北冰洋西部地区沉积物中碳酸盐的分布特征及其古海洋学意义分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北极作为全球气候变化的驱动器和调节器,对全球的气候变化非常敏感,通过对北极海域古海洋学的研究,将有助于我们预测未来的全球气候演变趋势。在古海洋学研究中常用碳酸盐含量作为古海洋学研究的指标,但是北冰洋西部地区由于特殊的自然环境条件,使得沉积物中的碳酸盐含量特别低,以至于碳酸盐指标的应用价值受到了一定的影响。所以,本文通过测定研究区样品的碳酸盐含量,来探讨研究区碳酸盐指标的古海洋学意义。
     本文应用容量法测定了研究区样品碳酸盐含量值,并且利用导师提供的岩芯年代框架资料,探讨了研究区沉积物中碳酸盐的分布特征、溶解(包括碳酸盐补偿深度)和沉积作用以及碳酸盐的古气候、古生产力指示意义。得出以下几条结论:
     ⑴研究区表层沉积物中碳酸盐含量普遍偏低,含量范围在0.22%~13.22%之间,平均含量为3.48%,高出10%的样品仅出现在半深水区的几个站位的表层沉积物中。碳酸盐含量平面分布表现出与水深的密切关系;
     ⑵碳酸盐含量垂向上都偏低,不过在低值的大背景下出现个别峰值;
     ⑶C9站从底(5mbsf)往上碳酸盐堆积速率变化在0.008g·cm-2·a-1 ~ 0.016g·cm-2·a-1之间,R11站从底(5mbsf)往上碳酸盐堆积速率由0.009g·cm-2·a-1 ~ 0.017g·cm-2·a-1递增。明显地看到研究区陆架区碳酸盐堆积速率存在上升的势头;
     ⑷根据碳酸盐-水深二维图,初步推测1800m~2000m为研究区的溶跃面,3500m处为本研究区的碳酸盐补偿深度(CCD);
     ⑸碳酸盐含量峰值基本上是出现在氧同位素期次交替的时期,但也有少量特殊的情况存在,其中最明显的就是在MIS6中间出现的尖峰,期间可能发生了一个次一级的气候变暖事件。碳酸盐含量曲线并没有表现出冰期-间冰期的有规律地波动,所以其古气候指示意义不是很大;
     ⑹楚科奇研究区存在很强的钙质溶蚀作用及硅质生物的抑制作用,M03岩芯中碳酸盐出现峰值的层位(10%以上)所对应的年代,估计楚科奇研究区初级生产力较高。
Arctic area as a driver and adjustor of global climate, it reflects sensitively to climatic change. It will be significant to do paleo-oceanographic research in Arctic, which could be very helpful to the prediction of future global climate change. Carbonate content is a mature and effective index for paleo-oceanography, but carbonate contents are commonly low in Arctic and so the study value is rebated largely. So the main aim of this thesis is to identify how much the paleo-oceanographic value of carbonate index is in the West Arctic Ocean. I used volumetric method to get carbonate contents of samples, and cited the age frames of cores from advisor Gao. This thesis mainly discussed distribution of carbonate contents, dissolution and deposit of carbonate, including analysis of carbonate compensating depth, paleoclimate and paleoproductivity analysis of carbonate. I concluded the following results:
     ⑴The carbonate content of surface sediments are widely low, with a range from 0.22% to 13.22%, and average is 3.48%, but the high content only appear in several surface sediments at about 2000m water depth area. The carbonate content of surface sediments have a significantly correlation with water depth;
     ⑵Carbonate content along vertical are generally low, but several peak values appear among generally low background;
     ⑶Carbonate accumulation speed at C9 and R11 vary between 0.008g·cm-2·a-1 to 0.016g·cm-2·a-1 and 0.009g·cm-2·a-1 ~ 0.017g·cm-2·a-1 from 5 meter behind surface, respectively;
     ⑷The lysocline is 1800m~2000m and the CCD in study area is about 3500m, according to the fitting curve between carbonate content at all surface sediment samples and water depths;
     ⑸Peak values of carbonate content generally appear at alternant periods of oxygen isotope, but there are some exceptions. The peak value in MIS6 is especially distinct. I presume a inferior warming event occurred. The fluctuation of carbonate content curve don’t reflect harmoniously with glacial-interglacial, so the paleo-oceanographic value of carbonate index is not significant in the West Arctic Ocean;
     ⑹Because severe dissolution of carbonate and restraint from siliceous life matter exist in Chukchi study area, layers of peak carbonate content may indicate high paleoproductivity.
引文
[1] M.Ewing and W.L.Donn. A Theory of Ice Ages. Science,1956,123:1061-1066
    [2] 陈立奇,高众勇等.北极地区碳循环研究意义和展望.极地研究,2004,16(3):171-178
    [3] 高众勇,陈立奇,王伟强.南北极海区碳循环与全球变化研究.地学前缘,2002,9(2):263-268
    [4] 顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展.第四纪研究,2000,20(1):41-55
    [5] 谭红兵,马海州,张西营.碳酸盐研究与其记录的环境变化.盐湖研究,2003(4):20-27
    [6] 王先锋,刘东生.洞穴碳酸盐微层研究及其发展方向.地球科学进展,1999,14(3):286-291
    [7] Ralph R. Schneider, Horst D. Schulz and Christian Hensen. Marine Geochemistry. Springer Berlin Heidelberg, 2006:P287
    [8] 肖文申,王汝建等.北冰洋西部表层沉积物中的浮游有孔虫稳定氧碳同位素与水团性质的关系.微体古生物学报,2006,23(4):361-369
    [9] 成鑫荣,汪品先等.南海表层沉积中有孔虫壳体的碳同位素研究及其意义.科学通报,2005,50(1):48-52
    [10] Shen Chuan-chou 等.赤道大西洋东部和加勒比海高精度冰期-间冰期的底栖有孔虫的Sr/Ca 记录.海洋地质动态,2002,18(9):9-13
    [11] 陈萍,方念乔等.浮游有孔虫壳体 Mg/ Ca 值——SST 的替代性指标.地球科学,2004, 29(6):697-702
    [12] 黄永建,王成善,汪云亮.古海洋生产力指标研究进展.地学前缘,2005,12(2):163-170
    [13] 杨作升,范德江.东海陆架北部泥质区表层沉积物碳酸盐粒级分布与物源分析.沉积学报,2002,20(1):1-5
    [14] Norris R D, Rohl U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature, 1999, 401:775-777.
    [15] C. H. Lear, H. Elderfield and P. A. Wilson. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 2000, 287:269-272
    [16] D. L. Clark. Origin, nature and world climate effect of arctic ocean ice-cover. Nature, 1982, 300: 321-325
    [17] J. A. Kitchell and D. L. Clark. Late Cretaceous–Paleogene paleogeography and paleocirculation: evidence of north polar upwelling. Paleogeogr.Paleoclimatol.Paleoecol, 1982, 40:135–165
    [18] D. L. Clark, R. R. Whitman, et al. Stratigraphy and glacial-marine sediments of the basin, central Arctic Ocean. Geol. Soc. Am. Spec. Pap, 1980, 181: 57
    [19] J. Backman, K. Moran, D. McInroy, et al. Arctic Coring Expedition (ACEX):a first look at the Cenozoic paleoceanography of the central Arctic Ocean. Scientific Drilling, 2005, 1:12-17
    [20] L. D. Keigwin. Isotopic paleoceanography of the Caribbean and east Pacific: role of Panama uplift in late Neogene time. Science, 1982, 217: 350–352
    [21] J. L. Daniel, J. V. Paul et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Climate Dynamics, 2007, 29:265-270
    [22] Bradley, R.S. Holocene paleoclimatology of the Queen Elizabeth Islands, Canadian high Arctic. Quaternary Science Reviews, 1990, 9:365–384
    [23] M. A. Young, and R. S. Bradley. Insolation gradients and the paleoclimatic record, in Milankovitch and Climate, Part 2, edited by A. L.Berger et al., 1984, pp.707–713,D. Reidel, Norwell, Mass
    [24] G. H. Miller and A. de Vernal. Will greenhouse warming lead to Northern Hemisphere ice-sheet growth? Nature, 1992, 355:244–246
    [25] W.Dansgaard, S.J.Johnsen, et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 1993, 364:218-220
    [26] Brigham-Grette, J. and D.M. Hopkins. Emergent marine record and paleoclimate of the last interglaciation along the Northwest Alaskan Coast. Quaternary Research, 1995,43:159–173
    [27] Cuffey, K.M. and S.J. Marshall. Substantial contribution to sea level rise during the last interglacial from the Greenland ice sheet. Nature, 2000, 404:591–594
    [28] Gordon McBean. Arctic Climate Impact Assessment, p48
    [29] A. S. Dyke, J. T. Andrews et al. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews, 2002, 21: 9–31
    [30] J.Knies, N. Nowaczyk, et al. A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150000 years. Marine Geology, 2000, 163:317-344
    [31] C.Vogt, J.Knies, R.F. Spielhagen, and R.Stein. Detailed mineralogical evidence for two nearly identical glacial-deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Global and Planetary Change, 2001, 31:23-44
    [32] M.Hald, T.Dokken, and G.Mikalsen. Abrupt climatic change during the last interglacial–glacial cycle in the polar North Atlantic. Marine Geology, 2001, 176:121-137
    [33] D.B.Scott, P.J.Mudie, V.Baki, et al. Biostratigraphy and late Cenozoic paleoceanography of the arctic ocean: foraminiferal, lithostratigraphic, and isotopic evidence. Geological Society of America Bulletin, 1989, 101:260-277
    [34] D.Birgel, and H.C.Hass. Oceanic and atmospheric variations during the last deglaciation inthe Fram Strait Arctic Ocean a coupled high-resolution organic-geochemical and sedimentological study. Quaternary Science Reviews, 2004, 23:29-47
    [35] A. Berger and M.F. Loutre. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 1991, 10: 297–317
    [36] J. Overpeck, K. Hughen et al. Wolfe and G. Zielinski. Arctic environmental change of the last four centuries. Science, 1997, 278:1251–1256
    [37] D. Dahl-Jensen, K. Mosegaard et al. Past temperatures directly from the Greenland ice sheet. Science, 1998, 282: 268–271
    [38] I. Webb, D. W. J. Thompson and J. E. Kutzbach. An introduction to Late Quaternary climates: data syntheses and model experiments. Quaternary Science Reviews, 1998, 17: 465–471
    [39] R. B. Alley, P. A. Mayewski et al. Holocene climatic instability: a prominent, widespread event 8200 years ago. Geology, 1997, 25:483–486
    [40] G.H. Miller, A.P. Wolfe, J.P. Briner, et al. Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews, 2005, 24:1703-1721
    [41] D.S.Kaufman, T.A.Agerb, N.J. Anderson, et al. Holocene thermal maximum in the western Arctic (0–180W). Quaternary Science Reviews, 2004, 23:529-560
    [42] M. E. Mann and P. D. Jones. Global surface temperatures over the past two millennia. Geophysical Research Letters, 2003, 30: 1820–1824
    [43] Inger Hanssen-Bauer. Arctic Alpine Ecosystems and People in a Changing Environment. Springer Berlin Heidelberg, 2007, p39-50
    [44] I. V. Polyakov, R. V. Bekryaev et al. Variability and trends of air temperature and pressure in the maritime Arctic, 1875-2000. Journal of Climate, 2003, 16: 2067-2077
    [45] 王国,张青松.400 年来北极巴罗角的温度变化特征.极地研究,1998,10:11-16
    [46] D.Dahl-Jensen, K.Mosegaard, N.Gundestrup, et al. Past temperatures directly from the greenland ice sheet. Science, 1998, 282:268-271
    [47] Ruediger Stein, Jan Backman and Kate Moran. The Arctic Coring Expedition – A Breakthrough in Arctic Ocean Geoscientific Research. Explor. Prod.-Oil Gas Rev, 2007, 47-49
    [48]http://www.sciencepoles.org/index.php?/articles/international_polar_year_arctic_campaign_2007/&s=2&rs=home&uid=981&lg=en
    [49] www.amap.no/MiscTempFiles/Carbon%20Cycle%20Workshop.htm
    [50] 7th International Conference on Global Change Connection to the Arctic (GCCA-7),www.iarc.uaf.edu/workshops/GCCA-7/
    [51] 王汝建,李霞等.白令海北部陆坡 100 ka 来的古海洋学记录及海冰的扩张历史.中国地质大学学报,2005,30(5):550-558
    [52] 李霞,王汝建等.白令海北部陆坡晚第四纪的古海洋与古气候学记录.极地研究,2004,16(3):261-269
    [53] 刘焱光,石学法,吕海龙.日本海、鄂霍次克海和白令海的古海洋学研究进展.海洋科学进展,2004,22(4):519-530
    [54] 何沅澎,王汝建等.白令海 DSDP188 站氧同位素 3 期以来的古海洋与古气候记录.海洋地质与第四纪地质,2006,26(2):65-71
    [55] 唐领余,张青松.北极巴罗地区 2000 年以来气候和环境变化研究进展.科技前沿与学术评论,23(2):45-47
    [56] 唐领余,张青松等.北极巴罗地区 13 世纪以来花粉记录的气候变迁及其与青藏高原的比较.冰川冻土,2003,25(3):261-267
    [57] Thomas A. A. Late Quaternary vegetation and climate history of the central Bering land bridge from St. Michael Island, western Alaska. Quaternary Research, 2003, 60: 19–32
    [58] Daniel H. M, Dorothy M. P, et al. Responses of an arctic landscape to Lateglacial and early Holocene climatic changes: the importance of moisture. Quaternary Science Reviews, 2002, 21: 997–1021
    [59] 北欧交流中心网(http://www.nordic.com.cn/north%20pole/northpole-038.asp).
    [60] 陈建芳,张海生等.北极陆架沉积碳埋藏及其在全球碳循环中的作用.极地研究,2004,16(3):193-201
    [61] 史久新,赵进平等.太平洋入流及其与北冰洋异常变化的联系.极地研究,2004,16:253-260
    [62] 高爱国,陈荣华等.楚科奇海与白令海海洋地质研究进展.海洋科学,2001,25(12):41-45
    [63] 陈志华.北冰洋西部沉积物地球化学特征及环境指示意义.中国海洋大学博士学位论文,2004
    [64] 石学法. 海洋粘土矿物的研究进展与发展趋势. 海洋地质动态,1995,1:1-2
    [65] 陈忠,颜文.海洋沉积粘土矿物与古气候、古环境演化响应的研究进展.海洋科学,2000,24(2):25-27
    [66] 林金辉,林锡锦.粘土矿物定量分析偏差的修正.成都理工学院学报,1998,25(1):80-82
    [67] Weingartner TJ, Cavalieri DJ, Aagaard K et al.Circulation, dense water formation, and outflow on the northeast Chukchi shelf, J. Geophys. Res.,1998 ,103,7647-7661.
    [68] 赵进平,朱大勇,史久新.楚科奇海海冰周年变化特征及其主要关联因素.海洋科学进展,2003,21(2),123-131
    [69] 海洋调查规范.1975,Ⅳ-46~49
    [70] 劳家柽.土壤农化分析手册,1988:386-389
    [71] 陈景奎,陈世勇,段立珍.扩散法测定土壤碳酸盐总量.安徽农业技术师范学院学报,1999,13 (1):27-31
    [72] 宋苏顷,夏宁,李学刚等.海底沉积物中碳酸钙分析方法的研究.岩矿测试,1998,17(2):127-130
    [73] 袁志华,刘强国.碳酸盐含量快速定量分析的曲线特征及其变化规律.石油勘探与开发,1997,24 (6):106-108
    [74] 郑志霞,张丹,冯勇建.碳酸根和碳酸氢根测定方法和自动测定仪.现代仪器,2004(4):44-46
    [75] Mauro Mecozzi, Eva Pietrantonio, Marina Amici, et al. Determination of carbonate in marine solid samples by FTIR-ATR spectro- scopy. Analyst,2001,126:144–146
    [76] 南京农学院主编.土壤农化分析,1980,139-141
    [77] 郁慧福.碳酸盐测定方法现状及方法比较.海洋地质动态,2007,23(1):35-39
    [78] 李学杰,陈芳等.南海西部表层沉积物碳酸盐分布特征及其溶解作用.地球化学,2004,33(3):254-260
    [79] 陈荣华,孟翊等.楚科奇海与白令海表层沉积中的钙质和硅质微体化石研究.海洋地质与第四纪地质,2001,21(4):25-30
    [80] 高爱国,陈皓文,孙海青.北极沉积物中硫酸盐还原菌与生物地球化学要素的相关分析.环境科学学报,2003,23(5):619-624
    [81] 高爱国,韩国忠等.楚科奇海及其邻近海域表层沉积物的元素地球化学特征.海洋学报,2004,26(2):132-139
    [82] 高爱国,陈志华等.楚科奇海表层沉积物的稀土元素地球化学特征.中国科学(D 辑),2003,33(2):148-154
    [83] J.D.Milliman and R.H.Meade. World wide delivery of river sediment to the oceans. Journal of Geology, 1983, 91:1—21
    [84] L.L.Belicka, R.W.Macdonald and H.R.Harvey. Sources and transport of organic carbon to shelf, slope and basin surface sediments of the Arctic Ocean, Deep Sea Research I, 2002, 49: 1463—1483
    [85] D.A.Darby, A.S.Naidu, T.C.Mowatt et al. Sediment composition and sedimentary processes in the Arctic Ocean, In : The Arctic Seas —Climatology, Oceanography, Geology, and Biology, Ed. by Herman Y, New York, 1989: 657—720
    [86] 孟翊,陈荣华,郑玉龙.白令海和楚科奇海表层沉积中的有孔虫及其沉积环境.海洋学报,2001,23(6):85-93
    [87] 赵其渊.海洋地球化学.地质出版社,1984.171
    [88] 业治铮,汪品先等.南海晚第四纪古海洋学研究.第一版.青岛:青岛海洋大学出版社,1992.234-248
    [89] Emelyan M. Emelyanov.The Barrier Zones in the Ocean. Springer Berlin Heidelberg. 2005: 345-361
    [90] 赵其渊.海洋地球化学.地质出版社,1984.176-177
    [91] 陈荣华,徐建等.南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度.海洋学报,2003,25(2):48-56
    [92] 徐建,黄宝琦等.南海东北部表层沉积中有孔虫的分布及其环境意义.热带海洋学报,2001,20(4):6-13
    [93] 陈芳,黄永样等.南海西部表层沉积中的钙质超微化石.海洋地质与第四纪地质,2002,22(3):35-40
    [94] 赵其渊.海洋地球化学.地质出版社,1984.174
    [95] J.D.米利曼.现代沉积碳酸盐第一卷-海洋碳酸盐.中国科学院地质研究所译.地质出版社,1977,138-142
    [96] 赵其渊.海洋地球化学.地质出版社,1984.180
    [97] G. H. Lee, S. C. Park, and D. C. Kim. Fluctuations of the calcite compensation depth (CCD) in the East Sea (Sea of Japan). Geo-Marine Letters,2000,20:20-26
    [98] 业治铮,汪品先等.南海晚第四纪古海洋学研究.第一版.青岛:青岛海洋大学出版社,1992.3-10
    [99] 汪品先.西太平洋边缘海的冰期碳酸盐旋回.海洋地质与第四纪地质,1998,18(1):1-11
    [100] Lisitzin A P. Sedimentation in the World Ocean. SEPM Spec. Publ, 1972, 17, 218
    [101] 陈立奇,赵进平等.影响北极地区迅速变化的一些关键过程研究.极地研究,2003,15(4):283-302
    [102] 业治铮,汪品先等.南海晚第四纪古海洋学研究.第一版.青岛:青岛海洋大学出版社,1992.11-22
    [103] 江茂生,朱井泉,李学杰.深水碳酸盐沉积研究进展.古地理学报,2001,3(4):61-68
    [104] Gorbarenko S A. Stratigraphy 0f Late Quaternary sediments in Seas 0f Japan and Okhotsk and their paleoceanographic conditions. CCOP/TP , 1991 , 22: 11-24
    [105] Ketgwin L D,Jones G A,Froelich P N. A 15000 year paleoenvironmental record from Meiji Seamount , far northwestern Pacific. Earth & Planetary Science Letters, 1992, 111: 425-440
    [106] Stuiver M. Grootes P M , Braziunas T F. The GISP2 δ18O climate record of past 16500 years and the role of the sun , ocean , and volcanoes. Quaternary Research , 1995, 44: 341-354
    [107] 王文远,刘嘉麒等.末次冰消期热带湖光岩玛珥湖古季风变化记录.地学前缘,2007,7(增刊):197-202
    [108] 翦知湣,李宝华等.西太平洋晚全新世变冷事件.中国科学(D 辑),1996,26(5):461-466
    [109] 刘振夏,Y. Saito 等.冲绳海槽晚第四纪千年尺度的古海洋学研究.科学通报,1999,44(8):883-887
    [110] 汪品先.气候演变中的冰和碳.地学前缘,2002,9(1):85-93
    [111] John J. Walsha, Dwight A. Dieterle, et al. A numerical model of seasonal primary production within the Chukchi Beaufort Seas. Deep-Sea Research II, 2005, 52: 3541–3576
    [112] Victoria Hill and Glenn Cota. Spatial patterns of primary production on the shelf,slope and basin of the Western Arctic in 2002. Deep-Sea Research II, 2005, 52:3344–3354
    [113] M.Gosselin, M. Levasseur et al. New measurement of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res, 1997, 44(8):1623 —1644
    [114] J. M. Grebmeie, L. W. Cooper et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Progress in Oceanography, 2006, 71:331–361
    [115] 陈敏,黄奕普等.北冰洋生物生产力的“沙漠”?.科学通报,2002,47(9):707-710
    [116] Catherine Lalande, Jacqueline M. Grebmeier, et al. Export fluxes of biogenic matter in the presence and absence of seasonal sea ice cover in the Chukchi Sea. Continental Shelf Research, 2007, 27: 2051–2065
    [117] Lobbes, J.M., Fitznar, H.P., Kattner, G.. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica Cosmochimica Acta, 2000, 64: 2973–2983
    [118] Peterson, B.J., Holmes, R.M., et al. Increasing river discharge to the Arctic Ocean. Science, 2002, 298: 2171–2173
    [119] Dittmar, T., Kattner, G.. The biogeochemistry of the river and shelf ecosystems of the Arctic Ocean: a review. Marine Chemistry, 2003, 83: 103–120
    [120] Deli Wang, Susan M. Henrichsb and Laodong Guo. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean. Continental Shelf Research, 2006, 26: 1654–1667
    [121] Nicholas R. Bates, Dennis A. Hansell, et al. Seasonal and spatial distribution of particulate organic matter (POM) in the Chukchi and Beaufort Seas. Deep-Sea Research II, 2005, 52 : 3324–3343
    [122] Nicholas R. Bates, Margaret H.P. Best, and Dennis A. Hansell. Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas. Deep-Sea Research II, 2005, 52: 3303–3323
    [123] Sang H. Lee, Terry E. Whitledgea, and Sung-Ho Kang. Recent carbon and nitrogen uptakerates of phytoplankton in Bering Strait and the Chukchi Sea. Continental Shelf Research, 2007, 27: 2231–2249
    [124] 沈国英,施并章.海洋生态学(第 2 版).科学出版社,2002,138-168
    [125] Godispoti. Marine Primary Production in the Changing Arctic. 2004, Annual Meeting & Arctic Forum, www. arcus. org/ annual – meetings
    [126] Gong GC and Liu GJ. An empirical primary production model for the East China Sea. Continental Shelf Research, 2003, 23: 213—224
    [127] 吴枫,安芷生,曹军骥.晚第四纪以来中纬度北太平洋古生产力记录.海洋地质与第四纪地质,2004,24(3):83-89
    [128] J.E.Wollenburg, J.Knies, and A.Mackensen. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204:209-238
    [129] G. Gard. Late Quaternary coccoliths at the North Pole: evidence of ice free conditions and rapid sedimentation in the central Arctic Ocean. Geology, 1993, 21:227-230
    [130] T. M. Cronin, T. R. Holtz, and R.C. Whatley. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda. Mar. Geol, 1994, 119:305-332
    [131] J. Matthiessen, J. Knies, N.R. Nowaczyk, and, R. Stein. Late Quaternary dinoflagellate cyst stratigraphy at the Eurasian continental margin, Arctic Ocean: Indications for Atlantic water inflow in the past 150,000 years. Global Planet. Change, 2001, 31:65-86
    [132] T. M. Dokken, M. Hald. Rapid climatic shifts during isotope stages 2-4 in the Polar North Atlantic. Geology, 1996, 24:599-602
    [133] S. Nees, A.V. Altenbach, H. Kassens, and J. Thiede. High resolution record of foraminiferal response to late Quaternary sea-ice retreat in the Norwegian-Greenland Sea. Geology, 1997, 25: 659-662
    [134] M. Hald, T. Dokken, and G. Mikalsen. Abrupt climate change during the last interglacial-glacial cycle in the polar North Atlantic. Mar.Geol., 2001, 176: 121-137
    [135] J. Carstens, G. Wefer. Recent distribution of planktonic foraminifera in the Nansen Basin, Arctic Ocean. Deep-Sea Res, 1992, 30:507-524
    [136] J. E. Wollenburg, W. Kuhnt. The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean. Mar. Micropaleontol., 2000, 40:189-231
    [137] P. I. Steinsund, M. Hald. Recent calcium carbonate dissolution in the Barents Sea, Palaeoceanographic applications. Mar.Geol., 1994, 117:303-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700