长江口海区近百年沉积物中的生物硅记录及其对流域人类活动的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年,长江流域物质输入发生很大变化。建坝使输沙量减少从而降低河口溶解硅浓度,流域人类活动加剧导致了营养盐N、P的增加。物质输入的变化必然影响长江口表层生产力的变化。从而对河口生态环境造成影响。本文通过生物硅指标,揭示人类活动影响下长江口海区表层生产力的变化。
     本研究利用长江口杭州湾外泥质沉积区获得的两个浅孔(Cx21、Cx38),进行了210pb和137Cs、粒度、生物硅、有机碳和有机氮含量分析,旨在揭示近百年长江入海物质变化在沉积物中的纪录。依据两钻孔沉积物210pb和137Cs测试结果一平均沉积速率分别为Cx21孔0.94cm/yr和Cx38孔2.05cm/yr,结合沉积物粒度-长江输沙量变化对比,确定了两孔的年代模式。在此基础上,综合各指标,将两孔近百年沉积物从下向上分为4个阶段。
     Ⅰ、Cx21孔100-70cm和Cx38孔200-125cm,对应于上世纪50年代初以前的沉积物堆积。沉积物含砂量较高,生物硅和有机质含量均较低。生物硅平均含量分别为0.76%和0.64%,有机碳平均含量分别为0.49%和0.50%,有机氮平均含量分别为0.063%和0.066%;生物硅和有机碳、氮波动基本一致;
     Ⅱ、Cx21孔69-55cm和Cx38孔124-95cm,可对应于十九世纪50年代初-60年代初的堆积。两孔沉积物颗粒较细,生物硅含量较高,Cx21孔有机质较高,Cx38孔有机质略高。生物硅平均含量分别为0.87%和0.82%,有机碳平均含量分别为0.56%和0.54%,有机氮平均含量分别为0.074%和0.069%;生物硅和有机碳、氮波动在Cx21孔仍基本一致,但在Cx38孔有所分异;
     Ⅲ、Cx21孔54-26cm和Cx38孔94-55cm,可对应于十九世纪60年代初-80年代中期的堆积。两孔沉积物含砂量均较高,呈现两峰一谷:60年代早中期--峰值,70年代--谷值,80年代早期--峰值,生物硅和有机质的平均含量都处于较低水平。两孔生物硅平均含量分别为0.80%和0.65%,有机碳平均含量分别为0.51%和0.50%,有机氮平均含量分别为0.065%和0.066%;Cx21孔中生物硅和有机碳、氮波动基本一致,Cx38孔两者完全分异;
     Ⅳ、Cx21孔自25cm以上,Cx38孔自54cm以上,相当于十九世纪80年代中期以来长江入海泥沙显著减少时期的堆积。两孔沉积物中含砂量显著减少,生物硅含量于80年代后期到90年代前期迅速增加,自90年代中后期以来基本维持在低值。Cx21孔中有机碳、氮的分布和生物硅波动基本一致,而Cx38孔有机碳、氮的平均含量却持续增加,并在钻孔表层达到全孔的最高值。本段生物硅平均含量分别为0.82%和0.71%,有机碳平均含量分别为0.60%和0.56%,有机氮平均含量分别为0.068%和0.073%。
     以上4个阶段生物硅和有机碳、氮含量的变化可反映近百年来长江流域的自然和人类活动过程,尤其是流域人类活动包括:水库截砂—入海溶解硅降低和近几十年来工农业发展导致长江入海N、P营养盐物质输入的增加。
     上世纪初至中叶,长江输沙量和营养盐的输入变化受人类活动干扰较小,长江口浮游藻类以硅藻为主,两钻孔沉积物中生物硅和有机质含量基本一致,又由于表层海温较低,从而导致生物硅和有机质含量均较低。
     自上世纪50年代以来,随着新中国成立,人口恢复增长,生产活动加快,流域人类活动开始增强。但对河口生态环境开始出现明显影响的时期始于上世纪70年代末,即改革开放以后,入海溶解N、P开始增加,长江口外浮游藻类受到影响。1985年之后,随着葛洲坝的建成,入海输沙量急剧减少,导致溶解硅下降,相反在工农业活动下,溶解N、P浓度却急剧增加,所以本研究沉积物中生物硅自80年代后期先呈现短暂高峰后显著降低,而有机碳氮却持续上升,反映了营养盐增加时期,首先是硅藻的大量繁殖,但随着溶解硅的消耗,硅藻类生物受到硅限制,过多的氮磷导致甲藻等其他有毒藻类繁殖。
     不过上述现象出现在离长江口较近的Cx38孔,在离长江口较远的Cx21孔,上世纪80年代末、90年代初也出现了生物硅的短暂高峰,并在此后显著降低,但有机碳、氮基本也呈同步变化,并未在表层出现高含量现象,反映了该孔所在位置有毒藻类的繁殖尚不明显。Cx38孔位于低氧区,而Cx21孔在低氧区之外,前者水深较大,沉积物颗粒较细,后者水深较浅,沉积物颗粒较粗,可能是造成上述差异的主要原因。
In recent decades, material inputs of the Yangtze River Basin have changed dramatically. Dam construction reduces sediment load and the DSi concentration of the estuary. Human activities have contributed to the increase of nutrient N and P. Changes of the material input can inevitably affect the sea surface productivity and the ecological environment of the Yangtze Estuary. In this paper, biogenic silica is used to reveal sea surface productivity changes affected by human activities in the Yangtze estuary.
     In this paper, two vibrocores (Cx21 and Cx38) were obtained from the muddy sediments off the Yangtze estuary to examine changes in sediment inputs from the river basin. Core sediment samples were analysized for 210Pb and 137Cs, grain size, biogenic silica (BSi), organic carbon (TOC) and nitrogen (TN) content. Chronological sediment patterns of about one-hundred years of the two cores were achieved on the basis of sedimentation rates derived from 210Pb and 137Cs test and associated sediment lithology. Four sediment stages of the past century can be identified as shown below (bottom upward):
     StageⅠcan correspond to the core depth 100-70cm of Cx21 and 200-125cm of Cx38. This sediment stage is characterized by the high content of sand and the general lows of BSi, TOC and TN. Sedimentation rates suggest a time period of late 19th century to 1950s. The average BSi contents of the two vibrocores are 0.76% and 0.64%, the average TOC contents are 0.49% and 0.50%, the average TN contents are 0.063% and 0.066%; BSi fluctuates synchronously with TOC and TN.
     StageⅡcan correspond to the core depth 70-55cm of Cx21 and 125-95cm of Cx38. This sediment stage is denoted by the markedly decrease of the sand content, and the general highs of BSi, TOC and TN. Sedimentation rates of vibrocores suggest the time period of 1950s-1960s. The average BSi contents are 0.87% and 0.82%, the average TOC contents are 0.56% and 0.54%, the average TN contents are 0.074% and 0.069%; In Cx21, BSi fluctuates synchronously with TOC and TN, but in Cx38, they begin to fluctuate unsynchronously.
     StageⅢcan correspond to the core depth 55-25cm of Cx21 and 95-55cm of Cx38. This sediment stage occurs the high content of sand and the general lows of BSi, TOC and TN. Sedimentation rates of the two vibrocores infer to the time period of 1960s-1980s. The average BSi contents are 0.80% and 0.65%, the average TOC contents are 0.51% and 0.50%, the average TN contents are 0.065% and 0.066%; In Cx21, BSi fluctuates still synchronously with TOC and TN, but in Cx38, they fluctuate unsynchronously.
     Stage IV can be linked to the core depth 25-0cm of Cx21 and 55-0cm of Cx38. This sediment stage corresponds to 1980s-2005, in which sand content has significantly reduced, but, BSi increased in the late 1980s-1990s and lowed after the mid-1990s. In Cx21, TOC and TN still fluctuate synchronously with BSi. But the average TOC and TN contents of the vibrocore Cx38 reached the highest in the sediment profile. The average BSi contents of the two vibrocores are 0.82% and 0.71%, the average TOC contents are 0.60% and 0.56%, the average contents of TN are 0.068% and 0.073%.
     Four phases of BSi, TOC and TN in the Yangtze River basin over the past century may reflect the natural-human activities processes, especially the human activities of watershed: DSi declined to the sea after the constructions of reservoir, and the nutrients N and P increased to the estuary with the industrial and agricultural development recent years.
     From the early 20th century to 1950s, human activities made less impact on sediment. load and nutrient inputs, and diatoms were main planktonic algae in the Yangtze estuary. In the two vibrocores, BSi were consistent with organic matter. Otherwise, lower SST (the sea surface temperature) associated with lower nutrients, may result in lower content of BSi and organic matter.
     After 1950s, with the growth of population and production, human activities of watershed began to increase, and the obvious changes of estuarine environment began from the late 1970s, when the DIN, DIP began to increase. Especially after 1985, with the completion of Gezhouba reservoir, DSi decreased because of drastically reduction of sediment load into the sea. On the contrary, with the strengthening of industrial and agricultural activities, the DIN, DIP increased dramatically. In this study, BSi presents high content at late 1980s then significantly reduces, while TOC and TN continue to increase, reflecting that with the increase of nutrients during the first period, the large population of diatoms present, but with the consumption of DSi, diatoms are silicon-limited. Too much nitrogen and phosphorus lead to toxic algae such as Heterocapsa circularisquama.
     This phenomenon appears in Cx38 which is closer with the Yangtze estuary. In Cx21, which is farther away from the Yangtze estuary, BSi presents a peak at the late 80s, and then decreases. TOC and TN fluctuate synchronously with BSi, reflecting that toxic algal bloom have not been serious at the location area. Vibrocore Cx38 is in the hypoxic zone with larger water depth and finer grain size, while Cx21 is not in the hypoxic zone with shallower water depth and coarser sediments, which may be the main reason of the difference.
引文
1. Appleby P G, Birks H H, Flower R J.2001. Radiometrically determined dates and sedimentation rates for recent sediments in nine North African wetland lakes (the CASSARINA Project). Aquatic Ecology,35:347-367.
    2. Aston S R.1983. Silicon Geochemistry and Biochemistry. Inc. Ltd. Academic Press. London, U.K.
    3. Bernardez P, Frances G, Prego R.2006. Benthic-pelagic coupling and postdepositional processes as revealed by the distribution of opal in sediments:The case of the Riade Vigo(NW Iberian Peninsula). Estuarine, Coastal and Shelf Science,68:271-281.
    4. Brewster N A.1983. The determination of biogenic opal in high latitude deep-sea sediments. In:lijima, A., Hein, J. R., Siever, ed. Siliceous deposits in the Pacific region: developments in sediment logy. Elsevier, New York,17-331.
    5. Broecker W S, Peng T H.1982. Tracers in the Sea. Eldigio Press, Columbia University, Palisades, New York,690.
    6. Brzezinski M A, Nelson D M.1989. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-Sea Research,36:1009-1030.
    7. Brzezinski M A, Villareal T A, Lipschultz F.1998. Silica production and the contribution of diatoms to new and primary production in the Central North Pacific. Marine Ecology-Progress Series,167:89-104.
    8. Charles C D, Froelich P N, Zibello M A, Mortlock R A, Morley J J.1991. Biogenic opal in southern ocean sediments over the last 450,000 years:implications for surface water chemistry and circulation. Paleoceanography,6:697-728.
    9. Chen Z Y, Li J F, Shen H T, Wang Z H.2001. Yangtze River of China:historical analysis of discharge variability and sediment flux. Geomorphology,41:77-91.
    10. Chester R, Elderfield H.1968. The infrared determination of opal in siliceous deep-sea sediments. Geochimica et Cosmochimica Acta,32:1128-1140.
    11. Chiaki Isaji.2003. Silica fractionation:A method and differences between two Japanese reservoirs. Hydrobiologia,504:31-38.
    12. Conley D J, Schelske C L, Stoermer E F.1993. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series,101:179-192.
    13. Conley D J.1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnology Oceanography,42(4):774-777.
    14. Conley D J.1998. An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry,63:39-48.
    15. DeMaster D J, Smith W 0 Jr, Nelson D M, Aller J Y.1996b. Biogeochemical processes in Amazon shelf waters:chemical distributions and uptake rates of silicon, carbon and nitrogen. Continental Shelf Research,16:617-643.
    16. DeMaster D J.1981. The supply and accumulation of the silica in the marine environment. Geochemica Cosmochimica Acta,45:1715-1732.
    17. DeMaster D J.1991. Measuring biogenic silica in marine sediments and suspended matter. In:Hurd, D. C., Spenser, R. W. Eds., Marine Particulates:Analysis and characterization. American Geophysical Union:363-368.
    18. DeMaster D J.2002. The accumulation and cycling of biogenic silica in the Southern Ocean:revisiting the marine silica budget. Deep-sea Research part Ⅱ,49:3155-3167.
    19. Dugdale R C, Wilkerson F P, Minas H J.1995. The role of a silicate pump in driving new production. Deep-Sea Research,42:697-719.
    20. Eggimann D W, Manhiem F T, Betzer P R.1980. Dissolution and analysis of amorphous silica in marine sediments. J-Sediment.-Petrol.,50:215-225.
    21. Eisma D, Van Der, Gaast S J.1971. Determination of opal in marine sediments by X-ray diffraction. Netherlands Journal of Sea Research,5:382-389.
    22. Ellis D B, Moore T C.1973. Calcium carbonate, opal and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean. Journal of Marine Research,31:210-227.
    23. Ellwood M J, Hunter K A.1999. Determination of the Zn/Si ratio in diatom opal:a method for the separation, cleaning and dissolution of diatoms. Marine Chemistry, 66(3-4):149-160.
    24. Frohhich F.1989. Deep-sea biogenic silica:new structural and analytical data from infrared analysis-geological implications. Terra Res.,1:267-273.
    25. Gallinari M, Ragueneau O, Demaster D J, Corrin L, Treguer P.2002. The importance of the coupling between pelagic and benthic processes in the dissolution properties of biogenic silica in deep sea sediments, I. Solubility. Geochimica et Cosmochimica Acta, 66(15):2701-2717.
    26. Gehlen M, Van Raaphorst W.1993. Early diagenesis of silica in sandy North Sea sediments:quantification of the solid phase. Marine Chemistry,42:71-83.
    27. Guillard R R L, Kilham P.1978. The ecology of marine planktonic diatoms. In:Werner D.(ed.) The Biology of Diatoms. University of California Press, Berkeley,372-469. http://ww.lm.cn/basicdata/communique/201003/t20100308_469484.htm.
    28. Hurd D C.1973. Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific. Geochimica et Cosmochimica,37:2257-2282.
    29. Kamatani A, Oku 0.2000. Measuring biogenic silica in marine sediments. Marine Chemistry,68:219-229.
    30. Kamatani A, Riley J P, Skirrow G 1980. The dissolution of opaline silica of diatom tests in sea water. Journal of Oceanography,36(4):201-208.
    31. Krausse G L, Schelske C L, Davis C O.1983. Comparison three-alkaline methods of digestion of biogenic silica in water. Freshwater Biol,13:73-81.
    32. Leinen M.1977. A normative calculation technique for determining opal in deep-sea sediments. Geochimica et Cosmochimica Acta,41:671-676.
    33. Leng M J, Barker P A.2006. A review of the oxygen isotope composition of lacustrine diatom silica fo palaeoclimate reconstruction. Earth-science Reviews,75:5-27.
    34. Leynaert A, Treguer P, Lancelot C, Rodier M.2001. Silicon limitation of biogenic silica production in the Equatorial Pacific. Deep-Sea Research I,48:639-660.
    35. Li M T, Xu K Q, Watanabe M, Chen Z Y.2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science,71:3-12.
    36. Lisitsyn A P, Belyayev Y I, Bogdanov Y A, Bogoyavlenskiy A N.1967. Distribution relationships and forms of silicon suspended in waters of the world ocean. Int. Geol. Rev. 9:253-274.
    37. Liu J P, Xu K H, Li A C, Milliman J D, Velozzi D M, Xiao S B, Yang Z S.2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorpholoty,85: 208-224.
    38. Liu S M, Zhang J, Li R X.2005. Ecological significance of biogenic silica in the East China Sea. Marine Ecology Progress Series,290:15-26.
    39. Lyle M, Murray D W, Finney B P, Dymond J, Robbins J M, Brookstore K.1988. The record of late Pleistocene sedimentation in the eastern tropical Pacific Ocean. Paleoceanography,3:39-59.
    40. Mccall P L, Robbin J A, Matisoff G.1984.137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates. Chemical Geology, 44:33-65.
    41. Mortlock R A, Froelich P N.1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Research,36(9):1415-1426.
    42. Muller P J, Schneider R.1993. Automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res,40:425-444.
    43. Nelson D M, Ahern J A, Herlihy L J.1991. Cycling of biogenic silica within the upper water column of the Ross Sea. Mar. Chem,35:461-476.
    44. Nelson D M, Brzezinski M A.1997. Diatom growth and productivity in anoligotrophic mid-ocean gyre:A 3-yr record from the Sargasso Sea near Bermuda. Limnol. Oceanogr., 42(3):473-486.
    45. Nelson D M, Goering J J, Boisseau D W.1981. Consumption and regeneration of silicic acid in three coastal upwelling systems. In:Richards, F. A. (ed.) Coastal Upwelling. American Geophysical Union, Washington D. C.,242-256.
    46. Nelson D M, Gordon L I.1982. Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochimica and cosmochimica Acta,46:491-501.
    47. Nelson D M, Treguer P, Brzezinski M A, Leynaert A, Queguiner B.1995. Production and dissolution of biogenic silica in the ocean:Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles,9: 359-372.
    48. Oldfield F, Appleby P G.1984. Empirical testing of 210Pb-dating models for lake sediments. Lake Sediments and Environment History. Leicester:Leicester University Press:93-124.
    49. Pokras E.1986. Preservation of fossil diatoms in Atlantic sediment cores-control by supply rate. Deep-Sea Research,33:893-902.
    50. Pollock D E.1997. The role of diatoms, dissolved silicate and Antarctic glaciation in glacial/interglacial climatic change:A hypothesis. Global and Planetary Change,14: 113-125.
    51. Pondaven P, Ragueneau O, Treguer P, Hauvespre A, Dezileau L, Reyss J L.2000. Resolving the "opal paradox" in the Southern Ocean. Nature,405:168-172.
    52. Ragueneau O, Gallinari M, Corrin L, Grandel S, Hall P, Hauvespre A, Lampitt R S, Rickert D, Stahl H, Tengberg A, Witbaard R.2001. The benthic silica cycle in the Northeast Atlantic:annual mass balance, seasonality, and importance of non-steady-state processes for the early diagenesis of biogenic opal in deep-sea sediments. Progress in Oceanography,50:171-200.
    53. Ragueneau 0, Treguer P, Leynaert A, Anderson R F, Brzezinski M A, Demaster D J, Dugdale R C, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jezequel V, Nelson D M, Queguiner B.2000. A review of the Si cycle in the modern ocean:Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change,26:317-365.
    54. Ragueneau 0, Treguer P, Leynaert A, Anderson R F, Brzezinski M A, DeMaster D J, Dugdale R C, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jezequel V, Nelson D M, Queguiner B.2000. A review of the Si cycle in the modern ocean:recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change,26:317-365.
    55. Ragueneau O, Treguer P.1994. Determination of biogenic silica in coastal waters: applicability and limits of the alkaline digestion method. Marine Chemistry,45:43-51.
    56. Rijstenbil J W.1987. Phytoplankton composition of tidal ecosystems in relation to salinity, nutrients, light and turbulence. Neth. J. Sea Res.,21(2):113-124.
    57. Romero 0, Hebbeln D.2003.Biogenic silica and diatom thanatocoenosis in surface sediments below the Peru—Chile Current:controlling mechanisms and relationship with productivity of surface waters. Marine Micropaleontology,48:71-90.
    58. Ryu E, Yi S, Lee S J.2005. Late Pleistocene-Holocene paleoenvironmental changes inferred from the diatom record of the Ulleung Basin, East Sea(Sea of Japan). Marine Micropaleontology,55:157-182.
    59. Sarmiento J L, Hughes T M C, Stouffer R J, Manabe S.1998. Simulated response of the Ocean carbon cycle to anthropogenic climate warming. Nature,393:245-249.
    60. Schelske C L, Stoemer F.1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science,173:423-424.
    61. Schluter M, Rickert D.1998. Effect of pH on the measurement of biogenic silica. Marine Chemistry,63:81-92.
    62. Shemesh A, Mortlock R A, Smith R J, Froelich P N.1988. Determination of Ge/Si in marine siliceous microfossils:Separation, cleaning and dissolution of diatoms and radiolaria. Marine Chemistry,25(4):305-323.
    63. Sieracki M E, Verity P G, Stoecker D K.1993. Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,40(1-2):213-225.
    64. Song J M, Lou Y X, Li P C, Sun Y M.2000. Phosphorus and silicon in sediments near sediment-seawater interface of the southern Bohai Sea. The Yellow Sea,6:59-72.
    65. Spencer C P.1983. Silicon Geochemistry and Biogeochemistry. Inc. Aston, S. R. (ed). Academic Press, London,101-142.
    66. Susan M L.1992. An Introduction to Marine Biogeochemistry. Inc. John Wiley and Sons, U.S.A.
    67. Treguer P, Le Corre P, Grall J R.1979. The seasonal variations of nutrients in the upper waters of the Bay of Biscay region and their relation to phytoplankton growth. Deep-Sea Research Part A,26:1121-1152.
    68. Treguer P, Nelson D M, Van Bennekom A J, Demaster D J, Leynaert A, Queguiner B. 1995. The silica balance in the world ocean:A reestimate Science,268:375-379.
    69. Tsuruta A, Yarnada M.1979. Hydrological and biological observations in Dokai Bay northern Kyushu Japan:occurrence of nannoplankton and microplankton. J. Shimonosekei Uni. Fish.28(1):47-61.
    70. Wang B D.2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine coastal and shelf science,69:471-477.
    71. Wang H J, Yang Z S, Wang Y, Saito Y, Liu J P.2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of Hydrology, 349:318-332.
    72. Westbroeck P, Brown C W, Van Bleijswijk J, Brownlee C, Brummer G J, Conte M, Egge J, Fernandez E, Jorrdan R, Knappertsbusch M, Stefels J, Veldhuis M, Van der Wal P, Young J.1993. A model system approach to biological climate forcing. The example of Emiliana huxleyi. Global and Planetary Change,8:27-46.
    73.长江泥沙公报.2007.水利部长江水利委员会.
    74.冯士筰,李凤岐,李少菁.1999.海洋科学导论.第一版,北京:高等教育出版社,136.
    75.高建华,汪亚平,潘少明,张瑞,李军,白风龙.2007.长江口外海域沉积物中有机物的来源及分布.地理学报,62(9):981—991.
    76.韩舞鹰.1986.海水化学要素调查手册.北京:海洋出版社.
    77.洪君超,黄秀清,蒋晓山,王桂兰.1993.嵊山水域中肋骨条藻赤潮发生过程主导因子分析.海洋学报,15(6):135—141.
    78.侯立军,刘敏,闫惠敏,许世远,欧冬妮,林啸.2007.长江口潮滩沉积物生物硅的分布及其影响因素.中国环境科学,27(5):665—669.
    79.黄秀清,蒋晓山,王桂兰,洪君超.1994.长江口中肋骨条藻赤潮发生过程环境要素 分析:水温、盐度、DO和PH特征.海洋通报,13(4):35—40.
    80.黄永健,王成善,汪云亮.2005.古海洋生产力指标研究进展.地学前缘,12(2):163—170.
    81.黄忠恕.2003.长江流域历史水旱灾害分析.人民长江,34(2):1-3.
    82.贾国东,翦知泪,彭平安,汪品先,傅家谟.2000.南海南部17962柱状样生物硅沉积记录及其古海洋意义.地球化学,29(3):293—296.
    83.贾国东,彭平安,傅家谟.2002.珠江口近百年来富营养化加剧的沉积记录.第四纪研究,22(2):158—165.
    84.金海燕,陈建芳,翁焕新,李宏亮,章伟艳,徐杰,白有成,王奎.2009.长江口外赤潮多发区近几十年来的古生产力记录及环境意义.海洋学报,31(2):113—119.
    85.金翔龙.1992.东海海洋地质.北京:海洋出版社.
    86.李道季,张经,黄大吉,吴莹,梁俊.2002.长江口外氧的亏损.中国科学D辑,32(8):686—694.
    87.李茂田,程和琴.2001.近50年来长江入海溶解硅通量变化及其影响.中国环境科学,21(3):193—197.
    88.李学刚,宋金明,袁华茂,李凤业,孙松.2005.胶州湾沉积物中高生源硅含量的发现—胶州湾浮游植物生长硅限制的证据.海洋与湖沼,36(6):572—579.
    89.李政,刘征涛,王婉华,方征,李霁.2006.长江河口硅和磷生源要素质量浓度的变化特征.环境科学研究,19(1):80—82.
    90.刘敏,侯立军,许世远,欧冬妮,蒋海燕,余婕,Gardner Wayne S.2004.长江口潮滩有机质来源的C、N稳定同位素示踪.地理学报,59(6):918—926.
    91.刘明.2009.长江水下三角洲高分辨沉积记录及其对气候环境事件的响应.中国海洋大学硕士学位论文,1—81.
    92.刘素美,张经.2002.沉积物中生物硅分析方法评述.海洋科学,26(2):23—25.
    93.刘雪芹,韦路.2005.舟山近岸海域赤潮优势种中肋骨条藻的生长模型.中国环境监测,21(2):77—79.
    94.吕伟香.2007.东黄海沉积物中生物硅的研究.中国海洋大学硕士学位论文,1—81.
    95.马金龙,韦刚健,贾国东.2005.碱提取法分析海洋沉积物生物硅方法中碎屑组分污染的评估及校正.地球化学,34(3):285—290.
    96.毛汉礼,甘子钧,蓝淑芳.1963.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,5(2):183—206.
    97.潘建明,周怀阳,扈传昱,刘小涯.2000.东海长江口特定海区沉积物生源硅的分布和积累及其环境意义.海洋学报,22:153—159.
    98.沈志良.2006.长江磷和硅的输送通量.地理学报,61(7):741—751.
    99.宋金明,2004.中国近海生物地球化学.第一版,济南:山东科技出版社,26—39.
    100.王丽莎,石晓勇,张传松.2008.东海近岸沉积物中生物硅的分布.海洋通报,27(4):117—120.
    101.王汝建,翦知泯,肖文申,田军,李建如,陈荣华,郑玉龙,陈建芳.2007.南海第四纪的生源蛋白石记录:与东亚季风、全球冰量和轨道驱动的联系.中国科学D辑,地球科学,37(4):521—533.
    102.王文远,刘嘉麒,彭平安.2000.湖泊沉积物生物硅的测定与应用:以湖光岩玛珥湖为例.地球化学,9:327—330.
    103.王宗灵,李瑞香,朱明远,陈炳章,郝彦菊.2006.半连续培养下东海原甲藻和中肋骨条藻种群生长过程与种间竞争研究.海洋科学进展,24(4):495—503.
    104.吴玉霖,傅月娜,张永山,蒲新明,周成旭.2004.长江口海域浮游植物分布及其与径流的关系.海洋与湖沼,35(3):246—251.
    105.徐杰.2004.浙江沿海富营养化与赤潮历史的沉积记录研究.浙江大学硕士学位论文,1—57.
    106.许富祥.1996.中国近海及其邻近海域灾害性海浪的时空分布.海洋学报,18(2):26—31.
    107.杨东方,于子江,张柯,李梅,姜独袆.2008.营养盐硅在全球海域中限制浮游植物的生长.海洋环境科学,27(5):547—553.
    108.叶曦雯,刘素美,张经.2003.生物硅的测定及其生物地球化学意义.地球科学进展,18(3):421—427.
    109.叶曦雯,刘素美,赵颖翡,张经.2004.东、黄海沉积物中生物硅的分布及其环境意义.中国环境科学,24(3):265—269.
    110.叶曦雯.2003.胶州湾中生物硅的研究.中国海洋大学硕士论文,1—79.
    111.张强,姜彤,吴宜进.2004.ENSO事件对长江上游1470-2003年旱涝灾害影响分析.冰川冻土,26(6):691—696.
    112.张瑞,汪亚平,潘少明.2008.近50年来长江入河口区含沙量和输沙量的变化趋势.海洋通报,27(2):1—9.
    113.张欣泉.2006.长江干流及河口硅的生物地球化学研究.中国海洋大学硕士学位论文,1—82.
    114.张志忠,李双林,董岩翔,汪庆华,肖菲,鲁静.2005.浙江近岸海域沉积物沉积速率及地球化学.海洋地质与第四纪地质,25(3):15—24.
    115.赵立波,黄凌风,潘科,郭丰,向平.2004.内湾沉积物中生物硅的测定方法及其应 用初探.厦门大学学报(自然科学版),43(增刊):153—158.
    116.赵颖翡,刘素美,叶曦雯,张经.2005.黄、东海柱状沉积物中生物硅含量的分析.中国海洋大学学报,35(3):423—428.
    117.浙江省海洋环境通报.2008.浙江省海洋与渔业局.
    118.中国海洋灾害公报.2009.http://www.lrn.cn/basicdata/communique/201003/t20100308_469484.htm
    119.周俊丽,刘征涛,孟伟,李政,李霁.2006.长江口营养盐浓度变化及分布特征.环境科学研究,19(6):139—144.
    120.周鹏.2007.东海沉积物岩芯中生物硅的测定及其地层学分析.厦门大学硕士论文,1—96.
    121.周伟华,殷克东,朱德第.2006.舟山海域春季浮游植物生物量及东海原甲藻赤潮频发机制初探.应用生态学报,17(5):887—893.
    122.朱纯,潘建明,卢冰,扈传昱,刘小涯,叶新荣,薛斌.2005.长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境.海洋学研究,23(3):36—46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700