抗赤霉病小麦地方品种的贮藏蛋白和SSR分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦赤霉病(Head Scab)主要是由禾谷镰刀菌(Fusarium graminearum Schw)引起的一种温湿地带麦区广泛流行的真菌病害。带菌籽粒不同程度地影响品质,严重时会造成人畜伤害,丧失商用价值。应用抗病品种是保证小麦高产、稳产、优质最安全经济的措施。抗源利用是小麦赤霉病抗性遗传改良的直接途径。为了寻找对赤霉病免疫或高抗的基因资源以便应用于小麦抗赤霉病育种,国内外许多研究者对小麦品种进行了大量筛选。由于赤霉菌是腐生性较强的寄生菌,迄今还未在普通小麦中发现对赤霉病免疫的品种,只有极少数品种表现为高抗或中抗,绝大多数为感病品种。万永芳等(1998)采孢子悬浮液注射接种法对1197份麦类作物材料进行鉴定时,也没有发现免疫的类型。所有测试的材料均不抗侵入,只有极少数表现为高抗扩展。普通小麦中有3.42%高抗扩展和12.43%抗扩展的材料。在中国小麦地方品种中,至少已鉴定出30多份小麦地方品种比“苏麦3号”具有更好的抗病性。本研究利用酸性聚丙烯酰胺凝胶电泳(A-PAGE)和十二烷基硫酸钠—聚丙烯酰胺凝胶电泳(SDS-PAGE)两种生化标记以及在普通小麦中多态性极高的微卫星(SSR)标记,对抗赤霉病材料进行了检测与分析,结果如下:
     1、采用A-PAGE法,对来自不同地方的23个抗赤霉病小麦地方品种的醇溶蛋白位点进行了检测。结果表明,供试品种具有20种不同的醇溶蛋白带型,共分离出39条相对迁移率不同的谱带,其中31条具有多态性,占86.8%,每份材料可电泳出14-23条带,说明供试材料具有丰富的醇溶蛋白位点等位变异。聚类分析发现,遗传距离变异范围为0.571-1.0,平均值为0.752。供试材料在遗传距离为0.75水平上可聚为
    
    4类,具有相同地理来源的材料可首先聚在一起。
     2、应用SDS一队GE方法,对来自不同地方的23个高抗赤霉病小麦
    地方品种的高分子量谷蛋白亚基(Glu一I位点)进行了分析。结果表明,
    Glu一]位点具有较丰富的遗传变异,共检测到9种亚基及6种亚基组合
    类型。按Payne(1 987a)的标准计算了品质评分,得分在5一9分之间,
    平均6.8分。虽然优质亚基及亚基组合类型所占的比例很少,但却发现
    3份材料品质评分很高(9分)。说明在抗赤霉病育种中,可望协调优质
    与抗病之间的关系。
     3、利用SSR标记对来源于贵州、云南、四川、浙江和江苏等地20份
    高抗赤霉病小麦地方品种和4份高感赤霉病小麦材料间的遗传多样性进
    行了检测。在小麦21条染色体的40个SSR位点上,共检测到279个等
    位变异,每个位点能检测到2一16个,平均为6.98个,所有位点均能够揭
    示材料间的多态性。供试材料间遗传相似系数(Gs)变幅为0.103一0.673,
    平均值为0.419。根据SSR标记揭示的遗传相似性来看,虽然高抗赤霉病
    小麦地方品种间及其与高感材料中国春、繁六等的遗传相似性较高、遗传
    多样性低,但是它们与高感赤霉病的人工合成双二倍体“RSP”间具有相
    当高的遗传多样性。因此,可利用高抗赤霉病的小麦地方品种与高感赤霉
    病的人工合成双二倍体“RSP”杂交,构建分子标记遗传分析群体,可望
    标记其抗赤霉病基因。
Wheat scab or Fusarium head blight (HFB), mainly caused by Fusarium graminearum Schwabe, is one of the most destructive disease in warm and humid regions of the world. It not only significantly reduces grain set and grain weight but also effects the end-use quality. Severe, mycotoxin contamination of the seeds is harmful to humans and livestock. The use of resistant cultivars is the best way to control the disease. Therefore, It is very important to search for scab resistant sources and characterize resistance genes in various resources. One Chinese wheat cultivar, Sumai 3, is considered to be the most useful genetic source for breeding of scab resistance wheat cultivar. In China, 27 more than 30 highly resistance landraces have been identified, which were equal to or superior than Sumai 3. It is essential to identify the resistance genes for scab from the various sources, integrating the various resistance genes to improve combined resistance in wheat. In this study, the genetic diversity among 20 wheat lan
    drances with high resistance to scab was investigated by using SSR. And the same time, using A-PAGE and SDS-PAGE methods, the gliadin and HMW-glutenin subunits of these varieties were analyzed.
    1. In order to investigate the variation of gliadin and analyze the genetic difference between genotypes of 23 wheat landrances with high resistance to scab, the acid polyacrylamide gel eletrophoresis (A-PAGE) was used. There were 20 gliadin genotypes in the 23 cultivars. A total of 39 gliadin bands with different relative mobility were observed, while 31 bands (86.8%) were polymorphic. These results suggest that abundant gliadin variations exist among thse cultivars. The genetic relationships were
    
    
    estimated by a UPGMA cluster analysis of GS matrix. It showed that some landrances of same origin clustered together.
    2. Using sodium dodeeyl sulphate-polyacrylamid gel electrophoric (SDS-PAGE), the HMW-GS (high-molecular-weight glutenin subunits) of 23 wheat Landrances with high resistance to scab were analyzed. The high level of genetic variations at Glu-1 locus was observed. 9 subunit patterns and 6 subunit combinations were detected, respectively. The quality scores of each cultivar at Glu-1 have been calculated according to the methods described by Payne et al (1987). The quality scores of these cultivars were quite low, ranging from 2 to 9, with the mean of 6.0. There were 3 landrances with higher quality scores.
    3. Using 40 SSR markers with representing all 21 chromosomes of wheat genomes, the genetic diversity among 20 wheat landraces highly resistant to head scab and 4 wheat lines highly susceptible to head scab were evaluated. And revealed a total of 279 alleles with mean of 6.98 alleles per SSR marker. The total of SSR markers were polymorphic among 24 genotypes. The genetic similarity among highly resistance landraces, and these landraces with highly susceptible wheat cultivars 'Chinese Spring' and 'Fan 6'were very high, but the genetic diversity of these landraces with 1 highly susceptible lines, synthetic wheat 'RSP' was much higher. These results suggested that it is possible to tag the genes resistant to wheat scab in these highly resistant wheat landraces by choosing synthetic wheat 'RSP' as another parent for gene mapping.
引文
1. 安林利,王玉平.小麦高分子谷蛋白亚基与沉淀值,蛋白质含量及环境的关系.小麦研究,1998,19(4):4~7
    2. 鲍晓明,黄百渠.1993.小麦-冰草异附加系种子醇溶蛋白基因表达的分析.作物学报.19(3):233-238
    3. 陈楚和,1983.小麦抗赤霉病遗传的研究.浙江农业大学学报,9(2):115-126
    4. 陈梁鸿,张晓东.小麦编码高分子谷蛋白亚基基因的转化.作物学报.1999,25(4):437~440
    5. 程顺和.张勇.张伯桥.2003.控制小麦赤霉病流行的主要因素分析.江苏农业学报.19(1):18-21
    6. 张乐庆,潘雪萍,1982.小麦品种对赤霉病的抗扩展性的遗传研究.华南农学院学报,3(4):21-29
    7. 傅宾孝,于光华,王乐凯等.1993.小麦醇溶蛋白电泳分析的新方法.作物学报,9(2):15-18
    8. 方毅敏,肖碧玉,黄继平,许文真,朱涵.1999.小麦抗赤霉病性田间自然鉴定与抗赤霉病育种中的问题.植物保护学报.4:13-17
    9. 顾佳清,1983.小麦赤霉病抗性遗传的研究.中国农业科学,6:61-64
    10.黄昌,牟建梅,刘敬阳.2000.小麦赤霉病抗性鉴定和性抗源筛选.江苏农业科学.2:24-28
    11.胡英考 辛志勇。小麦合成种M53抗白粉病基因的RAPD和SSR标记。作物学报.2001.27(4).-415-419
    12.蒋国梁,吴兆苏,1989.小麦品种对赤霉病抗扩展性的动态分析.作物杂志,3:15-16
    13.廖玉才,余毓君,1985.小麦地方品种望水白抗赤霉病性的研究.华中农业大学学报,4(2):6-14
    14.李又芳,余毓君,1988a.七个小麦品种对赤霉病抗扩展性指标的双列杂交分析.华中农业大学学报,7(1):7-14
    15.林一波,杨竹平,吴兆苏,1992.不同地理来源抗赤霉病小麦品种的抗性遗传分析.上海农业学报,8(1):31-36
    16.刘登才,王志容、侯永翠,1999.小麦赤霉病抗性遗传与育种.四川省生物技术育种会议论文集,成都,1月16.
    17.刘登才,1998.小麦品种对赤霉病(Fusarium Head Blight)抗扩展的变异特征.中国遗传学会理事会青年工作委员会第二次会议暨学术讨论会,海口,12月
    
    
    18.刘登才,郑有良,王志容等,2001.影响小麦赤霉病抗性的Lophopyrum elongatum染色体定位.四川农业大学学报.19(3):193-198
    19.刘宗镇,汪志远,赵文俊,1985.小麦品种资源抗赤霉病研究.上海农业学报,1(2):75-84
    20.陈焕玉,张乐庆,潘雪萍,张林,1992.小麦品种对赤霉病抗扩展性的稳定性研究.作物学报,18(2):150-15623.
    21.刘旭 张学勇等。小麦耐盐种质的筛选鉴定和耐盐基因的标记。植物学报.2001.43(9).-948-954
    22.刘华.小麦种质资源醇溶蛋白指纹图谱的绘制及DNA质问图谱的研究[学].硕士.中国农科院.1997,624.
    23.刘广田,许明辉.普通小麦胚乳高分子谷蛋白亚基的变异和遗传.中国农业科学,1988,21(1):56-58
    24.宋希云,刘广田.免疫化学方法在小麦储藏蛋白研究及品质改良中应用.农业生物技术学报,1998,40:527~533
    25.宋希云,刘广田.小麦胚乳储藏蛋白高分子谷蛋白亚基1Dy单克隆抗体在品质育种中的应用:间接酶联免疫吸附测定法(ELAS-A)的建立.作物学报,1997,23:522~528
    26.沈晓蓉,陆维忠,许仁林.1996.小麦体细胞无性系895004与供体亲本的抗性、农艺性比较和RAPD分析.江苏农业学报.12(1):7-10
    27.沈晓蓉,周森平,任丽娟.1998.抗感小麦赤霉病品种RFLP的初步分析,江苏农业学报.14(3):129-134
    28.魏育明,郑有良等。四川小麦地方品种和主栽品种SSR我态性比较研究。四川农业大学学报.2001.19(2).-117-121
    29.魏育明,郑有良,周永红,刘登才,兰秀锦.颜泽洪.张志清.2001.中国特有小麦Gli-1、Gli-2和Glu-1位点的遗传多样性.植物学报.43:35-38
    30.吴卫 郑有良等。利用SSR标记分析小麦强优势组合亲本遗传差异。西南农业学报.2002.15(3).-1-6
    31.万永芳,1998.小麦族遗传资源对赤霉病抗性的多样性.见:郑有良等主编:小麦特异种质资源研究,四川科学技术出版社,p45-63
    32.向阳海,陆维忠,朱作为.2001.小麦品种“扬麦158”与其两个抗赤霉病突变系的AFLP分析.江苏农业学报.17(3):190-192
    33.向阳海,陆维忠,朱作为.2001.小麦赤霉病抗性的RAPD标记筛选与分析.
    
    江苏农业学报.9(3):247-250
    34.肖世和,1985.小麦抗赤霉病的配合力及因子分析.湖南农学院学报,1:9-16
    35.余毓君,张启发,1978.小麦六个常用品种双列杂交配合力的研究.遗传学报,5(4):281-292
    36.赵海滨 肖志敏.不同HMW麦谷蛋白亚基类型小麦品种(系)的沉降值及其与于面筋质量的关系.麦类作物,1999,19(1):17~20
    37.赵和,卢少源.小麦高分子谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994,20(1):67~75
    38.赵和,卢少源,普通小麦高分子麦谷蛋白亚基遗传变异及与其它性状的关系.河北农业大学学报,1993,16(1):12-18
    39.赵和,李宗智,卢少源.1993.小麦高分子谷蛋白亚基的研究动态.国外农学—麦类作物,4:43-45
    40.张晓科,李耀科,魏益民.2002.小麦贮藏蛋白特性及其遗传转化.麦类作物学报,22(2):23-26
    41.周朝飞,夏穗生,钱存鸣等,1987.关于小麦抗赤霉病育种问题的探讨.中国农业科学,20(2):19-25
    42.魏良明 王福亭.普通小麦高分子谷蛋白亚基与沉降值的关系.河南农业大学学报,1999,33(1):25~28
    43.伍光庆,彭卫红,叶华智.小麦种子受赤霉病菌侵染后醇溶蛋白质的变化.四川农业大学学报,1996,14(4):529-532
    44.邬应龙,伍光庆,叶华智.小麦种子受亦霉病菌侵染后蛋白质成份的变化.四川农业大学学报,1997,15(3):329-334
    45.张津立,李所碧.小麦品种HMW谷蛋白亚基组成的数量分析.麦类作物,1998,18(6):21~24
    46.张学勇,杨欣明,懂玉琛,1995.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学,28(4):25-32
    47.张玉良,张晓芳,舒卫国.1994小麦醇溶蛋白电泳技术及应用.作物品种资源.1:33-34
    48.王学路,钱曼懋,宋春华等.1994改良ISTA醇溶蛋白电泳方法及其应用.作物品种资源,2:32-34
    49.夏禹甸,肖庆璞,高传勋,1955.小麦品种对于赤霉病的抵抗性.植物病理学报,1(1):19-28
    50.颜启传,黄亚军,徐嫒,1992.试用ISTA推荐的种子醇溶蛋白电泳方法坚定
    
    大麦和小麦品种.作物学报,18(1):61-68
    51.杨瑞武,周永红,郑有良,胡超.2001.小麦族四个属模式种的醇溶蛋白分析.广西植物.21(3):18-20
    52.叶华智.万永芳.伍光庆.2001.胆碱与小麦品种抗赤霉病关系的研究.西南农业大学学报.23(6):23-25
    53.叶定生,张秋英,张绍南,金美玉.2002.小麦赤霉病与抗病育种若干问题的探讨.江西农业大学学报(自然科学版).24(5):8-11
    54.余毓君,1990.平湖剑子麦、红湖大太保、崇阳红麦、延岗坊主等小麦品种抗赤霉病性基因分析.见:朱立煌主编:主要农作物抗病性遗传遗传研究进展.197-205
    55.阮期平,周立,李建吾,刘勇,曹阳.2002.小麦品种的抗赤霉病性与PGIP含量和分布的关系.植物保护学报.29(2):33-35
    56. Arthur J.C., 1891 .Wheat scab. Indiana Agr. Exp. Sta. Bull.36:129-138
    57. Arseniuk E., T. Goral & H.J. Gzembor, 1993. Reaction of triticale, wheat and rye accessions to Fusarium graminaceous infection at the seeding and adult plant growth stages. Euphytica, 70:175-183
    58. Bai G.-H., G. Shaner & H. Ohm, 2000. Inheritance of resistance to Fusarium graminearum in wheat. Theor Appl Genet, 100:1-8
    59. Bai, G. H., & Q. P. Xiao, 1989. Genetic analysis on resistance to scab in six wheat cultivars. Acta Agric. Shanghai 5(4): 17-23.
    60. Bai, G. H., 1996. Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis. 80:975-979
    61. Bassam B.J.,Caetano A.G., Gresshoff P.M.1991. Fast and sensitive silver staiing of DNA in polyacrylamide gels. Anal. Biochem., 196:81-84
    62. Bietz J.A., 1987. Genetic and biochemical studies of nonenzymatie endosperm proteins. In: Wheat and Wheat Improvement-Agronomy Monograph No. 13 (2nd Education).215-241
    63. Bohn M., H. E Utz & A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Corp Sci., 39:228-237
    64. Borner A., S. Chebotar & V. Korzun, 2000. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term
    
    maintenance. Theor. Appl. Genet., 100:494-498
    65. Boyacio G. D. et al. Changes in some biochemical components of Wheat in grain that has infects with F.graminearum J. Cereal Sci. 1995, 21(1) : 57-62
    66. Bushuk W. Wheat breeding for end-product use[J]. Euphytica, 1998,100: 137-145
    67. Brown J.W.S.,et al.1989. Fraction of wheat gliadin and gluten subunits by two dimensional electrophoresis and role of group 6 and group 2 chromosome in gliadin synthesis.Theor.Appl.Genet.59:349-359
    68. Cox T.S.,Lookhart GL.,Walker D.E.,et al.1985. Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide gel electrophoretic patterns.Crop Sci.25:1058-1063
    69. Cornall R.J., T.J. Atiman, C.M. Hearne & J.A. Todd, 1991. The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics, 10: 874-881
    70. Cook R. J. The classification of wheat cultivars using a standard reference electrophoresis method[J]. JNat Agric Bot, 1987, 17: 273-281
    71. Dong H.,.Cox T.S,. Sear R.G, & GL.Lookhart. . High molecular weight glutenin genes : Effect on quality in wheat. Crop Sci., 1991,31:974-979
    72. D'Ovidio R., Porceddu E,.Lafiandra D. PCR analysis of genes encoding allelic variation of high-molecular-weight glutenin subunits at the Glu-D1 locus . Theor. Appl. Genet., 1994, 88:175-180
    73. Devos K.M., G Bryan, A.J. Collins & M.D. Gale, 1993. Microsatellites: a new generation of molecular markers for wheat. Proc. 8th Wheat Genet. Sypm., 591-594
    74. Dachkevitch T.,Redaclli R.,Biancardi A.M.,et al.1993. Gnetics of gliadins coded by group 1 chromosome in the high quality bread wheat cultivar Neepawal.Theor.Appl.Genet.86:389-399
    75. Draper S.R. ISTA variety committee rport of the working group for biochemical tests for cultivar identification 1983-1986. Seed Sci.&Technol.15:431-434
    76. Fernandez-Calvin B.,Orellana J.1990. High-molecular-weight glutenin subunit variation in the Sitopsis section of Aegilops.Implication for the origen of the B genome of wheat. Heredity.65:455-463
    77. Goldsbrough A.P., N.J.Bulleid,R.B.Freedman & R.B.Flavell.Conformational differences between two wheat (Triticum aestivum L.)"high-molecular-weight" glutenin subunits are due to a short region containing six amino acid differences Biochem J., 1989,263:837-842
    78. Hart L.P.,J.J.Pestka&M.F.Liu,1984. Effect of kenel development and period
    
    on production of deoxynivalenol in wheat infected with Gibberella zeae. Phytopathology, 74:1415-1418
    79. Hanson E.W., E.R. Ausemus & E.C. Stakmana, 1950. Varietal resistance of spring wheats to Fusatial head blight. Phytopathology, 40: 902-914
    80. He S., H. Oham & S. Machenzie, 1992. Detection of DNA sequence polymorphisms among wheat variaties. Theor. Appl. Genet., 84: 573-578
    81. Hart L. P., Pestka J. J. and Liu M. F. Effect of kenel development and wet periods on production of deoxynivalenol in wheat infected with Gibberella zeae[J]. Phytopathology, 1984,74: 1415-1418
    82. He Z. H., Pena R. J. and Rajaram S. Quality characteristics of Chinese spring wheats[A]. In: Li Z. S., Xin Z.Y. (Eds). Proc. 8th Intern Wheat Genet Symp[C]. Beijing, China, 1993, 1209-1213
    83. Harberd N P, Battels D. Thompson R D. DNA restriction fragment variation in the gene family encoding high-molecular-weight (HMW) glutenin subunits of wheat. Biochem. Genet., 1986, 24:579-596
    84. Kries M.,Shewry P.R.,Forde B.G.et al.1985. Structure and evolution of seed storage-proteins and their genes with particular reference to those of wheat ,barly and rye.Oxford Surveys Plant Mol.Cell Biol.2:253-317
    85. Korzum V., A. Borner, A.J. Worland, C.N. Law & M.S. Roder, 1997. Application of microsatellite markers to distinguish inter-varietal chromsome substitution lines of wheat (Triticum aestivum L). Euphytica, 95: 149-155
    86. Lemmenns M., H. Burstmayr & P. Ruckenbauer, 1993. Variation in Fusarium head blight susceptibility of international and Austrian wheat breeding material. Bodenxultur, 41: 65-78
    87. Lafiandra D.,Masci S.,D'Ovidio R.,et al. 1992. Relationship between the D genome of hexaploid wheat(AABBDD) and Ae.squarrosa as deduced by seed storage-proteins and molecularmarker analyses.Heredity. 116:233-238
    88. Lafiandra D.,Benedettelli S.,Margiotta B.,et al.1990. Seed storage-proteins and wheat genetic resources.In:Srivastava JP.Damania AB(eds) wheat genetic resources:meeting diverse needs.Aleppo,Syria.PP:73-87
    89. Lafiandra, D., D.D. Kasarda & R. Morris, 1984. Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars Cheyenne and Chinese Spring by two-dimensional (two-PH) electrophoresis. Theor. Appl. Genet.
    
    68:531-539.
    90. Lafiandra, D., S. Benedettelli, Z.P.L. Spagnoletti & E. Porceddu, 1983. Genetical aspects of durum wheat gliadins. In: Porceddu, E. (Ed), Breeding methodologies in durum wheat and triticale. Viterbo, Italy: 29-37
    91. Lorenzo A,Kronstad W E.Vieira L G Relationship between high molecular weight glutenin subunits and loaf volume in wheat as measured by the sodium Dodecy Sulphate Sedimentation Test. Crop Sci, 1987,27:253-257
    92. Lagercrantz U., H. Ellegren L. Andersson, 1993. The abundance of various polymorphic microsatellites motifs differs between plants and vertebrates. Nucleic Acids Res., 21: 1111-1115
    93. Lee J.H., R.A. Graybosch & D.J. Lee, 1995. Detection of rye chromosome 2R using the polymerase chain reaction and sequence-specific DNA primers. Genome, 37: 19-22
    94. Litt M. & J.A. Luty, 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet, 44: 397-401
    95. Miedaner T.,D.C.Borchard&H.H.Geiger,1993. Genetic analysis of inbredlines and teir crossed for resistance to head blight (Fusarium culmorum,F.graminearum) in winter rye.Euphytica,65:123-133
    96. Manka M., 1989. Fusaria as pathogens of cereal seedings. n:J. Chlkowski(Ed): Fusariamycotoxins.Taxonomy and Pathogenicity.Elsevier,Amsterdam.327-355
    97. Mclntosh R.A.et al. 1993. Catalogue of gene symbols for wheat.In:Li Z.S.&Xin Z.Y.(eds),Proceedings of the eight international wheat genetics symposium,China Agricultural Scientech Press. 1368-1790
    98. Metakovsky E V., 1991. Gliadin allele identification in common wheat Ⅱ. Catalogue of gliadin alleles in common wheat. J Genet Breed, 45: 325-344
    99. Metakovsky E V, Knezevich D, Javornik B, 1991. Gliadin alleles composition of Yugoslav winter wheat cultivars. Euphytica, 54: 285-295
    100. Metakovsky E.V., P.K.W. Ng, V.M. Chernakov, N.E. Pogna & W. Bushuk, 1993b. Gliadin alleles in Canadin western spring wheat cultivars: use of two different procdures of acid polyacrlamide gel electrophoresis for gliadin seperation. Genome, 36: 743-749
    101. Metakovsky E V, Davidov S D, Chernakov V M, Upelniek V P., 1993a. Gliadin allele identification in common wheat. Ⅲ. Frequency of occurrence and
    
    appearance of spontaneous mutations at the gliadin-coding loci. J Genet Breed, 47: 221-236
    102. Metakovsky E.V., N.E. Pogna, A.M. Biancardi & R. Redaelli, 1994. Gliadin allele composition of common wheat cultivars grown in Italy. J. Genet. Breed., 48: 55-66
    103. Metakovsky E.V.et al.1997. Minor ω-gliadin-coding loci on chromosome 1A of common wheat: a revision. J Genet Breed. 50:277-286
    104. Metakovsky E V, Branlard G, 1998. Genetic diversity of French wheat germplasm based on gliadin alleles. TheorAppl Genet, 96: 209-218
    105. Ma Z.Q., M. Roder & M.E. Sorrells, 1996. Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome, 39: 123-130
    106. Misaghi I.J. 1987. Physiology and Biochemestry of plant-pathogen. Plnum press. New York.
    107. Miedaner T., Borchard D. C. and Geiger H. H. 1993,Genetic analysis of inbredlines and their crosses for resistance to head blight (Fusarium culmorum, F. graminearum) in winter rye[J]. Euphytica, 65: 123-133
    108. Manka M. Fusaria as pathogens of cereal seedings. In: J. Chelkowski (Ed): 1989, Fusaria-mycotoxins, Taxonomy and Pathogenicity[J]. Elsevier, Amsterdam, 327-355
    109. Metakovsky E. V. 1998, Genetic diversity of French common wheat gemplasm based on gliadin alleles[J]. Theor Appl Genet, 86: 209-218
    110. Mao P., Li Z. Z., Lu J. L., et al. 1993,The comparisons of high molecular weight glutenin subunits of bread wheat germplasms and their relationship with breadmaking quality[A]. In: Li Z.S., Xin Z.Y.(Eds). Proc. 8th Intern Wheat Genet Symp[C]. Beijing, China, 1197-1202
    111. Mecham, O.K., D.D. Kasarda & C.O. Qualset, 1978. Genetic aspects of wheat gliadin proteins. Biochem. Genet. 16: 831-853.
    112. Nevo E.,Payne P.I. 1987. Wheat storage proteins diversity of HMW-glutein subunits in wild emmer from Israel. I Geographicial patterns and ecological predictability. Theor. Appl. Genet.74:827-836
    113. Ng P. K. W. and Bushuk W. 1988,Statistical relationships between high molecular weight subunits of glutenin and breadmaking quality of Canadin-grown wheats[J]. Cereal Chem, 65:408-413
    
    
    114. Ng P. K. W., Pogna N. E., Mellini F., et al. 1989,Glu-l allele compositions of wheat cultivars registed in Canada[J]. J Genet & Breed, 43(1) : 53-59
    115. Nakagawa, M., 1955. Study on the resistance of wheat varieties to Gibberella saubinetii. Ⅱ Genetic fators affecting resistance to Gibberella saubinetii. Jpn. J. Breed. 5: 15-22
    116. Payne P.L.,et al.1984. Genetic linkage between storage protein genes on each of the short arms of chromosome 1A and 1B of wheat. Theor.Appl.Genet.67:236-243
    117. Pogna N.E.et al.1993. Recombination mapping of Gli-5. a new gliadin-coding locus on chromosome 1A and 1B in common wheat. Theor.AppI.Genet. 87:225-238
    118. Payne P I, Holt L M, Worland A J, et al. 1982. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin Part3: Telocentric mapping of the subunit genes on the long arm of the homoeelogous group 1 chromsomes . Theor. Appl. Genet.,63:129-138
    119. Payne P 1, Kathyrn G C , Linda M H, et al. 1981,Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci.Food Agric., 32,51-60
    120. Payne P I, Corfield K G 1979,Subunit composition if wheat glutenin protein isolated by gel filtration in a dissociating medium . Planta, 145:620-625
    121. Payne P I, Holt L M.Krettiger A F et al . 1988,Relationships between seed quality and HMW glutenin subunit composition determined using wheats grown in Sprain .J. Cereal Sci., 7:229-235
    122. Payne P I, Lawrence G J. 1983. Catalogue of alleles for the complex gene loci ,Glu-Al,Glu-Bl,Glu-Dl which code for high-molecular-weight subunits of glutenin in hexapoid wheat. Cer. Res Commun, 11:29-35
    123. Payne P I, Nightingale M A, Krattiger A F. 1987a,The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties . J. Sci. Food Agric., 40: 51-65
    124. Payne P I. 1987b, Genetics of wheat storage protein and the effect of allelic variation in bread making quality Ann. Rev. Plant.Physid, 38:141-153
    125. Payne P.I., C.N. Law & E.E. Mudd, 1980. Control by homologous group 1 chromosomes of the high-molecular-weight subunits, a major protein of wheat endosperm. Theor. Appl. Genet, 58: 113-120
    126. Plaschke J., A. Borner, K. Wendehake, M.W. Ganal & M.S. Roder, 1996. The use of wheat aneuploids for the chromosomal assignment of microsatellite loci. Euphytica, 89: 33-40
    
    
    127. Peng J.H., T.Fahima, M.S. Roder, Y.C. Li, A. Dahan, A. Grama, Y.I. Ronin, A.B. Korol & E. Nevo, 1999. Microsatellite tagging of the stripe-rust resistence gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggetive negative crossover interference on chromosome 1B. Theor. Appl. Genet., 98: 862-872
    128. Prasad M., R.K. Varshney, A. Kumar, H.S. Balyan, P.C. Sharma, K.J. Edwards, H. Singh, H.S. Dhaliwal, J.K. Roy & P.K. Gupta, 2000. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Thoer. Appl. Genet. 100: 341-345
    129. Payne P.I.,Harris P.A.,Law C.N.et al.1980. The high-molecular-weight subunits of glutnin:genetics and relationship to bread-making quality.29(2) :309-320
    130. Payne, P.I. & GJ. Lawrence, 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29-35.
    13 I.Payne P.I., 1987b. The genetical basis of bread-making qulity in wheat. Aspects Appl. Biol. 15:79-90.
    132. Payne P.L.Nightingale M.A.,Krattiger A.F.,et al.1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties.J.Sci.Food Agric.40:51-65
    133. Payne P.I.Jackson E.A.,Holt L.M.,et al. 1984. Genetic linkage between storage protin genes on each of the short arms of chromosome 1A and 1B of wheat. Theor.Appl.Genet.67:235-243
    134. Rogers W J, Payne P I.Harindes K. 1989,The HMW glutenin subunit and gliandin composition of German-grown wheat varieties and their relationship with bread-making quality. Plant breeding, 103:89-100
    135. Roder M.S. J. Plaschke, S.U. Konig, A. Borner, M.E. Sorrells, S.D. Tanksley, & M.W. Ganal, 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet., 246: 327-333
    136. Roder M.S. V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics, 149:2007-2023
    137. Roy J.K., M. Prasad, R.K. Varshney, H.S. Balyan, T.K. Blake, H.S. Dhaliwal, H. Singh K.J. Edwards, & P.K. Gupta, 2000. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor. Appl. Genet., 100: 336-341
    138. Rohlf F.J., 1993. NTSYS-pc version 1. 80. Distribution by Exeter Software,
    
    Setauket, New York
    139. Snijders H.W.&J.Perkowski,1990. Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kenels.Phytopathology,80:566-570
    140. Schroeder H.W.&J.J.Christensen,1963. Factors effecting resistance to wheat scab caused by Gibberella zeae. Phytopathology, 53:831-838
    141. Snijders C.H.A., 1990b. The inheritance of resistance to head blight caused by Fusarium culmorum in winter wheat. Euphytica, 50: 11-18
    142. Snijders C.H.A., 1990c. Response to srlection in F2 blight caused by Fusarium culmorum in winter wheat. Euphytica, 50: 163-169
    143. Singh, R. P., H. Ma & S. Rajaram, 1995. Genetic analysis of resistance to scab in spring wheat cultivar Frontana. Plant Dis. 79: 238-240.
    144. Snijders C.H.A., 1990a. Diallel analysis of resistance to head blight caused by Fusarium culmorum in winter wheat. Euphytica, 50: 1-9.
    145. Snijders C.H.A., 1990d. Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica, 50:171-179
    146. Sozinov, A.A. & F.A. Poperelya, 1980. Genetic classification of prolamines and its use for plant breeding. Ann. Technol. Agric. 29: 229-245.
    147. Sobko T.A.et al. 1986. Inheritance and mapping on chromosome 1A of genes coding for storage proteins in common wheat(in Russian). Tsitol Genet. 20:372-379
    148. Shewry P.R., N.GHalford & A.S. 1992, Tatham.High-molecuIar-weight subunits of wheat glutenin. J. Cereal. Sci., 15:105-120
    149. Snijders H. W. and Perkowski J. 1990, Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kenels[J]. Phytopathology, 80: 566-570
    150. Tomasovic, 1985. Wheat breeding for resistance to Fusarium diseases, especially to Fusarium graminearum Schw. Wheat Infer. Serv., 69: 13-17
    151. Thompson R.D., Bartels D., Harberd N.P. et al.. 1983. Characterisation of the multigene family coding for HMW-gultenin subunits in wheat using cDNA clones. Theor. Appl. Genet., 67:87-96
    152. Tautz D. & M. Renz, 1984. Simple sequence repeats are ubiquitous repetitive component of eukaryotic genomes. Nucleic Acids Res., 12:4127-4138
    153. Tautz D., M. Trick & GA. Dover, 1986. Cryptic simplicity in DNA is a major
    
    source of genetic varization. Nature, 322: 652-656
    154. Talbert L.E., N.K. Blake, P.W. Chee, T.K. Blake & GM. Magyar, 1994. Evaluation of "sequence-tagged-site" PCR products as molecular markers in wheat Theor. Appl. Genet., 87: 789-794
    155. Van Ginkel, M., W. Van Der Schaar, Z. P. Yang & S. Rajaram, 1996. Inheritance of resistance to scab in two wheat cultivars from Brazil and China. Plant Dis. 80: 863-867.
    156. Vaccino P., M. Accerbi & M. Corbelli, 1993. Cultivar identification in T. aestivum using highly polymorphic RFLP probes. Theor. AppL. Genet., 86: 833-836
    157. Wan, Y. F., C. Yen, J. L. Yang, D. C. Liu, 1997b. The diversity of resources resistant to scab in Triticeae (Poaceae). Wheat Inf. Serv., 84: 7-12.
    158. Wan, Y. F., C. Yen & J. L. Yang, 1997a. Source of resistance to head scab in Triticum. Euphytica, 94: 31-36
    159. Weber J.J., 1990. Informativeness of human (dC-dA)n, (dG-dT)n polymorphisms. Genomics, 7: 524-530
    160. Yu Y. J., 1982. Monosomic analysis for scab resistance and yield components in the wheat cultivar Sumai 3. Cereal Res. Commun. 10(3-4) : 185-189.
    161. Zillam R R & W. Bushuk, 1979. Wheat cultivar identification by gliadin electrophoregrams Ⅱ. Effects of environmental and experimental factors on the gliadin electrophoregrams. Can J Plant Sci, 59: 281-286
    162. Zillman R.R.,Bushuk W. 1979. Wheat cultivar identification by gliadin electrophoregrams.Ⅲ Catalogue of lectrophorgrams formul as of Canadian wheat cultivars.Can J.Plant Sci.,59:287-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700