西菲律宾海2.36Ma以来古海洋学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于IMAGES XIV MD155-Marco Polo 2航次MD06-3050岩芯(15°57.0943′N, 124°46.7747′E,水深2967 m)的浮游有孔虫氧碳同位素,沉积物中碳酸盐含量,钙质超微化石特征种属相对丰度等古环境替代指标,讨论了西菲律宾海2.36 Ma以来的古海洋学变化特征。
     MD06-3050岩芯浮游有孔虫G.ruber的氧同位素记录与LR04标准氧同位素曲线进行对比,建立了西菲律宾海2.36 Ma以来的年代模式。几个钙质超微化石及有孔虫地层学事件验证了氧同位素年代的可靠性。
     应用MD06-3050岩芯和MD06-3047岩芯进行第四纪钙质超微化石地层学研究,识别了7个钙质超微化石地层学事件,分别是Discoaster Brouweri的末现, Calcidiscus macintyrei的末现, Large Gephyrocapsa的初现, Large Gephyrocapsa的末现, Pseudoemiliania lacunosa的末现, Gephyrocapsa Caribbeanica的快速增长,以及Emiliania huxleyi的初现。结果表明钙质超微化石地层学在西菲律宾海区的应用具有可靠性,为西太海区第四纪氧同位素地层学提供了可靠的年代控制点。
     在MD06-3050岩芯中发现了澳亚散落区微玻陨石的分布。通过氧同位素地层学校正,得到了天外物体撞击事件发生时间大约在794±2 ka,与其它海区该微玻陨石发生时间具有一致性。
     浮游有孔虫表层种G.ruber和次表层种P.obliquiloculata的氧同位素差值显示了2.36Ma以来西菲律宾海温跃层具有长期的变动特征。而颗石藻下透光带种属Florisphaera profunda则用来指示1040 ka以来该海区营养跃层的冰期/间冰期变化特征,且在中布容事件前后呈现相反的变动趋势。温跃层/营养跃层变动的最大特征是MIS13之后,两者呈现不同步。
     对浮游有孔虫G.ruber和P.obliquiloculata的氧碳同位素进行滤波分析,其结果显示了中更新过渡时期(MPT)的周期转型特征。根据有孔虫氧碳同位素记录及碳酸盐百分含量等指标,认为MPT大约开始于1.0 Ma。各替代性指标在MPT的记录说明了该时期气候系统发生深刻变化,且该研究进一步表明MPT为一个过渡性的气候时期,而非快速变化的气候事件。另外,δ13C和碳酸盐含量的变化在MPT时期领先于上部水体结构变动。
     沉积物中碳酸盐百分含量在冰期高,而在间冰期低。应用浮游有孔虫碳同位素差值作为古生产力替代指标,表明冰期时生产力高而间冰期生产力低。有孔虫碎壳率和大于63μm粗组分指示溶解作用在冰期弱而在间冰期强。因此,认为该海区的碳酸盐变化呈现太平洋型旋回,主要受到溶解作用和生产力的共同控制。
     有孔虫次表层水种P.obliquiloculata碳同位素重值现象叠加于冰期-间冰期旋回之上,显示了第四纪以来的长周期性。对比MD06-3050岩芯与其它海区岩芯的δ13C记录,识别了六次重大的全球范围内δ13C重值事件。值得注意的是,这六次δ13C重值事件恰好同碳酸盐含量快速降低以及强烈的溶解条件相对应,推断全球碳库相对应发生了重大改变,且碳库变动可能与全球气候变化有关。
This thesis discusses paleoceanography of the Western Philippine Sea over the last 2.36 million years on the basis of stable oxygen and carbon isotopes on planktonic foraminifers (δ13O andδ13C), bulk carbonate content and calcareous nannofossil assemblages from IMAGES XIV MD155-Marco Polo 2 cruise.
     Based on theδ18O of the planktonic foraminifer G.ruber, a 2.36 Ma timescale for the West Phillipine Sea was established through visual alignment to LR04. The age of several calcareous nannofossil bioevents and one foraminiferal bioevent agreed with the age model.
     Two sediment cores MD06-3050 (15°57.0943′N, 124°46.7747′E, 2967 m) and MD06-3047 (17°00.44′N, 124°47.93′E) recovered in the Benham Rise, east off Luzon Island in the Western Philippine Sea, were analyzed to study the Quaternary calcareous nannofossil records based on oxygen isotope stratigrapy. 7 calcareous nannofossil bioevents were identified over the past 2.36 Ma: LAD of Discoaster Brouweri, LAD of Calcidiscus macintyrei, FAD of Large Gephyrocapsa, LAD of Large Gephyrocapsa, LAD of Pseudoemiliania lacunosa, abrupt increase in the abundance of Gephyrocapsa Caribbeanica, and FAD of Emiliania huxleyi. The results suggested that calcareous nannofossil stratigraphy was reliable in the Western Philippine Sea, hence provided the proper age control points in building Quaternary oxygen isotope stratigraphy in the Western Pacific. In addition to, we observed that Australasian microtektites were distributed in the core MD06-3050, with maximum abundance in the layer 1364-1366 cm. Calibrated with the oxygen isotope stratigraphy, the average age for layer of 1360-1366 cm was 794±2 ka, which was deemed to microtektites occurred time. It was concurrent with Australiasian microtektites events dated in other regions.
     Oxygen isotopic differences between G. ruber and P. obliquiloculata demonstrate the upper ocean thermocline variations of the Western Philippine Sea during the Pleistocene. And the relative abundance of lower-photic layer coccolith species, Florisphaera profunda, were be used to construct the nutricline changes since 1040 ka.
     The variations ofΔδ18O indicated that thermocline changed in long term cycles over the past 2.36Ma. Nutricline showed two evolution patterns before and after MBE. The notable feature in the upper water structure was not changed in phase since MIS13. The filter analysis of both oxygen and carbon isotope in shells of planktonic foraminifera demonstrates the existence of the mid-Pleistocene transition (MPT). The event appears to start at about 1.0 Ma suggested by theδ18OG.ruber,δ18OP.o,δ13CG.ruber,δ13CP.o, bulk carbonate content, indicating its impacts on these climatic variables as a system. Accordingly, the transition of the dominant climatic cycles at ~1Ma can be interpreted as a stepwise but not an abrupt process. Futhermore, changes ofδ13C, CaCO3% lead the shift of upper water structure during the MPT.
     Carbonate content in bulk show high values during glacial period and low values in the interglacial. Carbon isotope differences between G. ruber and P. obliquiloculata demonstrate was used as paleoproductivity (PP) proxies in the study area, which suggested that the productivity was high in glacial and low in interglacial. Both the planktonic foraminifera fragments ratio and >63μm coarse fraction indicated the dissolution was more intense during interglacial periods than in glacial interval. So, we considered that the preservation of carbonate as Pacific Pattern, which was controled by dissolution and PP.
     δ13CP.O peaks in different periods suggest that shift is independent from G-IG clycle, so show the long term cycles since the Pliocene. Comparison of the foraminiferalδ13C of core MD06-3050 with other cores records in different basins, we recognized sixδ13Cmax events in the study core. It’s worthy noting that theδ13Cmax event coincided with the abrupt decreasing carbonate content and the intensely dissolution condition, so we infered that global carbon reservoir was changed obviously and linked to large climate changes.
引文
[1] Andruleit, H.A., von Rad, U., Bruns, A., et al. Coccolithophores fluxes from sedi -ment traps in the north eastern Arabian Sea off Pakistan. Marine Micropaleontology, 2000 (38): 285–308.
    [2] Abelmann, A., Gersonde, R., Cortese, G., et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography, 2006 (21):1-9.
    [3] Ahagon N., Tanaka Y., Ujiie H. Florisphaera profunda, a possible nannoplankton indicator of late quaternary changes in seawater turbidity at the northwestern margin of the Pacific. Marine Micropaleontology, 1993 (22): 255-273.
    [4] An, Z., Kukla, G., Porter, S.C., et al. Late Quaternary dust flow on the Chinese Loess Plateau. Catena, 1991(18): 125-132.
    [5] An, Z., Liu, T., and Lu, Y. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quaternary International, 1990 (7-8): 91-95.
    [6] Andreasen, D.J., and Ravelo, A.C. Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum. Paleoceanography, 1997(12): 395-413.
    [7] Andruleit, H.A., Rogalla, U. Coccolithophores in surface sediments of the Arabian Sea in relation to environmental gradients in Surface waters. Marine Geology, 2002 (186): 505–526.
    [8] Archer, D. Equatorial Pacific calcite preservation cycles: production or dissolution? Paleoceanography, 1991(6): 561-571.
    [9]Archer, D.E., Morford, J.L., and Emerson, S.R. A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains.Global Biogeochemical Cycles, 2002(16): 1-21.
    [10] Armstrong, R.A., Lee, C., Hedges, J.I., et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research PartⅡ-Topical Studies in Oceanography, 2002 (49): 219-236.
    [11] Arrhenius, G. Rate of Production, Dissolution and Accumulation of Biogenic Solids in the Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 1988 (67): 119-146.
    [12] Arrhenius, G. Sediments cores from the east Pacific. Rep.Swed.Deep Sea Exped.1947-1948, 1952 (5):1-228.
    [13] Bard E., Rickaby R.E.M. Migration of the subtropical front as a modulator of glacial climate. Nature, 2009(460): 380-384.
    [14] Baumann, K.-H., Andruleit, H., Bockel, B., et al. The significant of extant coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity: a review. Pal?ontologische Zeitschrift, 2005 (79): 93-112.
    [15] Bassinot, F.C., Labeyrie, L.D., Vincent, E., et al. The astronomical theory of climate and the age of the Brunhes- Matuyama magnetic reversal. Earth Planetary Science Letter , 1994 (126): 91–108.
    [16] Bassinot, F.C., Beaufort, L., Vincent, E., et al. Changes in the dynamics of Western equatorial Atlantic surface currents and biogenic productivity at the‘Mid-Pleistocene Revolution’(930 ka). In: Shackleton N J, Curry W B, Richter C, Bralower T J (Eds.), Proceedings of the Ocean Drilling Program Scientific Results, 1997(154): 269-284.
    [17] Baumann, K.H., B?ckel, B., Donner, B., et al. Contribution of calcareous plankton groups to the carbonate budget of South Atlantic surface sediments. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: Reconstruction of material budgets and current systems. Berlin: Springer, 2004: 81-99.
    [18] Baumann, K. H., Bockel, B., Frenz, M. Coccolith contribution in the South Atlantic carbonate sedimentation. In: Thierstein, H.R., Young, J.R. (Eds.), Coccolithophores-From Molecular Processes to the Global Impact. Berlin: Springer, 2004: 367–402.
    [19] Baumann K H, ?epek M, Kinkel H. Coccolithophores as indicators of ocean water masses, surface-water temperature, and paleoproductivity-examples from the South Atlantic. In: Fischer G, Wefer G (Eds.), use of proxies in paleoceanography:Examples from the South Atlantic. Springer-Verlag, 1999:111-144.
    [20] Baumann, K.H., and Freitag, T. Pleistocene fluctuations in the northern Benguela Current system as revealed by coccolith assemblages. Marine Micropaleontology , 2004 (52): 195-215.
    [21] Beaufort, L., de Garidel-Thoron, T., Linsley, B., et al. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics. Marine Geology, 2003 (201): 53-65.
    [22] Beaufort, L., de Garidel-Thoron, T., Mix, A.C., et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene.Science, 2001(293):. 2440-2444.
    [23] Beaufort L, Dollfus D. Automatic recognition of coccolith by dynamical neural network. Marine Micropaleontology, 2004(51): 57-73.
    [24] Beaufort, L., Heussner, S. Coccolithophorids on the continental slope of the Bay of Biscay - production, transport and contribution to mass fluxes: Deep-Sea Research Part Ii-Topical Studies in Oceanography, 1999(46): 2147-2174.
    [25] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 1997 (278): 1451-1454.
    [26] Becquey, S., and Gersonde, R. Past hydrographic and climatic changes in the Subantarctic Zone of the South Atlantic - The Pleistocene record from ODP Site 1090: Palaeogeography Palaeoclimatology Palaeoecology, 2002 (182): 221-239.
    [27] Bé, A.W.H. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay, A.T.S. (Ed.), Oceanic Micropalaeontology. New York, NY: Academic Press, 1977(1): 1-100.
    [28] Berelson, W.M., Hammond, D.E., Mcmanus, J., et al. Dissolution Kinetics of Calcium-Carbonate in Equatorial Pacific Sediments. Global Biogeochemical Cycles, 1994 (8): 219-235.
    [29] Berger, A., Melice, J.L., and Loutre, M.F. On the origin of the 100-kyr cycles in the astronomical forcing. Paleoceanography, 2005 (20): 1-17.
    [30] Berger W H. Pacific carbonate cycles revisited: arguments for and against productivity control. In: Ishizaki, K & Satio, T. (eds.). Tokyo: Centenary of JapaneseMicropaleontology, 1992:15-25.
    [31] Berger W H. Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foraminiferal Ressearch, 1973 (3):187-195.
    [32] Berger, W.H., Adelseck, C.G., and Mayer, L.A. Distribution of Carbonate in Surface Sediments of Pacific Ocean. Journal of Geophysical Research-Oceans and Atmospheres, 1976 (81): 2617-2627.
    [33] Berger W.H., Bickert, T., Schmidt H, et al. Quaternary oxygen isotope records of pelagic foraminiferas: Site 806, Ontong Java Plateau, in: W.H. Berger, L.W.Mayer, et al., Pro.ODP Sci. Results 130, 1993:381-395.
    [34] Berger, W.H., Jansen, E. Mid-Pleistocene climate shift: the Nansen connection. In: Johannessen, O.M., Muensch, R.D., and Overland, J.E. (Eds.), The Role of the Polar Oceans in Shaping the Global Environment. Geophys. Monogr., Am. Geophys. Union, 1994 (85): 295-311.
    [35] Berger, W.H., Lange, C.B., and Perez, M.E. The early Matuyama Diatom Maximum off SW Africa: a conceptual model: Marine Geology, 2002 (180):105-116.
    [36] Berger, W.H., Yasuda, M.K., Bickert, T., et al. Quaternary time-scale for the Ontong-Java Plateau-Milankovitch template for Ocean Drilling Program site 806. Geology, 1994 (22): 463-467.
    [37] Berggren W.A., Kent D.V., Swisher C.C., et al. Revised Cenozoic geochronology and chronostratigraphy. In: W.A. Berggren, D.V.Kent, M.P.Aubry, J.Hardenbol (Eds.), Geochronology, Time Scales and Global Statigraphic Correlation, Spec.Publ.SEPM, 1995 (54):129-212.
    [38] Blasco, D., Estrada, M., Jones, B. Relationship between the phytoplankton distribution and composition and the hydrography in the North-West African upwelling region near Cabo Corbeiro. Deep-Sea Res, 1980 (27): 799–819.
    [39] Bollmann, J. Morphology and biogeography of the genus Gephyrocapsa coccoliths in Holocene sediments. Marine Micropaleontology, 1997 (29): 319–350.
    [40] Bollmann, J., Baumann, K.H., and Thierstein, H.R. Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: Selective dissolution, evolution, or global environmental change? Paleoceanography, 1998 (13): 517-529.
    [41] Boyle, E.A. Paired carbon isotope and cadmium data from benthic foraminifera: implications for changes in oceanic phosphorus, ocean circulation, and atmosphe -ric carbon dioxide. Geochimica et Cosmochimica Acta, 1986 (50): 265-276.
    [42] Brand, L.E. Physiological ecology of marine coccolithophores. In: Winter, A, Siesser, W G (Eds.). Coccolithophores. Cambridge: Cambridge University Press, 1994: 39-49.
    [43] Brierley, C.M., Fedorov, A.V., Liu, Z.H., et al. Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene. Science, 2009 (323): 1714-1718.
    [44] Briskin, M., Berggren, W.A. Pleistocene stratigraphy and quantitative paleocean ography of tropical North Atlantic core V16-205. In: Saito, T., Burckle, L. (Eds.), Late Neogene Epoch Boundaries. New York: Micropaleontology Press, 1975: 167-198.
    [45] Broecker W.S., Clark E. CaCO3 size distribution: A paleocarbonate ion proxy? Paleoceanography, 1999, 14 (5): 596-604.
    [46] Broecker, W., Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography, 2009 (24): 1-11.
    [47] Broecker W. S., Denton G. H. The role of ocean-atmosphere reorganizations in glacial cycles.Quaternary Science review, 1990 (9): 305-341.
    [48] Broerse, A.T.C., Brummer, G.J.A., van Hinte, J.E. Coccolithophores export production in response to monsoonal upwelling off Somalia (northwestern Indian Ocean). Deep-Sea Res., Part 2, Top. Stud. Oceanogr., 2000 (47): 2179–2205.
    [49] Burckle L H. Early Miocene to Pliocene diatom datum levels for the equatorial Pacific. Proc.Working Group on Biostratigraphic Datum Planes of the Pacific Neogene, 2nd, Bandung. Indonesia, 1978: 25-44.
    [50] Burns C.A. Timing between a Large impact and a geomagnetic reversal and the depth of NRM acquisition in deep-sea sediments. In: Lowes F J, et al., eds. Geomagnetism and Paleomagnetism. the Netherlands, Dordrecht: Kluwer Academic Publishers, 1989: 253-261.
    [51] Cachao, M., Moita, M.T. Coccolithus pelagicus, a productivity proxy related tomoderate fronts off Western Iberia. Mar. Micropaleontol, 2000 (39): 131–155.
    [52] Callahan, J.E. The structure and circulation of deep water in the Antarctic: Deep Sea Research and Oceanographic Abstracts, 1972(19): 563-575.
    [53] Cannariato, K., Ravelo, A.C. Pliocene-Pleistocene evolution of eastern tropical Pacific surface water circulation and thermocline depth. Paleoceanography, 1997(12): 805-820.
    [54] Castradori, D. Calcareous nannofossils and the origin of eastern Mediterranean sapropels. Paleoceanography, 1993 (8): 459-471.
    [55] Chaisson W, et al. Pliocene development of the east-west hydrographic gradient in the equatorial Pacific. Paleoceanography, 2000 (15): 497-505.
    [56] Channell J E T, Rio D, Sprovieri R, et al. Biomagnetostratigraphic correlations from Leg 107 in the Tyrrhenian Sea. In: Kastens K A, Mascle J, et al. Proc ODP Sci Results. 107: College Station, TX (Ocean Drilling Program), 1990: 669–682.
    [57] Chapman, M.R., Chepstow-Lusty, A.J. Late Pliocene climatic change and the global extinction of the discoasters: an independent assessment using oxygen isotope records. Palaeogeogr Palaeocl., 1998 (134):109-125.
    [58] Chen, J.J., Farrell, J.W., Murray, D.W., et al. Timescale and Paleoceanographic Implications of a 3.6My Oxygen-Isotope Record from the Northeast Indian-Ocean (Ocean Drilling Program Site758). Paleoceanography, 1995 (10): 21-47.
    [59] Chen, M.T., Huang, C.Y., and Wei, K.Y. 25,000-year late Quaternary records of carbonate preservation in the South China Sea: Palaeogeography Palaeoclimatology Palaeoecology,1997 (129): 155-169.
    [60] Clark, P.U., Archer, D., Pollard, D., et al. The middle Pleistocene transition: characteristics. mechanisms, and implications for long-term changes in atmospheric PCO2. Quaternary Science Reviews, 2006 (25): 3150-3184.
    [61] Clemens, S.C., Prell, W. L. A 350, 000 year summer monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Marine Geology, 2003 (201): 35-51.
    [62] Clemens, S.C., Prell,W.L. Oxygen and carbon isotopes from Site 1146, northern South China Sea, Proceedings of the ODP Scientific Results, 2003 (184):1–8.
    [63] Clemens, S., Prell, W., Murray, D., et al. Forcing Mechanisms of the Indian-Ocean Monsoon. Nature, 1991(353): 720-725.
    [64] Clemens, S.C., Tidmann, R. Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen isotope record. Nature, 1997(385): 801-804.
    [65] Clemens, S.T., W, M.D., and Prell, W.L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science,1996 (274): 943-948.
    [66] Clement, A.C., and Cane, M. A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millennial timescales. Part I: A modeling study of tropical Pacific variability: Mechanisms of Global Climate Change at Millennial Time Scales, 1999 (112): 363-371.
    [67] Cohen, A.L., Owens, K.E., Layne, G.D., et al. The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science, 2002 (296): 331-333.
    [68] Colmenero-Hidalgo, E., Flores, J.A., Sierro, J., et al. Ocean surface water response to shortterm climate changes revealed by coccolithophores from the Gulf of Cadiz (NE Atlantic) and Alboran Sea (W Mediterranean). Palaeogeography Palaeoclimatology Palaeoecology, 2004 (205): 317–336.
    [69] Conan, S.M.H.; Ivanova, E.M. and Brummer, G.J.A. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Marine Geology, 2002 (182): 325-349.
    [70] Corliss B H, C.C. Morphotype pattern of Norwegian Sea deep sea benthic foraminifera and ecological implication. Geology, 1988 (16): 716-719.
    [71] Cramer, B.S., Wright, J.D., Kent, D.V., et al. Orbital climate forcing of delta C-13 excursions in the late Paleocene-early Eocene (chrons C24n-C25n). Paleoceanography, 2003(18): 1-25.
    [72] Crow E L, Davis F A, Maxfield M W. Statistics manual. New York: Dover Publications Inc., 1960: 279.
    [73] Crowley, T.J. Ice-Age Terrestrial Carbon Changes Revisited. Global Biogeochemical Cycles, 1995 (9): 377-389.
    [74] Crowley T.J. Quaternary carbonate changes in the north Atlantic and Atlantic/Pacific comparisons, in: E.T. Sundquist, W.S. Broecker (Eds.), The CarbonCycle and Atmospheric CO2: Natural Variation Archean to Present. Washington D. C: Am. Geophys. Un, 1985: 271–284.
    [75] Curry, W.B., Duplessy, J.C., Labeyrie, L. D., et al. Change in the distribution ofδ13C of deep waterΣCO2 between the last glaciation and the Holocene. Paleoceanography, 1988 (4): 337–341.
    [76] Curry, W.B., Matthews, R.K. Paleo-oceanographic utility of oxygen isotopic measurements on planktic foraminifera: Indian Ocean core-top evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981(33):173-191.
    [77] Dai, A.G., and Wigley, T.M.L. Global patterns of ENSO-induced precipitation. Geophysical Research Letters, 2000 (27): 1283-1286.
    [78] de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature, 2005 (433): 294-298.
    [79] deMenocal, P., Ruddiman, W., et al. Depth of post-depositional remanence acquisition: A case study of the Brunhes-Matuyama reversal and oxygen isotopic Stage 19.1. Earth and Planetary Science Letters, 1990 (99):1-13.
    [80] Delaney, M.L., and Boyle, E.A. Tertiary Paleoceanic Chemical Variability: Unintended Consequences of Simple Geochemical Models. Paleoceanography, 1988 (3):137-156.
    [81] Dennison J M, Hay W W. Estimating the needed sampling area for subaquatic ecologic studies. Paleontology, 1967 (41):706-708.
    [82] Di Stefano, E., Incarbona, A. High-resolution paleoenvironmental recostruction of ODP Hole 963 D (Sicily Channel) during the last deglaciation based on calcareous nannofossils. Marine Micropaleontology, 2004(52): 241–254.
    [83] Ding, Z.L., Sun, J.M., Liu, D.S. Stepwise advance of the Mu Us Desert since late Pliocene: Evidence from a red clay-loess record. Chinese Science Bulletin, 1999(44): 1211-1214.
    [84] Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects. Neural Networks, 1999(12): 553-560.
    [85] Droxler, A.W. Earth’s Climate and Orbital Eccentricity: The Marine IsotopeStage 11 Question. American Geophysical Union, Geophysical Monograph, 2003 (137): 240.
    [86] Droxler, A.W., Haddad, G.A., Mucciarone, D.A., et al. Pliocene-Pleistocene aragonite cyclic variations in Holes 714A and 716B (the Maldives) compared with Hole 633A (the Bahamas): records of climate-induced CaCO3 preservation at intermediate water depths. Proc. ODP Sci. Results, 1990 (115): 539-577.
    [87] Dudley,W.C., Nelson,C.S. The Influence of Nonequilibrium Isotope Fractionation on the Quaternary Calcareous Nannofossil Stable-Isotope Signal in the Southwest Pacific-Ocean, Dsdp Site-594. Marine Micropaleontology, 1994 (24): 3-27.
    [88] Dupont, L.M., Bonner, B., Schneider, R., Wefer, G. Mid-Pleistocene environmental change in tropical Africa began as early as 1.05. Marine Geology, 2001 (29):195-198.
    [89] Edmond, J.M., Chung, Y., and Sclater, J.G. Pacific Bottom Water: Penetration East around Hawaii: J. Geophys. Res., 1971(76): 8089-8097.
    [90] Emiliani, C. Pleistocene Temperatures. Journal of Geology,1955 (63): 538-578.
    [91] Emiliani, C., Hudson, J.H., Shinn, E.A., et al. Oxygen and Carbon Isotopic Growth Record in a Reef Coral from the Florida Keys and a Deep-Sea Coral from Blake Plateau: Science, 1978 (202): 627-629.
    [92] Ericson, D.B., Ewing, M., Wollin, G. Plio-Pleistocene boundary in the deep-sea sediments. Science, 1963 (139): 727-737.
    [93] Estrada, M. Mesoscale heterogeneities of the phytoplankton distribution. In: Boje, R., Tomezak, M. (Eds.). The Upwelling Region of northwest Africa (Upwelling Ecosystems). Berlin: Springer, 1978:15–23.
    [94] Etourneau, J., Martinez, P., Blanz, T., et al. Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology, 2009(37): 871–874.
    [95] Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., et al. Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs, 1997(16): S93-S100.
    [96] Farmer, E.C., Kaplan, A., de Menocal, P.B., and Lynch-Stieglitz, J.Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens: Paleoceanography, 2007 (22): 1-14.
    [97] Farrell, J.W., Murray, D., McKenna, V., et al. Upper ocean temperature and nutrient contrasts inferred from Pleistocene planktonic foraminifer 18-O and 13-C in the eastern equatorial Pacific.Proc.ODP Sci.Results, 1995 (138): 289-319.
    [98] Farrell, J.W., Prell, W.L. Pacific CaCO3 Preservation andδ18O Since 4 Ma: Paleoceanic and Paleoclimatic Implications. Paleoceanography, 1991(6): 485-498.
    [99] Farrell J.W., T.R. Janecek, Late Neogene paleoceanography and paleoclimatology of the northeast Indian Ocean (Site 758). In: J.Weissel, J. Peirce, E. Taylor, et al., (Eds.), Proc. ODP, Sci. Results. College Station, TX: Ocean Drilling Program, 1991(121): 297–355.
    [100]Fedorov, A.V., Philander, S.G. A stability analysis of the tropical ocean-atmosphere interactions: Bridging Measurements of, and Theory for El Ni?o. J. Climate , 2001(14): 3086-3101.
    [101]Fedorov, A.V., Philander,S.G. Is El Ni?o changing?Science, 2000 (288): 1997-2002.
    [102] Field, C.B., Behrenfeld, M.J., Randerson, J.T., et al. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 1998 (281): 237-240.
    [103] Field, D.B. Variability in vertical distributions of planktonic foraminifera in the California Current:Relationships to vertical ocean structure. Paleoceanography, 2004 (19): 173-196.
    [104] Fincham, M.J., Winter, A. Paleoceanographic interpretation of coccoliths and oxygen isotopes from sediments from the surface of Southwest Indian Ocean. Marine Micropaleontology, 1989 (13): 325–351.
    [105] Findlay, C.S., Giraudeau, J. Extant calcareous nannoplankton in the Australia sector of the southern ocean (Austral summer 1994 and 1995). Marine Micropaleontology, 2000 (40): 417-439.
    [106] Flores, J.A., Barcena, M.A., Sierro, F. J. Ocean-surface and wind dynamics inthe Atlantic Ocean off Northwest Africa during the last 140 000 years. Palaeogeography, Palaeoclimatology, Palaeocology, 2000 (161): 459-478.
    [107] Flores, J.A., Gersonde, R., Sierro, F.J. Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record. Marine Micropaleontology, 1999(37):1-22.
    [108] Flores, J.A., Marino, M., Sierro, F.J., et al. Calcareous plankton dissolution pattern and coccolithophore assemblages during the last 600 kyr at ODP Site 1089 (Cape Basin, South Atlantic): paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003 (196): 409-426.
    [109] Flores, J.A., Marino, M. Pleistocene calcareous nannofossil stratigraphy for ODP Leg 177(Atlantic sector of the Southern Ocean). Marine Micropaleontology, 2002 (45):191-224.
    [110] Flores, J.-A., Sierro, F.J., Gersonde, R., et al. Southern Ocean Pleistocene calcareous nannofossil events: calibration with the isotope and geomagnetic stratigraphies. Mar. Micropaleontol., 2000 (40): 377-402.
    [111] Flores, J.A., Sierro, F.J., Raffi, I. Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic change in the Eastern Equatorial Pacific from 4 to 2 Ma (leg 138, Site 849 and 852). Proc. ODP, Initial Rep., 1995 (138):163–176.
    [112] Fornaciari, E. Calcareous nannofossils biostratigraphy of the California margin. Lyle M, Koizumi I, Richter C, et al, Eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2000 (167): 3-40.
    [113] Francois, R., Altabet, M.A., Yu, E.F., et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period.Nature, 1997 (389): 929-935.
    [114] Francois, R., Honjo, S., Krishfield, et al. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles, 2002 (16): 1-20.
    [115] Gard, G., Backman, J. Synthesis of Arctic and Sub-Arctic coccolith biochronology and History of North Atlantic drift water influx during the last 500,000years. In: Bleil, U., Thiede, J. (Eds.), Geological History of the Polar Oceans: Arctic Versus Antarctic. Kluwer, 1990: 417-436.
    [116] Gartner, S. Paleoceanography of the Mid-Pleistocene. Marine Micropaleontology, 1988 (13): 23-46.
    [117] Gartner, S. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Marine Micropaleontology, 1977 (2): 1-25.
    [118] Gartner, S., Chow, J., Stanton, R.J. Late Neogene paleoceanography of the eastern Caribbean, the Gulf of Mexico, and the eastern Equatorial Pacific. Marine Micropaleontology, 1987 (12): 255-304.
    [119] Gastrich, M.D. ULTRASTRUCTURE OF A NEW INTRACELLULAR SYMBIOTIC ALGA FOUND WITHIN PLANKTONIC FORAMINIFERA1. Journal of Phycology, 1987 (23): 623-632.
    [120] Gildor, H., Tziperman, E. Sea ice as the glacial cycles’climate switch: Role of seasonal and orbital forcing. Paleoceanography, 2000 (15): 605-615.
    [121] Giraudeau, J. Coccolith paleotemperature and paleosalinity estimates in the Caribbean Sea for the Middle-Late Pleistocene (DSDP Leg 68 Hole 502B). Mem. Sci. Geol., 1992 (43): 375–387.
    [122] Glass B P, Pizzuto J E. Geographic-variation in Australasian microtektite concentrations- implications concerning the location and size of the source crater. Geophysical Research, 1994 (99): 19075-19081.
    [123] Glass B P, Wu J. Coesite and shocked quartz discovered in the Australasian and North America microtektite layers. Geology, 1993 (21): 435-438.
    [124] Gregg W.W., Casey N.W. Modeling coccolithophores in the global oceans. Deep-Sea ResearchⅡ, 2007 (54): 447-477.
    [125]Groetsch J, Wu G, Berger W H. Carbonate saturation cycles in the western equatorial Pacific.In: Einsele G, Ricken W, Seilacher A, eds. Cycles and Events in Stratigraphy. Heidelberg: Springer, 1991:110-125.
    [126] Gupta, A.K., Dhingra, H., Melice, J.L., and Anderson, D.M. Earth's Eccentricity Cycles and Indian Summer Monsoon variability over the past 2 million years: Evidence from deep-sea Benthic Foraminifer: Geophysical Research Letters,2001(28): 4131-4134.
    [127] Haidar, A.T., Thierstein, H.R. Calcareous phytoplankton dynamics at Bermuda (N. Atlantic). EUG 9 Abstr. Suppl. 1. Terra Nova, 1997 (9): 602.
    [128] Hales, B., Emerson, S. Calcite dissolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water O2 and pH: Global Biogeochemical Cycles, 1996 (10): 527-541.
    [129] Hales, B., Emerson, S., and Archer, D. Respiration and Dissolution in the Sediments of the Western North-Atlantic-Estimates from Models of in-Situ Microelectrode Measurements of Porewater Oxygen and Ph. Deep-Sea Research Part I-Oceanographic Research Papers, 1994 (41): 695-719.
    [130] Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:Changing patterns of land and sea,in Faunal and Floral Migrations and Evolution in SE Asia-Australia, edited by I.Matcalfe et al, A.A.Balkema, Brookfield,Vt, 2001: 35-56.
    [131] Hall, I.R., McCave, I.N., Shackleton, N.J., et al. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times: Nature, 2001 (412): 809-812.
    [132] Hammer, ?., Harper, D.A.T., and P. D. Ryan PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 2001(4): 1-9.
    [133] Hasselmann, K. Stochastic climate models Part I. Theory.Tellus, 1976 (28):. 473-485.
    [134] Hays, J.D., Imbrie, J., and Shackleton, N.J. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 1976 (194): 1121-1132.
    [135] Hays, J.D., Shackleton, N.J. Globally synchronous extinctions of the radiolarian Stylatractus universus. Geology, 1976 (4): 649-652.
    [136] Hayward, B.W., Kawagata, S., Grenfell, H.R., et al. Last global extinction in the deep sea during the mid-Pleistocene climate transition. Paleoceanography, 2007(22): 1-14.
    [137] Hemleben Ch , et al. Modern Planktonic Forminifera. New York: Springer-Verlag , 1989:15-17.
    [138] Hemleben Ch, Spindler M, Anderson O R. Modern planktonic foraminifera. New York: Springer-Verlag Inc, 1989:363.
    [139] Henriksson, A.S. Coccolithophore response to oceanographic changes in the equatorial Atlantic during the last 200,000 years. Palaeogeography Palaeoclimatology Palaeoecology, 2000 (156): 161-173.
    [140] Herguera J C, Bergen W. Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific.Geology, 1991 (19):1173-1176.
    [141] Herguera, J.C., Berger, W.H. Glacial to postglacial drop of productivity in the western equatorial Pacific: mixing rates vs.nutrient concentrations. Geology, 1994 (22): 629-632.
    [142] Hibberd, D.J. Ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. Botanical Journal of the Linnean Society, 1976 (72): 55-80.
    [143] Hilde, T. W. C., Lee, C. S. Origin and evolution of the West Philippine Basin: A new interpretation.Tectonophysics, 1984 (102): 85-104.
    [144] Hine N, Weaver P P E. Quaternary. In: Bown P R (Eds.). Calcareous Nannofossil Biostratigraphy. London: Chapman and Hall, 1998: 266-283.
    [145] Hodell, D.A., Charles, C.D., and Sierro, F.J. Late Pleistocene evolution of the ocean's carbonate system. Earth and Planetary Science Letters, 2001(192): 109-124.
    [146] Holbourn, A., Kuhnt, W., Kawamura, H., et al. Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kyr. Paleoceanography, 2005a (20): 1-29.
    [147] Holbourn, A., Kuhnt, W., Schulz, M., et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 2005(438): 483-487.
    [148] Holbourn, A., Kuhnt, W., Schulz, M., et al. Orbitally-paced climate evolution during the middle Miocene“Monterey carbon-isotope excursion. Earth Planetary Science Letter, 2007 (261): 534-550.
    [149] Honisch, B., Hemming, N.G., Archer, D., et al. Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition. Science,2009(324): 1551-1554.
    [150] Hoogakker, B.A.A., Rohling, E.J., Palmer, M.R., et al. Underlying causes for long-term global ocean delta C-13 fluctuations over the last 1.20 Ma: Earth and Planetary Science Letters, 2006 (248): 15-29.
    [151] Hou Y M, Potts R, Yuan B Y, et al. Mid-Pleistocene Acheulean-like stone technology of the Bose Basin, South China. Science, 2000 (287): 1622-1625.
    [152] Houghton, S.D., Guptha, M.V.S. Monsoonal and fertility control on recent marginal sea and continental shelf coccolith assemblages from the western Pacific and northern Indian oceans. Marine Geology, 1991(97a): 251-259.
    [153] Hovan, S.A., Rea, D.K., Pisias, N.G., et al. A direct link between the China loess and marineδ18O records: Aeolian Flux to the north Pacific. Nature, 1989 (340): 296-298.
    [154] Hovan, S.A., Rea, D.K., and Pisias, N.G. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography, 1991(6): 349-370.
    [155] Howard, W.R., Prell, W.L. Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography, 1994 (9): 453-482.
    [156] Howell P. ARAND time series and spectral analysis package for the Macintosh, Brown University. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-044. Boulder, Colorado, USA: NOAA/NGDC Paleoclimatology Program, 2001.
    [157] Imbrie, J., Berger, A., Boyle, E.A., et al. ON THE STRUCTURE AND ORIGIN OF MAJOR GLACIATION CYCLES .2. THE 100,000-YEAR CYCLE: Paleoceanography, 1993 (8): 699-735.
    [158] Imbrie, J., and Imbrie, J.Z. Modeling the Climatic Response to Orbital Variations. Science, 1980 (207): 943-953.
    [159] Ingle, J.C., D. E. Karig, A. H. Bouma, et al. Site 292. In: Karig, D.E., J.C.Ingle, et al., (Eds.). Init. Reports of the Deep-Sea Drilling Project. Washington, D.C., U.S.Government Printing Office, 1975 (31): 67-82.
    [160] Jansen J H F, Kuijpers A, Troelstra S R. A Mid-Brunhes Climatic Event: Long-term changes in global atmosphere and ocean circulation. Science, 1986 (232): 619-622.
    [161] Jia, G.D., Chen, F.J., and Peng, P.A. Sea surface temperature differences between the Western equatorial Pacific and Northern South China Sea since the Pliocene and their paleoclimatic implications: Geophysical Research Letters, 2008( 35): 1-5.
    [162] Jian, Z.M., Wang, P.X., Chen, M.P., et al. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography, 2000 (15): 229-243.
    [163] Jolivet, L., Huchon, P., and Rangin, C. Tectonic Setting of Western Pacific Marginal Basins: Tectonophysics, 1989(160): 23-47.
    [164] Jordan, R.W., Winter, A. Assemblages of coccolithophorids and other living microplankton off the coast of Puerto Rico during January–May 1995. Marine Micropaleontology, 2000 (39):113–130.
    [165] Karig, D.E. Plate Convergence between Philippines and Ryukyu Islands. Marine Geology, 1973(14): 153-168.
    [166]Karl, D.M. Nutrient dynamics in the deep blue sea. Trends Microbiol, 2002 (10): 410-418.
    [167] Katherine, E. W., Carol, J. P., Robert, C. T. The oxygen isotope composition of planktonic foraminifera from the Guaymas Basin, Gulf of California: Seasonal, annual, and interspecies variability. Marine Micropaleontology, 2010 (74): 29-37.
    [168] Kawagata, S., Hayward, B.W., Grenfell, H.R, et al. Mid-Pleistocene extinction of deep-sea foraminifera in the North Atlantic Gateway (ODP sites 980 and 982). Palaeogeography Palaeoclimatology Palaeoecology, 2005 (221): 267-291.
    [169] Keigwin, L. D., Boyle, E. A. Carbon isotopes in deep-sea benthic foraminifera: Precession and changes in low-latitude biomass. Geophys. Monogr. Ser., 1985(32): 319-328.
    [170] Kemp, A.E.S., Grigorov, I., Pearce, R.B., et al. Migration of the Antarctic PolarFront through the mid-Pleistocene transition: evidence and climatic implications: Quaternary Science Reviews, 2010 (29): 1993-2009.
    [171] Kim, J.H., Rimbu, N., Lorenz, S.J., et al. North Pacific and North Atlantic sea-surface temperature variability during the holocene: Quaternary Science Reviews, 2004(23): 2141-2154.
    [172] Kinkel H, Baumann, K H, ?epek M. Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology, 2000 (39): 87-112.
    [173] Klaas, C., and Archer, D.E. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles, 2002(16): 1-14.
    [174] Kleiven, H.F., Jansen, E., Curry, W.B., et al. Atlantic Ocean thermohaline circulation changes on orbital to suborbital timescales during the mid-Pleistocene: Paleoceanography, 2003(18): 1-13.
    [175] Klejine, A. Morphology, Taxonomy and Distribution of extant Coccolithopho -rids (calcareous nannoplankton) (Ph.D.Thesis). Amsterdam: Vrije Universiteit, 1993.
    [176] Knappertsbusch, M. Geographic distribution of living and Holocene coccoli- thophores in the Mediterranean Sea. Marine Micropaleontology, 1993 (21): 219-247.
    [177] Kohfeld, K.E., Le Quere, C., Harrison, S.P., et al. Role of marine biology in glacial-interglacial CO2 cycles. Science, 2005 (308): 74-78.
    [178] Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M., et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science, 2002 (297): 226-230.
    [179] Kunz J, Bollinger K, Jessberger E K, et al. Ages of Australasian Tektites. Abstracts of the Lunar and Planetary Science Conference XXVI. Houston, TX: Lunar and Planetary Institute, 1995: 809-810.
    [180] Lawrence, K.T., Liu, Z., Herbert, T.D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science, 2006 (312): 79–83.
    [181] Le, J., Shackleton, N.J. Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary. Paleocenography, 1992 (7): 21-42.
    [182] Le Mouel, J.L., Courtillot, V., Blanter, E., et al. Evidence for a solar signaturein 20th-century temperature data from the USA and Europe: Comptes Rendus Geoscience, 2008 (340): 421-430.
    [183] Lea, D.W., Pak, D.K., Spero, H.J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations. Science, 2000 (289): 1719-1724.
    [184] Lear, C.H., Elderfield, H., Wilson, P.A. Cenozoic deep sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 2000 (287): 269-272.
    [185] Lee, Y.M., Wei, K.Y. Australasian microtektite in the South China Sea and the West Phillippine Sea: Implications for age, size, and location of the impact crater. Meteoritics Planetary Science, 2000 (35):1151-1155.
    [186] Lee, T.Y., Lawver, L.A. Cenozoic plate reconstruction of Southeast Asia, Tectonophysics, 1995 (251): 85-138.
    [187] Lewis, S.D., Hayes, D.E., Mrozowski, C.L. The origin of the west Philippine basin by inter-arc spreading, Geology and tectonics of Luzon and Marianas region, in Proceedings of CCOP-IOC-SEATAR Workshop, Manila, Philippines, Spec.Publ., edited by G.R.Blace and F.Zanoria, 1982 (1):31-51.
    [188] Li, J.J. The Environmental-Effects of the Uplift of the Qinghai-Xizang Plateau: Quaternary Science Reviews, 1991(10): 479-483.
    [189] Li, T.G., Zhao, J.T., Sun, R.T., et al. The variation of upper ocean structure and paleoproductivity in the Kuroshio source region during the last 200 kyr. Marine Micropaleontology, 2010 (75): 50-61.
    [190] Lisiecki, L.E., and Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthicδ18O records. Paleoceanography, 2005(20): 1-17.
    [191] Liu, C.L., Wang, P.X., Tian, J., et al. Coccolith evidence for Quaternary nutricline variations in the Southern South China Sea. Marine Micropaleontology, 2008 (69): 42-51.
    [192] Liu, T.S., Ding, Z.L., and Rutter, N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma.Quaternary Science Reviews, 1999 (18): 1205-1212.
    [193] Liu, Z.F., Trentesaux, A., Clemen, S., et al. Clay mineral assemblages in thenorthern South China Sea: implications for East Asian monsoon evolution over the past 2millinon years. Marine Geology, 2003(201): 133-146.
    [194] Lourens, L.J., Hilgen, F.J., Shackleton, N.J., et al. The Neogene period. In: Gradstein, F., Qgg, J., Smith, A., eds., A geologic time scale 2004. London: Cambridge University Press, 2005.
    [195] Lourens L J, Hilgen F J, Raffi I, et al. Early Pleistocene chronology of the Vrica Section (Calabria, Italy). Paleoceanography, 1996(11): 797-812.
    [196] Lourens L J, Hilgen F J, Raffi I. Base of Large Gephyrocapsae and astronomical calibration of early Pleistocene sapropels in ODP967 and 969: solving the chronology of the Vrica section. In: Robertson A H F, Emeis K C, Richter C, et al, Eds. Proceedings of the ODP Scientific Results. College Staton, TX: Ocean Drilling Program, 1998 (160):191-197.
    [197] Luthi, D., Le Floch, M., Bereiter, B., et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 2008 (453):. 379-382.
    [198] Lyle, M., Murray, D.W., Finney, B.P., et al. The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean. Paleoceanography, 1988 (3): 39-59.
    [199] Mahowald, N., Kohfeld, K., Hansson, M., et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments, Journal of Geophysical Research Atmoshperes, 1999 (104):15895–15916.
    [200] Mantyla, A.W. Potential Temperature in Abyssal Pacific Ocean.Journal of Marine Research, 1975 (33): 341-354.
    [201] Mantyla, A.W., Reid, J.L. Abyssal characteristics of the World Ocean waters: Deep Sea Research Part A. Oceanographic Research Papers, 1983 (30): 805-833.
    [202] Martinez-Garcia, A., Rosell-Mele, A., Geibert, W., et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma.Paleoceanography, 2009 (24): 1-14.
    [203] Martinez, J.I. Late Pleistocene Paleoceanography of the Tasman Sea:Implications for the Dynamics of the Warm Pool in the Western Pacific. Palaeogeography Palaeoclimatology Palaeoecology, 1994 (112): 19-62.
    [204] Matsuoka, H., Okada, H. Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropical Indian Ocean, Site 709, in Duncan R A, B.J., Peterson L C, ed., Proc ODP Sci Results, 1990 (115): 255-270.
    [205]McClymont, E.L., Rosell-Melé, A. Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition. Geology, 2005(33): 389–392.
    [206] McIntyre, A., Bè, A.H.W. Modern coccolithophores of the Atlantic Ocean-I. Placolith and cyrtoliths. Deep-Sea Research, 1967(14): 561–597.
    [207] McIntyre, A., Bè, A.H.W., Roche, M.B. Modern Pacific Coccolithophorida: a paleontological thermometer. Trans. N.Y. Acad. Sci. Trans. Ser. II 32, 1970: 720-731.
    [208] McIntyre, A., Molfino, B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science, 1996 (274): 1867-1870.
    [209] McKee, E.H. K-Ar ages of deep-sea basalts, Benham Rise, West Philippine Basin, Leg 31, Deep Sea Drilling Project. In:Karig, D.E., J.C. Ingle, et al, (eds.), Init. Reports of the Deep-Sea Drilling Project, Volume 31. Washington, D.C. , U.S.: Government Printing Office, 1975: 599-600.
    [210] Medina-Elizalde, M.A., Lea, D.W. The mid-Pleistocene transition in the tropical Pacific. Science, 2005 (310): 1009-1012.
    [211] Medina Elizalde, M.A. The Thermal Evolution of the Western Equatorial Pacific Warm Pool During the Pleistocene and Late Pliocene Epochs (Dissertation) Santa Barbara: UNIVERSITY OF CALIFORNIA, 2007.
    [212] Miao, Q., Thunell, R.C., and Anderson, D.M. Glacial-Holocene carbonate dissolution and sea surface temperatures in the South Chian and Sulu Seas. Paleoceanography, 1994 (9): 269-290.
    [213] Mielke, K.M. Reconstructing Surface Carbonate Chemistry and Temperature in Palaeoceans: Geochemical Results from Laboratory Experiments and the Fossil Record. M.Sc. Thesis, University California at Davis, Davis, CA, 2001:166.
    [214] Milankovich. Kanon der Erdbestrahlung und anwendung auf dasEiszeitenproblem. Belgrade Serbian Academy of Science, 1941(133): 633.
    [215] Mitchell-Innes, B.A., Winter, A. Coccolithophores: a major phytoplankton component in mature upwelled waters off the Cape Peninsula, SouthAfrica in March, 1983. Mar. Biol., 1987 (95): 25–30.
    [216] Mix, A.C., Pisias, N.G., Rugh, W., et al. Benthic foraminifer stable isotope record from site 849(0-5Ma): Local and global climate changes. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., et al., eds., Proc.ODP Sci.Results, 1995 (138): 371-412.
    [217]Mohtadi, M., Hebbeln, D., Ricardo, S.N., et al. El nińo-like pattern in the Pacific during marine isotope stages (MIS) 13 and 11? Paleoceanography, 2006 (21): 1-9.
    [218] Molfino, B., McIntyre, A. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 1990 (5): 997-1008.
    [219] Morley, J.J., and Heuseur, L.E. Role of orbital frocing in east Asian monsoon climates during the last 350 ky: evidence from terretrial and marine climate proxies from core RC14-99: Palaeogeography, 1997(12): 483-493.
    [220] Mudelsee, M., and Schulz, M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280ka. Earth and Planetary Science Letters, 1997 (151): 117-123.
    [221] Mudelsee, M., and Stattegger, K. Exploring the structure of the mid-Pleistocene revolution with advanced methods of time series analysis. Geologische Rundschau, 1997 (86): 499-511.
    [222] Mulitza, S., Arz, H., Kemle-von, M.S., et al. The South Atlantic carbon isotope record of planktonic foraminifera. In: Fischer, G., Wefer, G., eds. Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin: Springer-Verlag, 1999: 427-445.
    [223] Muller, C. Late Miocene to recent Mediterranean biostratigraphy and paleoenvironments based on calcareous Nannoplankton. In: Stanley, D.J., and Wezel, F.C., Editors, Geological Evolution of the Mediterranean Basin, New York: Springer-Verlag, 1985: 471-485.
    [224] Negri, A., Capotondi, L., Keller, J. Calcareous nannofossils, planktonic foraminifera and oxygen isotopes in the late Quaternary sapropels of the Ionian Sea.Marine Geology, 1999(157): 89–103.
    [225] Negri, A., Giunta, S. Calcareous nannofossil paleoecology in the sapropel S1 of the eastern Ionian Sea: paleoceanographic implications. Palaeogeography Palaeoclimatology Palaeoecology, 2001(169): 101–112.
    [226]Negri, A., Morigi, G., Giunta, S. Are productivity and stratification important to sapropel deposition? Microfossil evidence from late Pliocene insolation cycle 180 at Vrica, Calabria. Paleogeogr. Palaeoclim.Palaecol., 2003 (190): 243–255.
    [227] Okada, H. Biogeographical control of modern assemblages in surface sediments of Ise Bay. Mikawa Bay and Kumano-Nada, off coast of central Japan. INA Florence Meet. Mem. Sci. Geol., 1992 (43): 431–449.
    [228] Okada, H., Honjo, S. Distribution of Coccolithophores in Marginal Seas Along Western Pacific Ocean and in Red-Sea. Marine Biology, 1975 (31): 271-285.
    [229] Okada, H., Honjo, S. Distribution of oceanic coccolithophorids in Pacific. Deep-Sea Research, 1973(20): 355-374.
    [230] Okada H, Matsuoka M. Lower-photic nannoflora as an indicator of the late Quaternary monsoonal palaeo-record in the tropical Indian Ocean. In: Moguilevsky A, Whatley R (Eds.) Microfossils and Oceanic Environments. Aberystwyth Press, University of Wales, 1996: 231-245.
    [231] Okada, H., Wells, P. Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin current off Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997(131): 413-432.
    [232] O'Neill, T.A., Hayward, B.W., Kawagata, S., et al. Pleistocene extinctions of deep-sea benthic foraminifera: The south Atlantic record. Palaeontology, 2007 (50): 1073-1102.
    [233] Oppo, D.W., Fairbanks, R.G. Carbon isotope compositions of the tropical surface water during the past 22,000 years.Paleoceanography, 1989 (4): 333-351.
    [234] Oppo, D.W., Raymo, M.E., Lohmann, G.P., et al. Aδ13C record of upper North Atlantic deep-water during the past 2.6Ma. Paleoceanography, 1995 (10): 373-394.
    [235] Ortiz, J.D., Mix, A.C., Rugh, W., et al. Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbonisotopic disequilibrium. Geochimica Et Cosmochimica Acta, 1996 (60): 4509-4523.
    [236] Paillard, D. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 1998 (391): 378-381.
    [237] Paytan, A., Kastner, M., Chavez, F. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science 1996 (274): 1355-1357.
    [238] Pedersen, T.F. Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B.P). Geology, 1983(11): 16-19.
    [239] Pedersen T F, Nielsen B, Pickering M. Timing of late Quaternary productivity pulses in the Panama Basin and implication for atmospheric CO2. Paleoceanography, 1991(6): 657-677.
    [240] Peeters, F.J.C., Acheson, R., Brummer, G.J.A., et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods: Nature, 2004 (430): 661-665.
    [241] Pelletier, J. Coherence resonance and ice ages. Journal of Gephysical Research, 2003(108): ACL11.1-ACL11.14.
    [242] Perks, H.M., Charles, C.D., Keeling, R.F. Precessionally forced productivity variations across the equatorial Pacific. Paleoceanography, 2002(17):1-7.
    [243] Peterson L C, Prell W L. Carbonate preservation and rates of climatic change: an 800kyr record from the Indian Ocean. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington D C: AGU Geophys Monogr, 1985 (32): 251-269.
    [244] Petit, J.R., Jouzel, J., Raynaud, D., et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 1999a(399): 429-436.
    [245] Pflaumann, U., Jian, Z. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: a new transfer technique to estimate regional sea-surface temperature: Marine Geology, 1999 (156): 41-83.
    [246] Philander, S.G., Fedorov, A.V. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 2003(18):1-23.
    [247] Pisias, N.G. Late Quaternary sediment of the Pannama Basin:sedimentation rates, periodicities, and controls of carbonate and opal accumulation: Geological Society of America Memoir, 1976 (145): 375-391.
    [248] Pujos, A. Ca1careous nannofossils and the <25μm fraction in Quaternary sediments of the subtropical NE Atlantic Oceano. Proc. INA Florence Meet. Mem. Sci. Geol., 1992 (43): 409–429. Padova.
    [249] Qiu B, L.R. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary: Journal of Geophysical Research, 1996 (101): 12315-12330.
    [250] Qu, T.D., Kim, Y.Y., Yaremchuk, M., et al. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? Journal of Climate, 2004(17): 3644-3657.
    [251] Qu, T.D., Lukas, R. The bifurcation of the North Equatorial Current in the Pacific. Journal of Physical Oceanography, 2003(33): 5-18.
    [252] Raffi, I. Revision of the early-middle Pleistocene calcareous nannofossil biochronology (1.75-0.85Ma). Mar Micropaleontol, 2002 (45):25-55.
    [253] Raffi I, Backman J, Rio D, et al. Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and ODP Site 677. Paleoceanography, 1993 (8):387-408.
    [254]Ravelo, A.C., Andreasen, D.H., Lyle, M., et al. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 2004 (429): 263-267.
    [255] Ravelo A C, Fairbanks R G. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography, 1992 (7): 815-831.
    [256] Ravelo, A., Shackleton, N.J. Evidence for surface-water circulation changes at site 851 in the eastern tropical Pacific Ocean, in Pisias, N. G., et al., Proceedings of the Ocean Drilling Program, Scientific results. College Station, Texas: Ocean Drilling Program, 1995 (138): 503-514.
    [257] Raymo,M.E. The timing of major climate terminations. Paleoceanography,1997(12): 577-585.
    [258] Raymo, M. E., Oppo, D.W., Curry, W. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective. Plaeoceanography, 1997 (12): 546– 559.
    [259] Rea, D.K. The paleoclimatic record provided by eolian deposition in the deep sea: teh geologic history of wind Rev. Geophys., 1994(32): 159-195.
    [260] Rea D K, Hovan S A. Grain size distribution and depositionalprocesses of the mineral component of abyssal sediments: Lessons from the North Pacific. Paleoceanography, 1995 (12): 251-258.
    [261] Reid, J.L. The shallow salinity minima of the Pacific Ocean: Deep Sea Research and Oceanographic Abstracts, 1973 (20): 51-68.
    [262] Reid, J.L., Lonsdale, P.F. Flow of Water through Samoan Passage: Journal of Physical Oceanography, 1974 (4): 58-73.
    [263] Reid, J.L., Lynn, R.J. On the influence of the Norwegian-Greenland and Weddell seas upon the bottom waters of the Indian and Pacific oceans: Deep Sea Research and Oceanographic Abstracts, 1971 (18): 1063-1088.
    [264] Reid, J.L., Mantyla, .A.W. On the vertical exchange within the Philippine Sea. EOS Trans. AGU, 1980 (61): 274.(Abstract).
    [265] Rich, J.J., Hollander, D., and Birchfield, G.E. Role of regional bioproductivity in atmospheric CO2 changes. Global Biogeochemical Cycles, 1999 (13): 531-553.
    [266] Richmond,C.E., Breitburg, D.L., Rose, K.A. The role of environmental generalist species in ecosystem function. Ecological Modelling, 2005 (188): 279-295.
    [267] Rickaby, R.E.M., Bard, E., Sonzogni, C., et al. Coccolith chemistry reveals secular variations in the global ocean carbon cycle? Earth and Planetary Science Letters, 2007 (253): 83-95.
    [268] Rio D, Raffi I, and Villa G. Pliocene-Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. In: Kastens K A, Mascle J, et al. Proc ODP Sci Results, College Station, TX, 1990 (107): 513-533.
    [269] Rodgers, K.B., Lohmann, G., Lorenz, S., et al. A tropical mechanism for Northern Hemisphere deglaciation. Geochemistry Geophysics Geosystems, 2003(4):1-10.
    [270] Rohling E J, Fenton M, Jorissen F J et al. Magnitude of sea-level lowstands of the past 500, 000 years. Nature, 1998 (394):162-165.
    [271] Romanek, C.S., Grossman, E.L., and Morse, J.W. Carbon Isotopic Fractionation in Synthetic Aragonite and Calcite - Effects of Temperature and Precipitation Rate: Geochimica Et Cosmochimica Acta, 1992(56): 419-430.
    [272] Roth, P.H., Berger, W.H. Distribution and dissolution of coccoliths in the South and Central Pacific. Dissolution of Deep-sea Carbonates. Cushm. Found. Foram. Res., Spec. Publ., 1975 (13): 87–113.
    [273] Rosenthal, Y., Oppo, D.W., and Linsley, B.K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophysical Research Letters, 2003 (30): 1-4.
    [274] Ruddiman, W.F., Raymo, M.E. Northern Hemisphere Climate Regimes during the Past 3-Ma - Possible Tectonic Connections: Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1988 (318): 411-430.
    [275] Saltzman, B. Stochastically-driven climatic fluctuations in the sea-ice, ocean temperature, CO2 feedback system. Tellus, 1982 (34): 97-112.
    [276] Sarnthein, M. Sand deserts during glacial maximum and climatic optimum. Nature, 1978 (271): 43-46.
    [277] Schmidt, G., Mulitzak, S. Global calibration of ecological models for planktic foraminifera from coretop carbonate oxygen-18. Marine Micropaleontology, 2002(44): 125-140.
    [278] Schmidt, H., Berger, W.H., Bickert, T., et al. Quaternary carbon isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. Proc. Ocean Drilling Program Sci. Results, 1993 (130): 397–409 .
    [279] Schmieder, F., von Dobeneck, T., and Bleil, U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth and Planetary Science Letters, 2000 (179): 539-549.
    [280] Schneider, D.A., Kent, D.V., Mello, G.A. A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change. Earth Planet Sc Lett, 1992 (111): 395-405.
    [281] Schneidermann, N. Selective dissolution of recent coccoliths in the Atlantic Ocean. In: Ramsay, A.T.S. (Ed.), Oceanic Micropaleontol, 1977(2):1009-1053.
    [282] Schulz, M., Berger, W.H., Sarnthein, M., et al. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophysical Research Letters, 1999 (26): 3385-3388.
    [283] Schulz, M., and Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences, 2002 (28): 421-426.
    [284] Schulz, M., Stattegger, K. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Computers & Geosciences, 1997(23): 929-945.
    [285] Seidel, D.J., Fu, Q., Randel, W.J., et al. Widening of the tropical belt in a changing climate: Nature Geoscience, 2008 (1): 21-24.
    [286] Seno, T. Was there a North New Guinea Plate? Geol.Surv.Jpn.Rep., 1984 (263): 29-42.
    [287] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Les Meth.Quant. d’etude Var. Clim. an Cours du Pleist., Coll. Int. CNRS 219, 1974: 203-209.
    [288] Shackleton, N.J. Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Andersen, N.R., Malahoff, A. (Eds.), The Fate of Fossil Fuel CO2 in the Oceans. Plenum, New York, 1977: 401-428.
    [289] Shackleton, N.J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 2000 (289): 1897-1902.
    [290] Shackleton, N.J., Hall, N.J., Pate, D. Pliocene stable isotope stratigraphy of site 846. In: Pisias, N.G., Mayer, L.A., Janecek, T.R. et al., eds., Proc. ODP Sci. Results, 1995a (138): 337-355.
    [291] Sigman, D.M., and Boyle, E.A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 2000 (407): 859-869.
    [292] Simon D, Houghton, M V, and Guptha S. Monsoonal and fertility controls on recent marginal sea and continental shelf coccolith assemblages from the westernPacific and northern Indian Oceans. Marine Geology, 1991(97): 251-259.
    [293] Solomon, S., Daniel, J.S., Sanford, T.J., et al. Persistence of climate changes due to a range of greenhouse gases: Proceedings of the National Academy of Sciences of the United States of America, 2010 (107): 18354-18359.
    [294] Spero, H.J., Bijma, J., Lea, D.W., et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 1997 (390): 497-500.
    [295] Spero, H.J., Mielke, K.M., Kalve, E.M., et al. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 2003 (18):1-16.
    [296] Steph, S., Regenberg, M., Tiedemann, R., et al. Stable isotopes of planktonic foraminifera from tropical Atlantic/Caribbean core-tops: Implications for reconstructing upper ocean stratification. Marine Micropaleontology, 2009 (71): 1-19.
    [297] Stephens, B.B., Keeling, R.F. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature, 2000 (404): 171-174.
    [298] Stott, L., Poulsen, C., Lund, S., et al. Super ENSO and global climate oscillations at millennial time scales. Science, 2002 (297): 222-226.
    [299] Sun, X. J., Luo, Y. L., Huang, F. et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Marine Geology, 2003 (201): 97-118.
    [300] Takahashi, K., Okada, H. Environmental control on the biogeography of modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia. Marine Micropaleontology, 2000 (39): 73–86.
    [301] Talley, L.D. Distribution and Formation of North Pacific Intermediate Water: Journal of Physical Oceanography, 1993 (23): 517-537.
    [302] Tanaka, Y. Calcareous nannoplankton thanatocoenoses in surface sediments from seas around Japan. Sci. Rep. Tohoku Univ., 2nd Ser. (Geol.), 1991 (61): 127-198.
    [303] Tauxe, L., Herbert, T., Shackleton N J, et al. Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remanence acquisition inmarine carbonates and the Asian loess sequences. Earth Planetary Science Letter, 1996 (140): 133-146.
    [304]Tedesco,K., Thunell,R., Astor,Y., Muller-Karger, F. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: Seasonal and interannual variations. Marine Micropaleontology, 2007 (62): 180-193.
    [305] Thunell, R., Anderson, D., Gellar, D., et al. Sea-Surface Temperature Estimates for the Tropical Western Pacific during the Last Glaciation and Their Implications for the Pacific Warm Pool. Quaternary Research, 1994 (41): 255-264.
    [306] Thierstein, H.R., Geitzenauer, K.R., and Molfino, B. Global Synchroneity of Late Quaternary Coccolith Datum Levels-Validation by Oxygen Isotopes.Geology, 1977 (5): 400-404.
    [307] Tian, J., Wang, P.X., and Cheng, X.R. Development of the East Asian monsoon and Northern Hemisphere glaciation: oxygen isotope records from the South China Sea. Quaternary Science Reviews, 2004 (23): 2007-2016.
    [308] Toggweiler, J.R., Russell, J.L.,Carson, S.R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 2006 (21): 1-15.
    [309] Trenberth, K.E., Branstator, G.W., Karoly, D., et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research-Oceans, 1998 (103): 14291-14324.
    [310] Urey, H.C. The thermodynamic properties of isotopic substances. Journal of the Chemical Society [London], 1947: 562-581.
    [311] Uyeda, S., and Benavrah, Z. Origin and Development of Philippine Sea. Nature-Physical Science, 1972 (240): 176-178.
    [312] Venuti, A., Florindo, F., Michel, E., et al. Magnetic proxy for the deep (Pacific) western boundary current variability across the mid-Pleistocene climate transition: Earth and Planetary Science Letters, 2007 (259): 107-118.
    [313] Venz, K.A., Hodell, D.A. New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090. Palaeogeography Palaeoclimatology Palaeoecology, 2002 (182): 197-220.
    [314] Venz K.A., Hodell, D.A., Stanton, C., et al. A 1.0 Ma record of glacial North Atlantic intermediate water variability from ODP site 982 in the northeast Atlantic. Paleoceanography, 1999 (14): 42–52.
    [315] Visser, K., Thunell, R., and Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 2003 (421): 152-155.
    [316] Wang, L. Sea surface temperature history of the low latitude western Pacific during the last 5.3 million years. Paleogeo. Paleoclim. Paleoeco., 1994(108): 379–436.
    [317] Wang, L., Sarnthein, M., Erlenkeuser, H., et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea.Marine Geology, 1999 (156): 245-284.
    [318] Wang, L.J., Wang, P.X. Late Quaternary paleoceanography of the South China Sea: glacial-interglacial contrast in an enclosed basin. Paleoceanography, 1990 (5): 77-90.
    [319] Wang, P.X. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 2004 (19): 1-16.
    [320] Wang, P.X., Clemens, S., Beaufort, L., et al. M. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary Science Reviews, 2005 (24): 595-629.
    [321] Wang, P.X., Prell, W.L., Blum, P., et al. Proceedings of the Ocean Drilling Program, Initial Reports 184, Ocean Drilling Program College Station, TX, 2000.
    [322] Wang, P.X., Tian, J., Cheng, X.R., et al. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 2003a (31): 239-242.
    [323] Wang, P.X., Tian, J., Cheng, X.R., et al. Exploring cyclic changes of the ocean carbon reservoir. Chinese Science Bulletin, 2003b (48):2536-2548.
    [324] Wang, P.X., Tian, J., Cheng, X.R., et al. Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison. Paleoceanography, 2004 (19): 1-16.
    [325] Wang, P.X., Tian, J., and Lourens, L.J. Obscuring of long eccentricity cyclicityin Pleistocene oceanic carbon isotope records: Earth and Planetary Science Letters, 2010 (290): 319-330.
    [326] Wara, M., Ravelo, A.C., Delaney, M.L. Permanent El Ni?o-like conditions during the Pliocene warm period. Science, 2005(309): 758–761.
    [327] Warren, B.A. Transpacific hydrographic sections at lats. 43°S and 28°S: the SCORPIO expedition--II. deep water. Deep Sea Research and Oceanographic Abstracts, 1973 (20): 9-38.
    [328] Weaver P P E, Thomson J. Calculating erosion by deep-sea turbidity currents during initiation and flow. Nature, 1993 (364):136-138.
    [329] Webster, P.J. The Role of Hydrological Processes in Ocean-Atmosphere Interactions. Reviews of Geophysics, 1994 (32): 427-476.
    [330] Wei, W.C. Calibration of Upper Pliocene Lower Pleistocene Nannofossil Events with Oxygen Isotope Stratigraphy. Paleoceanography, 1993 (8): 85-99.
    [331] Wei, K.Y., Lee, T.Q. The Shipboard Scientific Party of IMAGESⅢ/ MD106-IPHIS Cruise (LegⅡ). Nannofossil Biochronology of Tephra Layers in Core MD972143, Benham Rise, Western Philippine Sea. TAO, 1998 (9):156-163.
    [332] Wells P., Okada H. Response of nannoplankton to major changes in sea-surface temperature and movements of hydrological fronts over Site DSDP 594 (south Chatham Rise, southeastern New Zealand), during the last 130kyr. Marine Micropaleontology. 1997 (32): 341-363.
    [333] Westbroek, P., Brown, C.W., Vanbleijswijk, J., et al. A Model System Approach to Biological Climate Forcing-the Example of Emiliania huxleyi. Global and Planetary Change, 1993 (8): 27-46.
    [334] Wiesner M G., Zheng L, Wong H et al. Fluxes of particulate matter in the South China Sea. In: Ittekkot J, Sch?fer P, Honjo S D P J (Eds.), Particle Flux in the Ocean. Wiley, Chicheste, 1996.
    [335] Winter A., Jordan R. W., Roth P. H.. Biogeography of living coccolithophores in ocean waters. In: Winter, A., Siesser, W. G. (Eds.). Coccolithophores. Cambridge: Cambridge University Press, 1994: 161-178.
    [336] Wise, S.W. Calcareous nannofossils from cores recovered during Leg 18, DeepSea Drilling Project: biostratigraphy and observation of diagenesis. Washington: Init Repts DSDP., 1973 (18): 569-615.
    [337] Wunsch, C., The spectral description of climate change including the 100 ky energy. Climate Dynamics, 2003 ( 20): 353-363.
    [338] Xiao J L, An Z S. Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999 (154):179-189.
    [339] Yan, X.-H., Ho, C.-R., Zheng, Q., et al. Temperature and Size Variabilities of the Western Pacific Warm Pool. Science, 1992 (258): 1643-1645.
    [340] Young J R. Functions of coccoliths. In: Winter, A, Siesser, W G (Eds.). Coccolithophores. Cambridge: Cambridge University Press, 1994: 63-82.
    [341] Young J, Westbroek P. Genotypic variation in the coccolithophorid species Emiliania huxleyi. Mar Micropaleontol, 1991 (18): 5-23.
    [342] Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., et al. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 2001(292): 274-278.
    [343] Zhang, J.Y., Wang, P.X., Li, Q.Y., et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550kyr: foraminiferal and nannofossil evidence from ODP Hole 807A. Marine Micropaleontology, 2007 (64):121-140.
    [344] Zhang, X.Y., Lu, H.Y., Arimoto, R., et al. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records: Earth Planet. Sci. Lett., 2002 (202): 637-643.
    [345] Zhou, L.P., Shackleton, N.J. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences. Earth Planetary Science Letter, 1999 (168):117-130.
    [346] Ziveri, P., Baumann, K.-H., Boeckel, B., et al. Biogeography of selected Holocene coccoliths in the Atlantic Ocean. In: Thierstein, H.R., Young, Y.R. (Eds.), Coccolithophores from Molecular Processes to Global Impact. Springer, Berlin, 2004: 403-428.
    [347] Ziveri, P., Rutten, A., de Lange, G.J., et al. Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments.Paleogeography Paleoclimatology Paleoecology, 2000 (158): 175-195.
    [348] Ziveri, P., Thunell, R.C., Rio, D. Export production of coccolithophores in an upwelling region: results from San Pedro Basin, Southern California Borderlands. Marine Micropaleontology, 1995 (24): 335-358.
    [349]成鑫荣,汪品先.运用超微化石探索晚第四纪冲绳海槽上层海水垂向结构的变化.中国科学D辑, 1998 (2): 137-141.
    [350]丁仲礼.米兰科维奇冰期旋回理论-挑战与机遇.第四纪研究, 2006 (26): 710-717.
    [351]黄宝琦,李保华,翦知湣. 1.5Ma以来南海南北上部水体温度变化对比.海洋地质与第四纪地质, 2004 (24): 79-83.
    [352]金海燕.赤道西太平洋第四纪浮游有孔虫群与暖池的变动硕士论文.上海:同济大学, 2004.
    [353]金海燕,翦知湣,刘东升.西太平洋翁通-爪哇海台晚第四纪浮游有孔虫群与古温度变化:海洋地质与第四纪地质, 2003 (23): 65-71.
    [354]翦知湣.末次冰盛期西太平洋深层水团的影响急剧增强.科学通报, 1995 (40): 1983-1986.
    [355]李常珍,李乃胜,林美华.菲律宾海的地势特征.海洋科学, 2000 (24): 47-51.
    [356]李铁刚,薛胜吉.全新世/冰期西赤道太平洋边缘海碳酸钙沉积旋回及其古海洋学意义.海洋地质与第四纪地质, 1994 (14): 25-32.
    [357]刘传联,成鑫荣.从钙质超微化石看南沙海区近2Ma海水上层结构的变化,中国科学(D), 2001 (26): 462-466.
    [358]刘传联,张拭颖,金海燕,等.暖池区1.53Ma以来上层海水变化的颗石藻证据:同济大学学报(自然科学版), 2005 (33): 1172-1176.
    [359]刘昭蜀,于珏.菲律宾海地质.北京:海洋出版社, 1989: 1-250.
    [360]李前裕,田军,汪品先.认识偏心率周期的地层古气候意义.地球科学(中国地质大学学报), 2005 (30): 519-528.
    [361]李霞,赵泉鸿,黄宝琦,等.中更新世撞击事件年龄的高分辨率估算.海洋地质与第四纪地质, 2004 (24): 73-77.
    [362]汪品先.冰期旋回中西太平洋边缘海的季节性与暖池的多变性.中国科学D辑, 1998 (28): 1-6.
    [363]汪品先.探索大洋碳储库的演变周期:科学通报, 2003(48): 2216-2227.
    [364]汪品先,田军,成鑫荣.第四纪冰期旋回转型在南沙深海的记录.中国科学D辑, 2001(31): 793-799.
    [365]汪品先,翦知湣,刘志飞.地球圈层相互作用中的深海过程和深海记录(Ⅱ):气候变化的热带驱动和碳循环.地球科学进展, 2006 (21): 338-345.
    [366]熊志方, 2010.热带西太平洋硅藻席地球化学:碳、硅循环及古海洋响应.青岛,中国科学院研究生院(中国科学院海洋研究所).
    [367]翦知湣,李保华,王吉良.从微体化石看西太平洋暖池的形成和演化.第四纪研究, 2003 (23): 185-192.
    [368]钱建兴.晚第四纪以来南海古海洋学研究.科学出版社, 1999.
    [369]石学法,陈丽蓉.西菲律宾海晚第四纪沉积地球化学特征.海洋与湖沼, 1995 (26): 124-131.
    [370]孙东怀,安芷生,苏瑞侠,等.最近2.6 Ma中国北方季风环流与西风环流演变的风尘沉积记录.中国科学D辑:地球科学, 2003(33): 497-504.
    [371]孙荣涛.黑潮流溪与暖池区晚更新世以来的古环境研究.青岛:中国科学院研究生院(中国科学院海洋研究所, 2006.
    [372]孙守勋,腾军.菲律宾海的气候特征.海洋预报, 2003 (20): 31-39.
    [373]田军.南海ODP1143站有孔虫稳定同位素揭示的上新世至更新世气候变化.上海:同济大学, 2002.
    [374]田军,汪品先,成鑫荣.更新世南海南部上层海水结构变化的岁差驱动.自然科学进展, 2004, 14 (6): 683-688.
    [375]王吉良,赵泉鸿,成鑫荣,等.南海中更新世微玻陨石事件的年龄估算:海陆对比复杂性的一个例证.科学通报, 2000 (45): 2558-2562.
    [376]王汝建,翦知湣,肖文申,等.南海第四纪的生源蛋白石记录:与东亚季风、全球冰量和轨道驱动的联系.中国科(D辑):地球科学, 2007 (4): 521-533.
    [377]汪品先主编.十五万年来的南海。上海:同济大学出版社, 1995: 1-184.
    [378]阎军.西太平洋陆源海沉积中的碳酸钙旋回.海洋科学, 1989 (5): 28-32.
    [379]杨守业,李从先.长江与黄河沉积物REE地球化学及示踪作用.地球化学, 1999 (28): 374-380.
    [380]赵京涛,李铁刚,常凤鸣,等.近190kaB.P.以来西太平洋暖池北缘上层海水结构和古生产力演化特征及其控制因素-来自钙质超微化石、有孔虫和同位素的证据.海洋与湖沼, 2008 (39): 305-311
    [381]赵泉鸿,翦知湣,成鑫荣,等.中更新世撞击事件对海洋环境的影响-南海ODP1144站的高分辨率记录.微体古生物学报, 2004 (21): 130-135.
    [382]赵泉鸿,翦知湣,李保华,等.南沙深海沉积中的中更新世微玻陨石.中国科学(D辑), 1999 (29): 45-49
    [383]张弦,俞慕耕,江伟.菲律宾海及其临近海区的水文特征.海洋通报, 2004 (23): 8-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700