P.R., Morgan M.R.A.,Immunochemical identification of LMW-GS that are correlated with thr bread making quality of wheat flours, Theor. Appl.Genet,1993,86:442-448
    93 Brites C.and Carrillo J. M., Influence of high and low molecular weight glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality, cereal chemistry, 2001, 78(1):59-63
    94 Brown and Flavell R. B., Fraction of wheat gliadins and glutenin subunits by two-dimensions electrophoresis and the role of group 6 ang group 2 chromosomes in gliadins synthesis, Theor Appl Genet, 1981,59:349-359
    95 Carrilo J. M. , Vazquez J.F.,and Orellana, Relationships between gluten and glutenin
    
    proteins in durum wheat cultivars,plant breeding, 1990., 104:325-333
    96 Cornish G. B. and Singh N.K., A simplified SDS-PAGE procedure for separating LMW subunits of glutenin, J. Cereal Sci, 1991,14:203-208
    97 Daniel Scardone, Fabio Forlani, Accessibility of Amino groups in gluten proteins studied by a combination of chemical labeling and immunochemical detection, Cereal Chemistry, 2000,77 (5):602-606
    98 Daniel C. and Triboi E., Effects of temperature and Nitrogen nutrition on the grain composition of winter wheat: Effects on gliadins contents and composition, J.CereaI.Sci, 2000,32:45-56
    99 Denery-Papini S., Briand J. P., quillien L., Popineau Y., van Regenmortel M. H. V., Immunoiodical differentiation of various gliadins anf low molecular of glutenin using Anti-peptide Antisera, J. Cereal Sci., 1994,20:1-14
    100 Doekes G. J. Wennekes,L. M. J., Effect of nitrogen fertilization on quantity and composition of wheat flour protein,Cereal Chemistry, 1982,59(4):276-278
    101 Dong YIN Huang and Khalil Khan, Characterization and quantification of nattive glutenin subunits aggregates by multistacking SDS-PAGE procedures,Cereal Chemistry, 1997, 74(3):229-234
    102 Ducros D.C., Glutenin protein and gluten strength in durum wheat ,J .Cereal sci, 1987a, 5:3-12
    103 Dupuis D., Bushuk W. and Sapirstein H.D., ,Chracterization of actetic acid soluble and insoluble fractions of glutenin of read wheat, Cereal chemistry, 1996, 73 (1):131-135
    104 Ellen J.-L.Lew, Donald D. Kuzamicky, Characterization of LMW-GS by Rp-HPLC ,SDS-PAGE and N-terminal Acid sequence,Cereal chemistry, 1992,69 (5):508-515
    105 Eva Johanson, Effects of wheat cultiva and nitrogen application on storage protein composition and breadmaking quality, Cereal Chemistry, 2001,78(1): 19-25
    106 Fu B. X. and Sapirstein H.D., Procedures for isolating monomeric and polymeric glutenin in wheat flour, Cereal Chemistry, 1996,73 (1):143-152
    107 Fu B.X. and Kovacs M. I. P., Rapid single-step procedure for isolating total glutenin proteins of wheat flour, J. Cereal Sci, 1999,29:113-116
    108 Gras D. W. and Carpenter H. C. I, Modelling the developmental rheology of wheat flour dough using extension tests, J. Cereal. Sci, 2000,31:1-13
    109 Graybosch R.A and Morris R., An improved SDS-PAGE method for the anlysis of wheat endosperm storage proteins,J. Cereal Science, 1990,11: 201-212
    110 Gupta R.B.,Singh N.K.,Shepherd K.W., The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread
    
    wheats, Theor. Appl. Genet.,1989,77:57-64
    111 Gupta R.B., En Shepherd K.W., Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin 1. Variation and genetic control of the subunits in hexaploid wheat, Theor. Appl. Genet., 1990,80:65-74
    112 Gupta R. B.,Bekes F. and Wrigley C.W., Prediction of physical dough properties from glutenin subunits composition in bread wgeat cerrelation studies, Cereal Chemisry, 1991a, 68(4):328-333
    113 Gupta R. B., I. L. Batey and MacRITCHIE, Relationship between protein composition and functional properties of wheat flour, Cereal Chemistry, 1992,69(2): 125-131
    114 Gupta R.B., J.G. Paul, G.B.Cornish, G.A.Palmer, F. Bekes and A.J.Rathjen,Allekic variation at glutenin and gliadina loci Glu-1, Glu-3 and Gli-1 of common wheats I It's additive and interaction effects on dough properties,J. Cereal Science, 1994,19:9-17
    115 Gupta R.B. and Masci S., Accumulation of protein subunits and their polymers in development grains of hexaploid wheats .,J.Expermiental Botany, 1996,47 (302):1377-1385
    116 Jackon E. A., Holt L. M. and Payne P.I., Characterization of high mocular weighrt gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localization of their controlling genes, Theor and Applic Genetics, 1983,66:29-37
    117 Jari Perctonen , Grain yield of high and low protein wheat cultivars as influence by t iming of nitrogen application during generative development, Field Crops Research, 1993,33:385-397
    118 Jia Y. Q. and Fabre J. L., Effects of growing on reponse of protein polymerization to increased nitrogen fertilization for the common wheat cultivar Soissons: Relationship with some aspects of the breadmaking quality, Cereal Chemistry, 1996,73 (5):526-532
    119 John H . Skerritt and F. Bekes, Isolation treatments and effects of gliadin and glutenin fractions on dough mixing properties ,Cereal Chemistry, 1996,73 (5):644-649
    120 Karoly Kobrehel and Remi Alary, The role of a Low Molecular weight glutenin fraction in the cooking quality of Durum wheat pasta, J. Sci. Food. Agri, 1987., 47:487-500
    121 Kasarda D. D., Tao H.P., Evans P.K., Adalsteins A.E. and Yuen W., Sequencing of protein from a single spot of a 2-D gel pattern N-terminal sequence of a major wheat LMW-GS, J. Experimental botany, 1988,39 (204) :899-906
    122 Khelifi D. en Branlard G., The effects of HMW and LMW subunits of glutenin and of gliadins on the technological quality of progeny from four crosses between poor breadmaking quality and strong wheat cultivars, J. Cereal Sci. ,1992,16:195-209
    123 Kobrehel K.,Keymond C, LMW durum wheat glutenin fractions rich in sulhydryl plus disulfide groups, Cereal Chemistry, 1988,65 (1):65-69
    
    
    124 Kovacs M. I. P., Howes N.K., Leisle D. and Zawistowski J., Effects of two different LMW-GS on durum wheat pasta quality parameters,Cereal Chemistry, 1995, 72 (1):85-87
    125 Larr. C., Nicolas Y., Desserme C., Courcoux P., en Popineau Y.. Preparative separation of high and low molecular weight subunits of glutenin from wheat, J. Cereal Sci., 1997, 25:143-150
    126 Masic S., Porceddu E., Colaprico G. and Lafiandra D. Comparation of the B and D subunits of glutenin encoded at the Glu-D3Locus in the biotypes of the common wheat cultivars Neuton with different technological characterization,J. Cereal Science, 1991,14:35-46
    127 Masic.S, Porcedda.E and Lafiandra, Two-dimensional electrophoresis of 1D-encoded bands D glutenin subunits in common wheatsb with similar omega gliadins,Biochemical Genetics, 1991,29:403-413
    128 Melas V., Morel M.-H., Autran J.-C. and Feillet P., Simple and rapid method for purifying low molecular weight subunits of glutenin from wheat,Cereal Chem , 1994, 71 (3):234-237
    129 Mikhaylenko G.G. and Balk B. K., Environmental influences on flour composition dough rheology and bakingquality of spring wheat, Cereal Chemistry, 2000,77(4):507-511
    130 Morel M. H., Austran J. C., Genetic anlysis of LMW-GS fractionated by two-dimension e lectropgoresis, J. Cereal Science, 1995, 21:5-13
    131 Nagamine T. and Kai Y., Allelic variation at the Glu-3 and Glu-1 loci in southern Japanese wheats and its effect on gluten properties, J. Cereal. Sci,2000,32:129-135
    132 Nieto M.T.,Taladriz, Variation and classification of B-LMW-GS alleles in durum wheat,Theor. Appe. Genet., 1997
    133 Osborne B.G. and Jackson R., Rapid prediction of wheat endosperm compressive s trength properties using the single kernel characterization system, Cereal Chemistry, 2001,78 (2): 142-143
    134 Payne P.I., Genetics of wheat storage proteins and the effect of allelic variation on bread making quality.Ann. Rev. Plant Physiol, 1987,38:141-153
    135 Pechanek U., Effect of nitrogen fertilization on quantity of flour protein components,dough properties and breadmaking quality of wheat, Cereal Chemistry, 1997,74(6):800-805
    136 Peggy, Tao,Donald D. kasarda D.D., Two dimensional Gel mapping and N-terminal sequencing of LWM-GS, J. Experimental Botany, 1989,40(218): 1015-1020
    137 Rao U. K.and Mulvancy S.J., Rheological characterization of long and short mixing floures basesd on stress relaxation, J. Cereal Sci, 2000,32:159-171
    138 Ruitz M. and Carrillo, Separate effectd on gluten strength of Gli-1 and Glu-3 prolamine
    
    genes on chromosomes 1A and 1B in durum wheat, J. Cereal Science, 1995,21:137-144
    139 Sapirstein H. D., Fu B. X., Intercuitivar variation in the quality of monomeric protein,soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality, Cereal Chemistry, 1998,75 (40):500-507
    140 Shewry R. and Tatham, The classification and nomenclature of wheat gluten proteins, J. Cereal Science,1986,9:97-106
    141 Shewry R., Haltord N. G., High molecular weight subunits of wheat glutenin, J.Cereal. Sci.,1992,15:102-120
    142 Singh N.K. and Shepherd K.W., The structure and genetic control of a new class of disulphide linked proteins in wheat endosperm, Theor. Appl.Genet, 1985,71:79-92
    143 Sissions and Bekes M. J. and J.H. Skerritt, Isolation and functionality testing of low molecular weight glutenin subunits, Cereal Chemistry, 1998,75(1):32-36
    144 Skerritt J. H. and Robson L.G., Wheat LMW-GS of wheat structural relationship to other gluten proteins analyzed using specific antibodies, Cereal Chemistry,1990,67(3):249-257
    145 Stefania Masci, Ellen J.-L.Lew, Characterization of LMW-GS in durum wheat by reversed-phase HPLC and N-terminal sequencing, Cereal Chemistry, 1995, 72(1):100-104
    146 Stefania Masci, Renato D'Ovidio, Domenico Lafiandra and Donald Kasarda D. Characterization of a Low-Molecular-Weight Glutenin subunit Gene from Bread Wheat and the Corresponding Protein that Represents a Major Subunit of the Glutenin Polymer, PlantPhysiol., 1998,118:1147-1158
    147 Susanne Antes and Herbert Wieser, Effects of High and Low molecular weight glutenin subunits on rheological dough properties and breadmaking quality of wheat, Cereal chemistry, 2001,78(2):157-159
    148 Sutton. K.H., Hay. R. L., Mouat. C.H., and Griffin. W.B., The influences of environment ,milling and blendeng on assessment of the potential breadmaking quality of wheat by RP-HPLC of glutenin subunits, J.Cereal Sci, 1990, 12:145-153
    149 J.F. Vazquez, M. Ruiz, M.T. Nieto-Taladriz and M.M. Albuquerque, Effect on gluten dtrength og LMW coded by allels at the Glu-A3 and Glu-B3 loci in durum wheat, J. Cereal Science, 1996,24:125-130
    150 Vereijken J. M., Klostermann V. I. C., Intercultivar variationin the proportios of wheat protein fractions and relation to mixing behavior, J. C. Sci, 2000,32:159-167
    151 Vincent colot,Dorothea Bartels,Richard Thompson and Richard Flavell. Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin Genes. Mol. Gen. Genet, 1989,216:81-90
    152 Weegles P. L. and Hamer R.J., Functional properties of wheat glutenin. J. Cereal
    
    Science, 1996,23:1-18
    153 Weegles P. L., Hamer R.J., Depolymerization and repolymerization of wheat glutenin during dough processing Ⅰ relationships between glutenin macropolymer content and quality parameters, J. Cereal .Science, 1996,23:103-114
    154 Weegles P. L. and Hamer R.J., Depolymerization and repolymerization of wheat glutenin during ough processing Ⅱ Changes in composition, J .Cereal Science, 1997,25:155-163
    155 William H., Vensel, Tarr G.E. and Karsarda D.D., C-terminal and internal sequences of a low molecular weight type of glutenin subunit, Cereal Chemistry, 1995,72(4):356-359
    156 Wim, Veraverkeke S., Oscar R.Larroque, Frank Bekes, Jan A.Delcour, In vitro polymerzation of wheat glutenin subunits with inorganic oxidizing agents.Ⅱ.stepwise oxidation of low molecular weight glutenin subunits and a mixture of high and low molecular weight glutenin subunits,Cereal Chemistry,2000,77 (5) :589-594
    157 Wieser H.,Seilmeier W. and Belitz H.D., RP-HPLC of Ethanol-soluble and Ethanol-Insoluble Reduced glutenin fractions, Cereal Chemistry, 1989,66 (1):38-41
    158 Yasuki Matsumura, Yukio Kawamura,Teruoshi Matora and Daizo Yonezawa, Liberation of subunit polypeptide of glutenin by partial reduction at PH 6.0 , Agri. Biol. Chem, 1984, 48 (6):1487-1493
    159 Zawistowska U., Bietz J.A. and Bushuk W.,Characterization of LMW protein with high affinity for flour lipid from two wheat classes, Cereal Chemistry, 1986, 63(5): 414-419
    160 Zawistowska U. and Bushuk W., Electroretic characterization of low molecular weight protein of variable solubility, J. Sci. food Agri.,1986,37:409-417
    161 Zhu J., Khan K., Allelic variation at Glu-Dl locus for HMW-GS :Quantification by multistacking SDS-PAGE of wheat grown under nitrogen fertilization, Cereal chemistry, 1999,76 (6):915-919
    162 Zhu J. and Khan K., Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis, Cereal Chemistry, 1999,76 (2):261-269
    163 Zhu J. and Khan K. Effects of genotype and environment on glutenin polymers and breadmaking quality, Cereal Chemistry, 2001, 78 (2): 125-130
    164 Zhu J. and Huang S., Relationship of protein quality and dough properties with Chinese steamed bread quality, J. Cereal Sci, 2001,33:205-212
    1 Altenbach Susan B., Quantifiation of individual low molecular weight glutenin subunits
    
    transcripts in developing wheat grains by competitive RT-PCR.
    2 Amatia A., Tsiami, Arjen Bot and Wim G.M, Rheology of mixtures of glutenin subfractions, Journal of cereal science, 1997, 26:279-287
    3 Anderson Olind, Cassidy Brandtg and Dvorak Jan, The low molecular weight glutenin genes :characterization of six new genes and progess in understanding gene family structure.
    4 Bekkers A. C. and Boef A. P. A. D, The central domain of high molecular weight glutenin subunits is water-soluble, J. Cereal Science, 1999, 29 (3):109-112
    5 Belton P. S., On the elasticity of wheat gluten, J. Cereal Science, 1999, 29(3):103-107
    6 Cooke R. J and Law J. R, Seed storage protein diversity in wheat varieties, international journal of plant varieties and seeds, 1998, 11:159-167
    7 Cornish,Wheat seed protein patterns anf end -use quality.
    8 Demir I., Atli A.,Glutenin subunit composition of some old and new wheat varieties in winter wheat growing regions of turkey
    9 D'Ovidio, M. someone, Molecular characterization of a LMW-GS gene located on chromosome 1B and the development of primers specifc for the Glu-B3 complex locus in durum wheat ,Theor. Appl. Gene, 1997,95(7): 1119-1126
    10 Gianibelli M.C.,Larroque O.R.,MacRitchie F.,Wrigley C.W.,Biochemical,Genetic and Molecular Characterization of wheat Endosperm Proteins, 1991 ,online review.
    11 Glenlea glutenin differs from that of less strong wheat cultivars in several significant ways reflecting difference in both glutenin quality and quantity.
    12 Identification of the low molecular weight bands of seed storage proteins in Japanese and Australian wheats.
    13 Ivanov. P,Todorovl, Storage proteins characterization of a group of new Bulgarian high bread-making quality wheat lines,cereal research communications, 1998,26 (4) :447-454
    14 Ivanov. P,Todorovl, Biochemical and technological characterization of Triticum aestivum from two crosses between high and low bread-making quality cultivars,Cereal chemistry communication, 1998,26 (4):455-461
    15 Masci S, and D' Ovidio , Characterization of a low-molecular weight glutenin subunits gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer, Plant Physiology, 1998,118(4):1147-1158
    16 Nieto-Taladriz .M. T, Ruiz M.,M.C.Martinez, J.F. Vazquez and J.M.Carrillo, Variation and classification of B-low molecular glutenin subunit alleles in Durum wheat, 1997,95 (7):1155-1160
    17 Peter K(?)hler, Bettina Keck,Silvia m(?)ller and Herbert Wieser, Disulphide bonds in wheat gluten.
    18 Sapirstein H. D. and Johnson W. J., Spectrophotometric method for measuring functional
    
    glutenin and rapid screening of wheat quality, Proceeding of the 6th International gluten workshop, 1996,6:494-497
    19 Schofield J. D.,Flour proteins structure and functionality in baked products.
    20 Skerritt J. H., Lindsay M. P., 25 new insights to glutenin structure in flour processing, 1999 AACC Annual Meeting Oct.31-Nov.3
    21 Significance of low molecular weight glutenin for wheat bread-making quality.
    22 Sontag-strohm T, Juuti, Association between dliadin and glutenin subunit alleles and baking quality in spring cultivars and breeding lines in Finland, Soil and Plant Science, 1997,17(2):106-111
    23 Susanne Antes and Herbert Wieser, Quantitative determination and localization of protein-bound Thiol groups in wheat flour.
    24 Sylvie Cloutier and Odean Lukow M.,Cloning the genes responsible for dough strength of cwes Variety Glenlea.J. Cereal Sci,2001, 33:143-154
    25 Sylvie Cloutier, Odean , Lukow M., A rare wheat LMW glutenin. Plant & Animal Genome Ⅵ Conference, 1998,1:18-22
    26 Verbruggen I.M. Veraverbeke,W. S. and Delcour J. A.,Effect of incorporated high and low molecular glutenin subunits on dough extensibility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700