水泥熟料与辅助性胶凝材料的优化匹配
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“节能减排、节约资源与保护环境”是我国建设和谐社会、走可持续发展道路的主要途径。然而,水泥工业作为传统产业,是资源、能源消耗大户和碳排放大户,特别是我国正处于基础建设的高峰期,水泥产量和需求量巨大且逐年增长。另一方面,我国各种工业固体废弃物年排放量超过20亿吨,大量工业废渣不仅占用土地、污染环境,同时也是一种巨大的资源浪费。其中,冶金工业废渣及燃煤灰渣可用作辅助性胶凝材料生产复合水泥,是水泥工业发展的重要方向之一。但由于辅助性胶凝材料的活性较低,导致复合水泥的早期强度等性能较差,限制了工业废渣的掺量及复合水泥的应用范围。现有方法大都从“提高辅助性胶凝材料活性”的角度出发来改善复合水泥的性能,虽然在一定程度上改善了复合水泥的性能,但未能优化复合水泥初始浆体结构和水化进程,因而难以从根本上解决复合水泥水化效能不高、辅助性胶凝材料颗粒与水化产物粘接较差等本质问题。本文揭示了水泥熟料、钢渣、粉煤灰的非均相分布规律,并根据各粒度区间胶凝材料的水化、硬化特性及复合水泥理想的水化进程,对复合水泥的组成(胶凝材料种类、用量和粒度)进行设计。通过复合水泥初始浆体结构的优化和水化进程的优化匹配,实现了复合水泥浆体结构合理、有序形成和颗粒间“有效粘接”,在降低水泥熟料用量、提高辅助性胶凝材料(特别是低活性辅助性胶凝材料)掺量的同时,显著改善了复合水泥的强度、体积稳定性等性能。具体工作包括:
     研究了水泥熟料与辅助性胶凝材料粒度区间与组成、性能的关系。由于非均质材料在粉磨过程中存在分相现象,粗粒度区间胶凝材料中难磨性矿物含量较高,而细粒度区间易磨性矿物含量较高。粒度及组成的差异使各粒度区间胶凝组分的水化、硬化特性差别较大。随胶凝材料粒径的减小,其需水量和早期强度(或活性指数)逐渐增大;但就后期强度而言,并非粒径越小,胶凝材料(特别是熟料和矿渣)强度越高,而是存在一个最佳的粒度区间。其中,8~24μm硅酸盐水泥的需水量较低,中、后期水化较快,早期强度较高、后期强度非常高;细粒度区间高活性辅助性胶凝材料的早期活性指数较高,后期活性指数可超过100%。
     为优化复合水泥初始浆体结构,分析了水泥基材料常用的颗粒级配理论和模型,发现以S. Tsivilis分布和Fuller分布为代表的经典颗粒级配模型均难以很好地指导复合水泥的制备。本研究根据紧密堆积理论,建立了“区间窄分布,整体宽分布”颗粒级配模型,在按照实际浆体中胶凝材料颗粒间的距离进行修正后,可更好地优化复合水泥初始浆体结构,进一步提高复合水泥浆体的初始堆积密度。
     本文提出的胶凝材料“胶凝能力”和“强度贡献率”,可用于描述辅助性胶凝材料对复合水泥性能的贡献。细粒度区间钢渣、矿渣水化活性较高,水化中后期生成大量水化产物,对孔隙填充能力较强,表现出良好的胶凝性能,其早期和后期强度贡献均超过了相同粒度区间水泥熟料的强度贡献;中、粗粒度区间辅助性胶凝材料水化活性较低,导致其各龄期强度贡献率均较低。因此,水泥熟料与辅助性胶凝材料的优化匹配原则为:高活性辅助性胶凝材料、水泥熟料和低活性辅助性胶凝材料或惰性填料应分别置于复合水泥的细(<8μm)、中(8~24μm)和粗粒度区间(>24μm)。
     在“区间窄分布,整体宽分布”颗粒级配模型和优化匹配原则的指导下,实验室内仅采用25%(体积分数)的水泥熟料制备了42.5强度等级的复合水泥。该水泥浆体具有较低的需水量、较高的初始堆积密度和合理的水化进程,硬化浆体结构合理、有序形成并逐渐密实化。与硅酸盐水泥浆体相比,复合水泥浆体中剩余Ca(OH)2量较少,C-S(A)-H凝胶数量、未水化组分含量和总孔隙率相差不大,但有害大孔较少、无害孔较多,从而使复合水泥的早期和后期强度得到了显著提高。采用简化的颗粒级配模型(三区间)及在硅酸盐水泥中掺加粗、细辅助性胶凝材料的方法,均可不同程度地提高复合水泥的早期和后期强度。
     低熟料用量、高性能复合水泥具有良好的体积稳定性和耐久性,其主要原因是:(1)复合水泥的水化产物多为外部水化产物,引起的化学收缩较小,K~+、Na~+进入C-A-S-H凝胶层间,水化产物层间结合力增强,从而提高了水化产物抵抗体积变形的能力;(2)水化早期少量水泥熟料水化,使浆体逐渐硬化(浆体结构形成),后期水化持续进行且速率较大(矿渣开始水化),大量水化产物填充于浆体孔隙中,使浆体结构较为均匀、密实,浆体内部应力较小且分布均匀,从而改善了复合水泥浆体体积稳定性和耐久性。
     本研究仅用25%的水泥熟料、36%的矿渣及39%的低活性辅助性胶凝材料或惰性填料(石膏外掺),制备了42.5强度等级的复合水泥(实际生产中水泥熟料用量75%以上),且该水泥具有良好的体积稳定性和耐久性。本研究成果可为大宗量利用工业废渣(特别是低活性或惰性废渣)制备高性能复合水泥奠定了理论基础和技术支持,同时具有极大的节约资源、能源和减少CO2排放量前景,可有效推动“可持续发展”、“节能减排”、“低碳经济”等基本国策的实施,具有极其重大的经济、生态和社会效益。
“Energy saving, emission reducing, resources conservation and environment protection”are the main ways for China to achieve sustainable development and harmonious society.However, the production of Portland cement seems unsustainable due to the consumption ofhuge natural resources and energy and significant CO2emissions. China is the largest cementproduction country, and the output of cement is beening continually increased as a largenumber of infrastructures are beening built. Meanwhile, nearly2billion tons of industrialsolid wastes are generated annually in China, leading to numerous environmental problems.Metallurgical slags together with coal combustion ashes can be used as supplementarycementitious materials (SCM) to produce blended cement, which is considered as one of thedevelopment directions of cement industry. Due to the low hydraulic (or pozzolanic) activityof SCM, blended cements usually present low early strength, especially for blended cementswith a high content of low activity SCM. Many attempts, such as chemical activation andultra-fine grinding, have been made to improve the early properties of blended cements.Although these methods, mainly focusing on the enhancement of the activity of SCM,contribute greatly or somewhat to the improvement of the properties of blended cement, theinitial microstructure and hydration process of blended cement paste have not been optimizedcompletely, thus the key factors,“low hydration efficiency” and “poor binding between SCMparticles and hydration products” leading to the low early strength of blended cement, havenot yet been solved perfectly.
     In this thesis, optimized matching of cement clinker and SCM were investigated.According to the hydration and hardening characteristics of cementitious material fractionswith different particle size, desired hydration process and micro-structural development ofblended cement paste, the type, addition and particle size distribution of cementitiousmaterials consisting of blended cement were redesigned. Through optimization of the initialmicrostructure and hydration process of blended cement paste, the microstructure of blendedcement paste is formed and densified gradually, at the same time hydration products bindSCM particles firmly. Consequently, the strengths and volumetric stability of hardenedblended cement paste are improved significantly, while the addition of cement clinker isreduced and the amount of SCM (especially for SCM with low activity or inert fillers) isincreased. The research significances in this thesis are described in detail as follows:
     The relationship among the size fraction, composition and properties of cement clinkerand SCM has been clarified. Due to grindability difference of each mineral, coarse cementitious material fractions contain a higher amount of harder grindability minerals, whilehigher proportion of easier grindability minerals is observed in fine cementitious materialfractions. The hydration and hardening characteristics of cementitious materials varysignificantly with their size and mineral composition. The water requirement and earlystrength of cementitious materials are increased dramatically with the decrease of particle size,while cementitious materials (e.g. cement clinker and BFS) only show the highest latestrength when the particle size lie in a certain range. For instance,8-24μm cement clinkerfraction has a low water requirement and high hydration rate at late ages, resulting inrelatively higher early strength and the highest late strength. Further, fine SCM fractions havean acceptable early strength index and late strength index higher than100%, indicating thatthe replacement of cement clinker by these SCM fractions will not lead to late strength loss.
     The adaptability of the classical particle size distribution (PSD) models generally used incement-based materials has been analyzed. Few of the existed models including S. Tsivilisdistribution and Fuller curve are adapted to blended cements which consist of cement clinkerand SCM with different hydraulic activity (perhaps even inert particles). In order to optimizethe initial microstructure of blended cement paste, a gap-graded PSD was proposed andmodified according to the distance between solid particles in actual pastes. The gap-gradedPSD leads to a reduced water requirement and an increased packing density of blendedcement pastes, and modified gap-graded PSDs have better effects.
     The term ‘strength contribution ratio’ and ‘cementitious ability’ of SCM fractions wereproposed, by which the contribution of SCM fractions to the properties of blended cement canbe quantitatively described. Fine BFS and steel slag fractions (<8μm) show more desirablehydration processes and higher strength contribution ratios in comparison to thecorresponding cement clinker with the same size, while middle size and coarse SCM fractionshave low early and late strength contribution ratios due to their low hydraulic activity. Theoptimized matching principle of cement clinker and SCM is as follow: SCM with highactivity, cement clinker, and SCM with low activity (or inert fillers) should be preferablyarranged in the fine (<8μm), middle size (8-32μm) and coarse (>32μm) fractions,respectively.
     42.5grade blended cements with only25%cement clinker by volume can be preparedusing the gap-graded PSD by mixing cementitious materials according to the optimizedmatching principle. The blended cement pastes have a low water requirement and highpacking density, a small amount of hydration products generated from the hydration of clinkerform the initial microstructure of cement paste during the first24h. The hydration products of BFS, accounting for about40%of the total hydration products, densify the microstructure ofblended cement paste gradually after30h. The Ca(OH)2content remained in blended cementpaste is very low, while the total porosity of the matrix and the amounts of C-S(A)-H gels andun-hydrated components almost equal to those in Portland cement paste, and large-size poresare reduced dramatically due to the hydration of SCM at late ages. The above mentionedeffects lead to a significant increase in both early and late strengths of blended cements.Blended cements with simplified gap-graded PSD and prepared by mixing commercialPortland cement, fine BFS fraction and coarse SCM fraction with low activity also havehigher early and late strengths than blended cement prepared by co-grinding.
     High performance blended cements with low cement clinker content present superiorvolumetric stability and durability. The related improvement mechanisms are summarized asfollows:(a) The main hydration products of gap-graded blended cement are outer hydrationproducts with high Al content, which has a low chemical shrinkage compared with innerhydration products. To maintain the charge balance of hydration products, a large amount ofK~+and Na~+are absorbed into the layer of C-A-S-H gel, leading to an enhanced interactionforce among gel layers (van der Waals force), thus the hydration products show a superiorresistance to volumetric deformation.(b) Stress and strain remained in gap-graded blendedcement pastes are low and uniformly distributed due to low hydration heat and morehomogenous, densified microstructure.
     The cement clinker content in42.5grade blended cement is usually higher than75%inindustrial practice, however42.5grade blended cement can be prepared using only25%cement clinker,36%BFS and39%low activity SCM (or inert fillers) in present study, and theblended cements also have superior volumetric stability and durability. The results providetheoretical foundation and technical support for the preparation of high performance blendedcements with larger amount of industrial wastes (especially for low activity and inertindustrial wastes). By this method, huge natural resources and energy can be saved, andsignificant CO2emissions can also be reduced, resulting in numerous economic, social andenvironmental benefits.
引文
[1]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [2] Newman J, Choo BS. Advanced concrete technology [M]. Oxford: Elsevier,2003
    [3] A tcin PC. High-performance concrete [M]. London: Taylor and Francis,2004
    [4]国际煤炭网.2011年中国水泥产量[DB/OL]. http://coal.in-en.com/html/coal-22152215341279260.html,2012
    [5] Malhotra VM. Role of supplementary cementing materials and superplasticizers inreducing greenhouse gas emissions [A]. International Conference on Fiber Composites,High-Performance Concrete, and Smart Materials [C], Chennai, India,2004
    [6] Naik TR. Sustainability of cement and concrete industries [A]. The GlobalConstruction: Ultimate Concrete Opportunities [C], Dundee, Scotland,2005
    [7] Malhotra VM. Sustainable issues and concrete technology [A]. The7th InternationalSymposium on Cement and Concrete [C], Ji’nan, China,2010
    [8] Young JF. Looking ahead from the past: The heritage of cement chemistry [J]. Cementand Concrete Research,2008,38(2):111–114
    [9] Kumar S, Kumar R, Bandopadhyay A. Innovative methodologies for the utilization ofwastes from metallurgical and allied industries [J]. Resources, Conservation andRecycling,2006,48(3):301–314
    [10]杨南如,曾燕伟.从科学发展观看传统水泥工艺改革的必然[J].水泥技术,2006,(3):20–24
    [11]施惠生,袁玲.生态水泥的研究与进展[J].建筑材料学报,2003,(6):166–172
    [12]刘猛,李百战,姚润明.水泥生产能源消耗内含碳排放量分析[J].重庆大学学报,2011,34(3):116–121
    [13]刘秀丽.中国水泥工业低碳排放技术现状与发展中国水泥工业低碳排放技术现状与发展[A].中俄水泥峰会[C],北京,2011
    [14] Taylor M. Energy efficiency and CO2emissions from the global cement industry [A].The IEA-WBCSD workshop: Energy Efficiency and CO2Emission ReductionPotentials and Policies in the Cement Industry [C], Paris,2006
    [15] Sakai K. Sustainability strategy for cement and concrete [A]. The7th InternationalSymposium on Cement and Concrete [C]. Ji’nan, China,2010
    [16]新华网.中国碳排放[DB/OL]. http://www.xinhuanet.com/zhibo/20091126/zhibo.htm,2009
    [17] Methta PK. Greening of the concrete industry for sustainable development [A]. ACIConvention [C], Dallas,2001
    [18] Juenger MCG, Winnefeld F, Provis JL, et al. Advances in alternative cementitiousbinders [J]. Cement and Concrete Research,2011,41(12):1232–1243
    [19] Singh M, Garg M. Cementitious binder from fly ash and other industrial wastes [J].Cement and Concrete Research,1999,29(3):309–314
    [20] Siddique R. Utilization of coal combustion by-products in sustainable constructionmaterials [J]. Resources, Conservation and Recycling,2010,54(12):1060–1066
    [21] Durán-Herrera A, Juárez CA, Valdez P, et al. Evaluation of sustainable high-volumefly ash concretes [J]. Cement and Concrete Composites,2011,33(1):39–45
    [22] Kumar R, Kumar S, Mehrotra SP. Towards sustainable solutions for fly ash throughmechanical activation [J]. Resources, Conservation and Recycling,2007,52(2):157–179
    [23] Siddique R. Use of municipal solid waste ash in concrete [J]. Resources, Conservationand Recycling,2011,55(2):83–91
    [24] Burak F. Utilisation of high volumes of limestone quarry wastes in concrete industry(self-compacting concrete case)[J]. Resources, Conservation and Recycling,2007,51(4):770–791
    [25] Shi CJ, Meyer C, Behnood A. Utilization of copper slag in cement and concrete [J].Resources, Conservation and Recycling,2008,52(10):1115–1120
    [26] Huang Y, Bird RN, Heidrich O. A review of the use of recycled solid waste materialsin asphalt pavements [J]. Resources, Conservation and Recycling,2007,52(1):58–73
    [27]中国统计年鉴.资源和环境[DB/OL]. http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm,2009
    [28] Lin KL, Wang KS, Tzeng BY, et al. The reuse of municipal solid waste incinerator flyash slag as a cement substitute [J]. Resources, Conservation and Recycling,2003,39(4):315–324
    [29] Qiao XC, Tyrer M, Poon CS, et al. Novel cementitious materials produced fromincinerator bottom ash [J]. Resources, Conservation and Recycling,2008,52(3):496–510
    [30] Shen WG, Zhou MK, Mab W, et al. Investigation on the application of steel slag-flyash-phosphogypsum solidified material as road base material [J]. Journal of HazardousMaterials,2009,164(1):99–104
    [31] Xue YJ, Wu SP, Hou HB, et al. Experimental investigation of basic oxygen furnaceslag used as aggregate in asphalt mixture [J]. Journal of Hazardous Materials,2006,138(2):261–268
    [32] Wang G, Wang Y, Gao Z. Use of steel slag as a granular material: Volume expansionprediction and usability criteria [J]. Journal of Hazardous Materials,2010,184(1-3):555–560
    [33]国家发改委.我国粉煤灰综合利用现状[A].全国粉煤灰综合利用成果交流会[C],海口,2007
    [34] Martinez-Aguilar OA, Castro-Borges P, Escalante-García JI. Hydraulic binders offluorgypsum-Portland cement and blast furnace slag, stability and mechanicalproperties [J]. Construction and Building Materials,2010,24(5):631–639
    [35] Shariq M, Prasad J, Masood A. Effect of GGBFS on time dependent compressivestrength of concrete [J]. Construction and Building Materials,2010,24(8):1469–1478
    [36]孙金坤,黄双华,念红芬,等.高钛重矿渣路面混凝土配合比优化设计试验研究[J].混凝土,2011,262(8):135–137
    [37] Antiohos S, Tsimas S. Investigating the role of reactive silica in the hydrationmechanisms of high-calcium fly ash/cement systems [J]. Cement and ConcreteComposites,2005,27(2):171–181
    [38] Antiohos SK, Papadakis VG, Chaniotakis E, et al. Improving the performance ofternary blended cements by mixing different types of fly ashes [J]. Cement andConcrete Research,2007,37(6):877–885
    [39] De Weerdt K, Kjellsen KO, Sellevol E, et al. Synergy between fly ash and limestonepowder in ternary cements [J]. Cement and Concrete Composites,2011,33(1):30–38
    [40] Papadakis VG. Effect of fly ash on Portland cement systems: Part I. Low-calcium flyash [J]. Cement and Concrete Research,1999,29(11):1727–1736
    [41] Shi CJ, Qian JS. High performance cementing materials from industrial slags-a review[J]. Resources, Conservation and Recycling,2000,29(3):195–207
    [42] Motz H, Geiseler J. Products of steel slags an opportunity to save natural resources [J].Waste Management,2001,21(3):285–293
    [43] Das B, Prakash S, Reddy PSR, et al. An overview of utilization of slag and sludge fromsteel industries [J]. Resources, Conservation and Recycling,2007,50(3):40–57
    [44]孙树斌,朱桂林,张宇.中国钢铁渣处理利用现状及“零排放”的途径[J].中国废钢铁,2007,(4):21–28
    [45] Li C, Wan JH, Sun HH, et al. Investigation on the activation of coal gangue by a newcompound method [J]. Journal of Hazardous Materials,2010,179(1-3):515–520
    [46] Li DX, Song XY, Gong CC, et al. Research on cementitious behavior and mechanismof pozzolanic cement with coal gangue [J]. Cement and Concrete Research,2006,36(9):1752–1759
    [47] Kula I, Olgun A, Sevinc V, et al. An investigation on the use of tincal ore waste, fly ash,and coal bottom ash as Portland cement replacement materials [J]. Cement andConcrete Research,2002,32(2):227–232
    [48] Pera J, Boumaza R, Ambroise J. Development of a pozzolanic pigment from red mud[J]. Cement and Concrete Research,1997,27(10):1513–1522
    [49] Singh M, Upadhayay SN, Prasad PM. Preparation of special cements from red mud [J].Waste Management,1996,16(8):665–670
    [50] Li DX, Shen JL, Chen L, et al. The influence of fast-setting/early-strength agent onhigh phosphorous slag content cement [J]. Cement and Concrete Research,2001,31(1):19–24
    [51] Lee TC, Wang W, Shih P, et al. Enhancement in early strengths of slag-cementmortars by adjusting basicity of the slag prepared from fly-ash of MSWI [J]. Cementand Concrete Research,2009,39(8):651–658
    [52] Lee TC, Li ZS. Conditioned MSWI ash-slag-mix as a replacement for cement incement mortar [J]. Construction and Building Materials,2010,24(6):970–979
    [53] Tesárek P, Drchalováb J, Kolískoc J, et al. Flue gas desulfurization gypsum: Study ofbasic mechanical, hydric and thermal properties [J]. Construction and BuildingMaterials,2007,21(7):1500–1509
    [54] Singh M. Treating waste phosphogypsum for cement and plaster manufacture [J].Cement and Concrete Research,2002,32(7):1033–1038
    [55] Siddique R. Waste materials and by-products in concrete [M]. Berlin: Springer,2008
    [56] Sobolev K, Arikan M. Utilization of industrial by-products and waste in eco-cement[A]. The Global Construction: Ultimate Concrete Opportunities [C], Dundee, Scotland,2005
    [57]马保国,许婵娟,蹇守卫,等.钢渣在水泥熟料烧成中的作用及其机理[J].武汉理工大学学报,2005,27(1):1–3
    [58] Tsakiridis PE, Papadimitriou GD, Tsivilis S, et al. Utilization of steel slag for Portlandcement clinker production [J]. Journal of Hazardous Materials,2008,152(2):805–811
    [59] Alp, Deveci H, Yazici EY, et al. Potential use of pyrite cinders as raw material incement production: Results of industrial scale trial operations [J]. Journal of HazardousMaterials,2009,166(1):144–149
    [60] Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P. Red mud addition in the raw mealfor the production of Portland cement clinker [J]. Journal of Hazardous Materials,2004,116(1-2):103–110
    [61] Pan JR, Huang C, Kuo JJ, et al. Recycling MSWI bottom and fly ash as raw materialsfor Portland cement [J]. Waste Management,2008,28(7):1113–1118
    [62] Saikia N, Kato S, Kojima T. Production of cement clinkers from municipal solid wasteincineration (MSWI) fly ash [J]. Waste Management,2007,27(9):1178–1189
    [63] Singh M, Kapur PC. Pradip. Preparation of alinite based cement from incinerator ash[J]. Waste Management,2008,28(8):1310–1316
    [64] Alp, Deveci H, Süngün YH. Utilization of flotation wastes of copper slag as rawmaterial in cement production [J]. Journal of Hazardous Materials,2008,159(2-3):390–395
    [65] Al-Dhamri H, Melghit K. Use of alumina spent catalyst and RFCC wastes frompetroleum refnery to substitute bauxite in the preparation of Portland clinker [J].Journal of Hazardous Materials,2010,179(1-3):852–859
    [66] Shi HS, Deng K, Yuan F, et al. Preparation of the saving-energy sulphoaluminatecement using MSWI fly ash [J]. Journal of Hazardous Materials,2009,169(1-3):551–555
    [67] Wu K, Shi HS, Guo XL. Utilization of municipal solid waste incineration fly ash forsulfoaluminate cement clinker production [J]. Waste Management,2011,31(9-10):2001–2008
    [68] Singh M, Upadhayay SN, Prasad PM. Preparation of special cements form red mud [J].Waste Management,1996,16(8):665–670
    [69] Siddique R, Khan MI. Supplementary cementing materials [M]. Berlin: Springer,2011
    [70] Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials [J].Cement and Concrete Research,2011,41(12):1244–1256
    [71] Johari M, Brooks JJ, Kabir S, et al. Influence of supplementary cementitious materialson engineering properties of high strength concrete [J]. Construction and BuildingMaterials,2011,25(1-3):2639–2648
    [72] Elahi A, Basheer PAM, Nanukuttan SV, et al. Mechanical and durability properties ofhigh performance concretes containing supplementary cementitious materials [J].Construction and Building Materials,2010,24(3):292–299
    [73] Ahmadi B, Shekarchi M. Use of natural zeolite as a supplementary cementitiousmaterial [J]. Cement and Concrete Composites,2010,32(2):134–141
    [74] Shi CJ, Roy DM, Krivenko P. Alkali-activated cements and concretes [M]. New York:Taylor and Francis,2006
    [75] Song S, Jennings HM. Pore solution chemistry of alkali-activated ground granulatedblast-furnace slag [J]. Cement and Concrete Research,1999,29(2):159–170
    [76] Tüfekqi M, Demirbas A, Genc H. Evaluation of steel furnace slags as cement additives[J]. Cement and Concrete Research,1997,27(11):1713–1717
    [77] Zhang TS, Liu FT, Liu SQ, et al. Factors influencing the properties of a steel slagcomposite cement [J]. Advances in Cement Research,2008,20(4):145–150
    [78] Mehta PK. Influence of fly ash characteristics on the strength of Portland-fly ashcement [J]. Cement and Concrete Research,1985,15(4):669–674
    [79] Cetin B, Aydilek AH, Guney Y. Stabilization of recycled base materials with highcarbon fly ash [J]. Resources, Conservation and Recycling,2010,54(11):878–892
    [80] Antiohos SK, Tsimas S. A novel way to upgrade the coarse part of a high calcium flyash for reuse into cement systems [J]. Waste Management,2007,27(5):675–683
    [81] Aubert JE, Husson B, Sarramone N. Utilization of municipal solid waste incineration(MSWI) fly ash in blended cement: Part1: Processing and characterization of MSWIfly ash [J]. Journal of Hazardous Materials,2006,136(3):624–631
    [82] Aubert JE, Husson B, Sarramone N. Utilization of municipal solid waste incineration(MSWI) fly ash in blended cement: Part2: Mechanical strength of mortars andenvironmental impact [J]. Journal of Hazardous Materials,2007,146(1-2):12–19
    [83] Lin KL, Wang KS, Tzeng BY, et al. The hydration characteristics and utilization of slagobtained by the vitrification of MSWI fly ash [J]. Waste Management,2004,24(2):199–205
    [84] Rémond S, Pimienta P, Bentz DP. Effects of the incorporation of municipal solid wasteincineration fly ash in cement pastes and mortars I. Experimental study [J]. Cement andConcrete Research,2002,32(2):303–311
    [85] Rémond S, Bentz DP, Pimienta P. Effects of the incorporation of municipal solid wasteincineration fly ash in cement pastes and mortars II: Modeling [J]. Cement andConcrete Research,2002,32(4):565–576
    [86] Potgieter JH, Potgieter SS, McCrindle RI. A comparison of the performance of varioussynthetic gypsums in plant trials during the manufacturing of OPC clinker [J]. Cementand Concrete Research,2004,34(12):2245–2250
    [87] Tzouvalas G, Rantis G, Tsimas S. Alternative calcium-sulfate-bearing materials ascement retarders: Part II. FGD gypsum [J]. Cement and Concrete Research,2004,34(11):2119–2125
    [88] Ozkul MH. Utilisation of citro-and desulphogypsum as set retarders in Portlandcement [J]. Cement and Concrete Research,2000,30(11):1755–1758
    [89] Katsioti M, Boura P, Agatzini S, et al. Use of jarosite/alunite precipitate as a substitutefor gypsum in Portland cement [J]. Cement and Concrete Composites,2005,27(1):3–9
    [90] Ranganath RV, Bhattacharjee B, krishnamoorthy S. Influence of size fraction of pondedash on its pozzolanic activity [J]. Cement and Concrete Research,1998,28(5):749–761
    [91] Ranganath RV. A Study of the Characterization and use of ponded fly ash as fineaggregate in cement and concrete [D]. Delhi: Indian institution of technology (Delhi),1996
    [92] Binici H, Temiz H, K se MM. The effect of fineness on the properties of the blendedcements incorporating ground granulated blast furnace slag and ground basaltic pumice[J]. Construction and Building Materials,2007,21(5):1122–1128
    [93] Binici H, Aksogan O, Cagatay IH, et al. The effect of particle size distribution on theproperties of blended cements incorporating GGBFS and natural pozzolan (NP)[J].Powder Technology,2007,177(3):140–147
    [94] Zhang YJ, Zhang X. Gry correlation analysis between strength of slag cement andparticle fraction of slag powder [J]. Cement and Concrete Composites,2007,29(6):498–504
    [95] Mehta PK. Concrete, Microstructure, properties and materials (3th Ed.)[M]. New York:McGraw-Hill,2006
    [96]张文生,陈益民,欧阳世翕.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述[J].硅酸盐学报,2000,28(2):160–164
    [97] Xu DL. Developing eco-cement industry in China [A]. The7th InternationalSymposium on Cement and Concrete [C], Jinan, China,2010
    [98]王晓钧.粉煤灰机械研磨中物理与机械力化学现象的研究[D].南京:南京工业大学,2003
    [99] Sanjay K, Kumar R, Bandopadhyay A. Mechanical activation of granulated blastfurnace slag and its effect on the properties and structure of Portland slag cement [J].Cement and Concrete Composites,2008,30(8):679–685
    [100]郭伟.煤矸石的活性激发及活性评价方法的探讨[D].南京:南京工业大学,2005
    [101]郭伟,李东旭,陈建华,等.机械活化煅烧煤矸石水泥的早期水化过程[J].硅酸盐学报,2008,36(1):94–98
    [102]郭伟,李东旭,陈建华,等.热力活化与机械力活化对煤矸石胶凝性的影响[J].建筑材料学报,2011,14(3):371–375
    [103]温金保,陆雷.机械力化学作用活化钢渣的研究[J].硅酸盐通报,2006,25(4):89–93
    [104]温金保.钢渣的机械力化学效应研究[D].南京:南京工业大学,2003
    [105] Li C, Sun HH, Li LT. A review: The comparison between alkali-activated slag (Si+Ca)and metakaolin (Si+Al) cements [J]. Cement and Concrete Research,2010,40(9):1341–1349
    [106] Bondar D, Lynsdale CJ, Milestone NB, et al. Effect of type, form, and dosage ofactivators on strength of alkali-activated natural pozzolans [J]. Cement and ConcreteComposites,2011,33(2):251–260
    [107] Fernández-Jiménez A, Palomo A, Criado M. Microstructure development ofalkali-activated fly ash cement: a descriptive model [J]. Cement and Concrete Research,2005,35(6):1204–1209
    [108] Fernández-Jiménez A, Palomo A. Composition and microstructure of alkali activatedfly ash binder: Effect of the activator [J]. Cement and Concrete Research,2005,35(10):1984–1992
    [109] Shi CJ, Day RL. Selectivity of alkaline activators for the activation of slags [J]. Cement,Concrete and Aggregates,1996,18(1):8–14
    [110] Ben HM, Le SG, Winnefeld F, et al. Influence of activator type on hydration kinetics,hydrate assemblage and microstructural development of alkali activated blast-furnaceslags [J]. Cement and Concrete Research,2011,41(3):301–310
    [111]徐彬.固态碱组分碱矿渣水泥的研制及其水化机理和性能的研究[D].北京:清华大学,1995
    [112] Bernal S, Gutierrez RD, Delvasto S, et al. Performance of an alkali-activated slagconcrete reinforced with steel fibers [J]. Construction and Building Materials,2010,24(2):208–214
    [113] Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars Part I.Strength, hydration and microstructure [J]. Cement and Concrete Research,2002,32(6):865–879
    [114] McCarter WJ, Chrisp TM, Starrs G. The early hydration of alkali-activated slag:developments in monitoring techniques [J]. Cement and Concrete Composites,1999,21(4):277–283
    [115] Criado M, Fernández-Jiménez A, Palomo A. Alkali activation of fly ash: Effect of theSiO2/Na2O ratio: Part I: FTIR study [J]. Microporous and Mesoporous Materials,2007,106(1-3):180–191
    [116] Shi CJ, Li Y. Investigation on some factors affecting the characteristics ofalkali-phosphorus slag cement [J]. Cement and Concrete Research,1989,19(4):527–533
    [117] Escalante JI, Gómez LY, Johal KK, et al. Reactivity of blast-furnace slag in Portlandcement blends hydrated under different conditions [J]. Cement and Concrete Research,2001,31(10):1403–1409
    [118] Hu SG, Jiang CY, Wei JX. Research on hydration of steel slag cement activated withwater-glass [J]. Journal of Wuhan University of Technology,2001,16(1):37–39
    [119] Bapat JD. Performance of cement concrete with mineral admixtures [J]. Advances inCement Research,2001,3(4):139–155
    [120]王秉纲,蔡绯琳,张耀伦,等.无熟料免烧高抗折高强钢渣水泥[P].中国发明专利: CN1140152A,1997.1
    [121] Janotka I, Kraj i L. Sulphate resistance and passivation ability of the mortar made frompozzolan cement with zeolite [J]. Journal of Thermal Analysis and Calorimetry,2008,94(1):7–14
    [122] Shi CJ, Day RL. Early strength development and hydration of alkali–activated blastfurnace slag: fly ash blends [J]. Advances in Cement Research,1999,11(4):89–96
    [123] kvára F, Kopecky L, milauer V, et al. Material and structural characterization ofalkali activated low-calcium brown coal fly ash [J]. Journal of Hazardous Materials,2009,168(2-3):711–720
    [124] Wang Q, Yan PY, Feng JW. A discussion on improving hydration activity of steel slagby altering its mineral compositions [J]. Journal of Hazardous Materials,2011,186(2-3):1070–1075
    [125] Li JX, Yu QJ, Wei JX, et al. Structural characteristics and hydration kinetics ofmodified steel slag [J]. Cement and Concrete Research,2011,41(3):324–329
    [126]李建新.高温重构对钢渣组成、结构与性能影响的研究[D].广州:华南理工大学,2011
    [127]宫晨琛,余其俊,韦江雄.电炉还原渣对转炉钢渣的重构机理[J].硅酸盐学报,2010;38(11):2193–2198
    [128]李建新,韦江雄,赵三银,等.重构钢渣的胶凝性分析[J].水泥,2010,(10):16–19
    [129]宫晨琛,李东旭.掺钙和萤石的煅烧煤矸石矿物组成的变化[J].硅酸盐学报,2006,34(7):855–859
    [130] Zhang N, Sun HH, Liu XM, et al. Early-age characteristics of red mud-coal ganguecementitious material [J]. Journal of Hazardous Materials,2009,167(1-3):927–932
    [131] Zhang N, Liu XM, Sun HH, et al. Evaluation of blends bauxite-calcination-method redmud with other industrial wastes as a cementitious material: Properties and hydrationcharacteristics [J]. Journal of Hazardous Materials,2011,185(1):329–335
    [132] Zhang N, Liu XM, Sun HH, et al. Pozzolanic behaviour of compound-activated redmud-coal gangue mixture [J]. Cement and Concrete Research,2011,41(3):270–278
    [133] Liu XM, Zhang N, Sun HH, et al. Structural investigation relating to the cementitiousactivity of bauxite residue-red mud [J]. Cement and Concrete Research,2011,41(8):847–853
    [134] Lee TC, Wang WJ, Shih PY, et al. Enhancement in early strengths of slag-cementmortars by adjusting basicity of the slag prepared from fy-ash of MSWI [J]. Cementand Concrete Research,2009,39(8):651–658
    [135]张同生.钢渣活性激发技术及其在水泥生产中的应用[D].济南:济南大学,2008
    [136]侯贵华,李伟峰,王京刚.转炉钢渣中物相易磨性及胶凝性的差异[J].硅酸盐学报,2009,37(10):1613–1617
    [137] Rahhal V, Talero R. Early hydration of Portland cement with crystalline mineraladditions [J]. Cement and Concrete Research,2005,35(7):1285–1291
    [138] Rahhal V, Talero R. Calorimetry of Portland cement with metakaolins, quartz andgypsum additions [J]. Journal of Thermal Analysis and Calorimetry,2008,91(3):825-834
    [139] Rahhal V, Talero R. Calorimetry of Portland cement with silica fume, diatomite andquartz additions [J]. Construction and Building Materials,2009,23(11):3367–3374
    [140] Nehdi M, Mindess S. Optimization of high strength limestone filler cement mortars [J].Cement and Concrete Research,1996,26(6):883–893
    [141] Sánchez E, Massana J, Garcimartín MA, et al. Mechanical strength and microstructureevolution of fly ash cement mortar submerged in pig slurry [J]. Cement and ConcreteResearch,2008,38(5):717–724
    [142] Wang Q, Yan PY. Hydration properties of basic oxygen furnace steel slag [J].Construction and Building Materials,2010,24(7):1134–1140
    [143] Huang Y, Lin ZS. Investigation on phosphogypsum-steel slag-granulated blast-furnaceslag-limestone cement [J]. Construction and Building Materials,2010,24(7):1296–1301
    [144] Alejandre S FJ, Martín RJJ, García SMV. Feasibility of waelz slag as an additive inPortland cement CEM II/A-L42.5R: Properties and inertization [A]. The13thInternational Congress on the Chemistry of Cement [C], Madrid,2010
    [145] Kula I, Olgun A, Erdogan Y, et al. Effects of colemanite waste, cool bottom ash, andfly ash on the properties of cement [J]. Cement and Concrete Research,2001,31(3):491–494
    [146]乔龄山.水泥的最佳颗粒分布及其评价方法[J].水泥,2001,(8):1–5
    [147]乔龄山.水泥颗粒特性参数及其对水泥和混凝土性能的影响[J].水泥,2001,(10):1–8
    [148]乔龄山.关于水泥颗粒分布及其作用的部分研究成果介绍[J].水泥,2007,(9):1–7
    [149]乔龄山.关于水泥颗粒分布及其作用的部分研究成果介绍(续)[J].水泥,2007,(10):5–9
    [150]乔龄山.水泥颗粒分布和石膏匹配与用水量及凝结特性的关系(一)[J].水泥,2004,(6):1–6
    [151]乔龄山.水泥颗粒分布和石膏匹配与用水量及凝结特性的关系(二)[J].水泥,2004,(7):1–8
    [152]乔龄山.细粉材料颗粒特性、堆积密度和混凝土泌水性的新检验方法[J].水泥,2007,(5):1–8
    [153]张文生,郭随华,王宏霞,等.硅酸盐水泥熟料的易磨性及其影响因素[J].水泥工程,2004,(1):11–15
    [154] Bullard JW, Jennings HM, Livingston RA, et al. Mechanisms of cement hydration [J].Cement and Concrete Research,2011,41(12):1208–1223
    [155] Hu J, Stroeven P. Depercolation threshold of porosity in model cement: approach bymorphological evolution during hydration [J]. Cement and Concrete Composites,2005,27(1):19–25
    [156] Wong HS, Buenfeld NR. Determining the water-cement ratio, cement content, watercontent and degree of hydration of hardened cement paste: Method development andvalidation on paste samples [J]. Cement and Concrete Research,2009,39(10):957–965
    [157] Schutter GD. Applicability of degree of hydration concept and maturity method forthermo-visco-elastic behaviour of early age concrete [J]. Cement and ConcreteComposites,2004,26(5):437–443
    [158] Feng X, Garboczi EJ, Bentz DP, et al. Estimation of the degree of hydration of blendedcement pastes by a scanning electron microscope point-counting procedure [J]. Cementand Concrete Research,2004,34(10):1787–1793
    [159] Li DX, Fu XH, Wu XQ, et al. Durability study of steel slag cement [J]. Cement andConcrete Research,1997,27(7):983–987
    [160]唐明述,袁美栖,韩苏芬,等.钢渣中MgO、FeO、MnO的结晶状态与钢渣的体积安定性[J].硅酸盐学报,1979,7(1):35–46
    [161] Yan PY, You Y. Studies on the binder of fly ash-fluorgypsum-cement [J]. Cement andConcrete Research,1998,28(1):135–140
    [162] Poon CS, Qiao XC, Lin ZS. Effects of flue gas desulphurization sludge on thepozzolanic reaction of reject-fly-ash-blended cement pastes [J]. Cement and ConcreteResearch,2004,34(10):1907–1918
    [163] Guo XL, Shi HS. Thermal treatment and utilization of flue gas desulphurizationgypsum as an admixture in cement and concrete [J]. Construction and BuildingMaterials,2008,22(7):1471–1476
    [164] He Z, Li ZJ. Influence of alkali on restrained shrinkage behavior of cement-basedmaterials [J]. Cement and Concrete Research,2005,35(3):457–463
    [165] Leemann A, Lothenbach B, Thalmann C. Influence of superplasticizers on poresolution composition and on expansion of concrete due to alkali-silica reaction [J].Construction and Building Materials,2011,25(1):344–350
    [166] Taylor HFW. Cement chemistry (2nd Ed.)[M]. London: Thomas Telford,1997
    [167] Lawrence CD. The constitution and specifications of Portland cements. In: Peter CH,Ed. Lea's Chemistry of Cement and Concrete (4th Ed.)[M]. New York: John Wileyand Sons,1998:164–169
    [168] Tsivilis S, Tsimas S, Benetatou A. Contribution of fineness on cement strength [J].Zement-Kalk-Gips,1990,43(1):26–29
    [169] Zhang YM, Napier-Munn TJ. Effects of particle size distribution, surface area andchemical composition on Portland cement strength [J]. Powder Technology,1995,83(3):245–252
    [170] Celik IB. The effects of particle size distribution and surface area upon cement strengthdevelopment [J]. Powder Technology,2009,188(3):272–276
    [171] kvára F, Kolár K, Novotny J. The effect of cement particle size distribution uponproperties of pastes and mortars with low water-to-cement ratio [J]. Cement andConcrete Research,1981,11(2):247–255
    [172] Bentz DP, Garboczi EJ, Haecker CJ. Effects of cement particle size distribution onperformance properties of Portland cement-based materials [J]. Cement and ConcreteResearch,1999,29(10):1663–1671
    [173] Knudsen T. On particle size distribution in cement hydration [A]. The7th InternationalCongress on the Chemistry of Cement [C], Paris,1980
    [174] Mueller A, Stark U, Erfurt S. The early stage of cement hydration: Measurement of theparticle size distribution at different times [A]. The12th International Congress on theChemistry of Cement [C], Montreal,2007
    [175] Uchida K, Fukubayashl Y, Yamashita S. Properties of special cement adjusted particlesize distribution [A]. The9th International Congress on the Chemistry of Cement [C],New Delhi,1992
    [176] Olounsogo FT. Particle distribution of GGBS and bleeding characteristics of slagcement Mortars [J]. Cement and Concrete Research,1998,28(6):907–919
    [177] Lothenbach B, Winnefeld F, Alder C, et al. Effect of temperature on the pore solution,microstructure and hydration products of Portland cement pastes [J]. Cement andConcrete Research,2007,37(4):483–491
    [178] Tishmack JK, Olek J, Diamond S, et al. Characterization of pore solutions expressedfrom high-calcium fly-ash-water pastes [J]. Fuel,2001,80(6):815–819
    [179] Shehata MH, Thomas MDA, Bleszynski RF. The effects of fly ash composition on thechemistry of pore solution in hydrated cement pastes [J]. Cement and ConcreteResearch,1999,29(12):1915–1920
    [180] Abdelrazig BEI, Bonner DG, Nowell DV, et al. The solution chemistry and earlyhydration of ordinary Portland cement pastes with and without admixtures [J].Thermochimica Acta,1999,340-341(14):417–430
    [181] Juenger MCG, Jennings HM. Examining the relationship between the microstructure ofcalcium silicate hydrate and drying shrinkage of cement pastes [J]. Cement andConcrete Research,2002,32(2):289–296
    [182] Luke K, Glasser FP. Selective dissolution of hydrated blast furnace slag cements [J].Cement and Concrete Research,1987,17(2):273–282
    [183] Zhang YM, Sun W, Yan HD. Hydration of high-volume fly ash cement pastes [J].Cement and Concrete Composites,2000,22(6):445–452
    [184] Sakai E, Miyahara S, Ohsawa S, et al. Hydration of fly ash cement [J]. Cement andConcrete Research,2005,35(6):1135–1140
    [185] Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volumefly ash/cement systems [J]. Cement and Concrete Research,2000,30(5):747–756
    [186] Ben HM, De Weerdt K, Lothenbach B. Quantification of the degree of reaction of flyash [J]. Cement and Concrete Research,2010,40(11):1620–1629
    [187]黄士元,李志华,程吉平.粉煤灰-Ca(OH)2-H2O系统中的反应动力学[J].硅酸盐学报,1986,14(1):191–197
    [188]沈威.水泥工艺学[M].武汉:武汉理工大学出版社,2008
    [189] Malhotra VM, Mehta PK. Pozzolanic and cementitious materials [M]. London: Gordonand Breach Publisher,1996
    [190]王福元,吴正严.粉煤灰利用手册(2nd Ed.)[M].北京:中国电力出版社,2004
    [191] Giergiczyn Z, Werynska. Proceedings of the3rd international conference on fly ash,silica, fume, slag and natural pozzolanic in concrete [M]. Trondheim: Elsevier,1989
    [192]张永娟,张雄.高钙粉煤灰颗粒群分布与其活性关系研究[J].粉煤灰综合利用,2004,(1):6–9
    [193] Mehta PK. Influence of fly ash characteristics on the strength of Portland-fly ashmixtures [J]. Cement and Concrete Research,1985,15(4):669–674
    [194] Ravina D, Mehta PK. Properties of fresh concrete containing large amounts of fly ash[J]. Cement and Concrete Research,1986,16(2):227–238
    [195] Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on compressivestrength and pore size of blended cement paste [J]. Cement and Concrete Composites,2005,27(4):425–428
    [196]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色系统研究[J].硅酸盐学报,1998,26(4):424–429
    [197] Chancey RT, Stutzman P, Juenger MCG, et al. Comprehensive phase characterizationof crystalline and amorphous phases of a Class F fly ash [J]. Cement and ConcreteResearch,2010,40(1):146–156
    [198] Agarwal SK. Pozzolanic activity of various siliceous materials [J]. Cement andConcrete Research,2006,36(9):1735–1739
    [199] Wang AQ, Zhang CZ, Wei S. Fly ash effects: I. The morphological effect of fly ash [J].Cement and Concrete Research,2003,33(12):2023–2029
    [200] Feleko lu B, Türkel S, Kalyoncu H. Optimization of fineness to maximize the strengthactivity of high-calcium ground fly ash-Portland cement composites [J]. Constructionand Building Materials,2009,23(5):2053–2061
    [201] Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on microstructureof blended cement paste [J]. Construction and Building Materials,2007,21(7):1534–1541
    [202] Wang AQ, Zhang CZ, Wei S. Fly ash effects: II. The active effect of fly ash [J]. Cementand Concrete Research,2004,34(11):2057–2060
    [203] Wang AQ, Zhang CZ, Wei S. Fly ash effects: III. The microaggregate effect of fly ash[J]. Cement and Concrete Research,2004,34(11):2061–2066
    [204] Shi CJ. Steel slag-its production, processing, characteristics, and cementitiousproperties [J]. Journal of Materials in Civil Engineering,2004,16(3):230–236
    [205] Wu XQ, Zhu H, Hou XK, et al. Study on steel slag and fly ash composite Portlandcement [J]. Cement and Concrete Research,1999,29(7):1103–1106
    [206] Shi CJ. Steel slag-its production, processing, characteristics, and cementitiousproperties [J]. Journal of Materials in Civil Engineering,2004,16(3):230–236
    [207] Kourounis S, Tsivilis S, Tsakiridis PE, et al. Properties and hydration of blendedcements with steel making slag [J]. Cement and Concrete Research,2007,37(6):815–822
    [208] Shi CJ. Characteristics and cementitious properties of ladle slag fnes from steelproduction [J]. Cement and Concrete Research,2002,32(3):459–462
    [209] Muhmood L, Vitta S, Venkateswaran D. Cementitious and pozzolanic behavior ofelectric arc furnace steel slags [J]. Cement and Concrete Research,2009,39(2):102–109
    [210] Altun A, Yilmaz I. Study on steel furnace slags with high MgO as additive in Portlandcement [J]. Cement and Concrete Research,2002,32(8):1247–1249
    [211] Shi CJ, Qian JS. High performance cementing materials from industrial slags-a review[J]. Resources, Conservation and Recycling,2000,29(3):195–207
    [212] Qian GR, Sun DD. Autoclave properties of kirschsteinite-based steel slag [J]. Cementand Concrete Research,2002,32(9):1377–1382
    [213] Shen H. Forsberg E. An overview of recovery of metals from slags [J]. WasteManagement,2003,23(10):933–949
    [214]唐明述.混凝土耐久性研究领域应成为最活跃的研究领域[J].混凝土与水泥制品,1989,(5):4–8
    [215]沈洋,许仲梓,唐明述.界面区结构对水泥砂浆强度的影响[J].南京化工大学学报,1995,17(4):10–14
    [216] Badanoiu A, Georgescu M, Puri A. The study of ‘DSP’ binding systems bythermo-gravimetry and differential thermal analysis [J]. Journal of Thermal Analysisand Calorimetry,2003,74(1):65–75
    [217] Menendez C, Bonavetti V, Irassar EF. Strength development of ternary blended cementwith limestone filler and blast-furnace slag [J]. Cement and Concrete Composites,2003,25(1):61–67
    [218]廉惠珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    [219] Djamarani KM, Clark IM. Characterization of particle size based on fine and coarsefractions [J]. Powder Technology,1997,93(2):101–108
    [220] Lange F, Mortel H, Rudert V. Dense packing of cement paste and resultingconsequences on mortar properties [J]. Cement and Concrete Research,1997,27(10):1481–1488
    [221] Wang AQ, Zhang CZ, Zhang NS. The theoretic analysis of the influence of the particlesize distribution of cement system on the property of cement [J]. Cement and ConcreteResearch,1999,29(11):1721–1726
    [222] Wang AQ, Zhang CZ, Zhang NS. Study of the particle size distribution on theproperties of cement [J]. Cement and Concrete Research,1997,27(5):685–695
    [223] Roy DM, Goudu GR, Bobrowsky A. Very high strength cement pastes prepared by hotpressing and other high pressure techniques [J]. Cement and Concrete Research,1972,2(3):349–353
    [224] Mojumdar SC, Mazanec K, Drabik M. Macro-defect-free (MDF) cements-Synthesis,thermal, chemical, SEM and magnetometric study and moisture resistance [J]. Journalof Thermal Analysis and Calorimetry,2006,83(1):135–139
    [225] Birchatt JD, Howard AJ, Kendall K. Flexural strength and porosity of cements [J].Nature,1981,289(2):388–390
    [226] Roy DM. Advanced cement system including CBC, DSP, MDF [A]. The9thInternational Congress on the Chemistry of Cement [C], New Delhi,1992
    [227]吴中伟.高技术混凝土[J].硅酸盐通报,1994,(1):41–45
    [228] Taplin JH. Concrete strength, paste strength, cement hydration and the maturity rule[A]. The5th International Symposium on the Chemistry of cement [C], Tokio,1968
    [229]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993
    [230] An XZ, Yang RY, Zou RP, et al. Effect of vibration condition and inter-particlefrictions on the packing of uniform spheres [J]. Powder Technology,2008,188(2):102–109
    [231] Bullard JW, Garboczi EJ. A model investigation of the influence of particle shape onPortland cement hydration [J]. Cement and Concrete Research,2006,36(6):1007–1015
    [232] Tanaka I, Koishi M, Shinohara K. Evaluation of the wettability of spherical cementparticle surfaces using penetration rate method [J]. Cement and Concrete Research,2002,32(7):1161–1168
    [233] Gai GS, Yang YF, Jin L, et al. Particle shape modification and related propertyimprovements [J]. Powder Technology,2008,183(1):115–121
    [234] Horsfield HT. The strength of asphalt mixtures [J]. Journal of the Society for ChemicalIndustry,1934,53(2):107–115
    [235]许仲梓.颗粒分布对水泥水化速度的影响的理论探讨[J].硅酸盐学报,1986,14(1):47–54
    [236]谢友均,刘宝举,龙广成.水泥复合胶凝材料体系密实填充性能研究[J].硅酸盐学报,2001,29(6):512–517
    [237] Stovall T, De Larrard F, Buil M. Linear packing density model of grain mixtures [J],Powder Technology,1986,48(1):1–12
    [238]黄新,袁润章,龙世宗,等.水泥粒径分布对水泥石孔结构与强度的影响[J].硅酸盐学报,2004,32(7):888–891
    [239] Tsivilis S, Parissakis G. A mathematical model for the prediction of cement strength [J].Cement and Concrete Research,1995,25(1):9–14
    [240] Perraki T, Kontori E, Tsivilis S, et al. The effect of zeolite on the properties andhydration of blended cements [J]. Cement and Concrete Composites,2010,32(2):128–133
    [241] Fuller WB, Thompson SE. The Laws of Proportioning Concrete [J]. Journal of TheSociety For Chemical Industry,1934,53(2):107–115
    [242] Kuhlmanm K. Correlation of cement particle size and surface area [J].Zement-Kalk-Gips,1984,37(9):257–261
    [243] Ellerbrock HG, Sprung S, Kuhlmann K. Particle size distribution and properties ofcement: III, Influence of the grinding process [J]. Zement-Kalk-Gips,1990,43(1):13–19
    [244] Osbaeck B, Johansen V. Particle size distribution and rate of strength development ofPortland cement [J]. Journal of the American Ceramic Society,1989,72(2):197–201
    [245]刘浩斌.颗粒尺寸分布与堆积理论[J].硅酸盐学报,1991,19(2):164–172
    [246]曾凡,胡永平.矿物加工颗粒学[M].徐州:中国矿业大学出版社,1995
    [247] Lee SH, Kim HJ, Sakai E, et al. Effect of particle size distribution of fly ash-cementpastes [J]. Cement and Concrete Research,2003,33(5):763–768
    [248] Bui DD, Hu J, Stroeven P. Particle size effect on the strength of rice husk ash blendedgap-graded Portland cement concrete [J]. Cement and Concrete Composites,2005,27(3):357–366
    [249] Ji YJ, Jong HC. Effects of densified silica fume on microstructure and compressivestrength of blended cement pastes [J]. Cement and Concrete Research,2003,33(10):1543–1548
    [250] Isaia GC, Gastaldini ALG, Moraes R. Physical and pozzolanic action of mineraladditions on the mechanical strength of high-performance concrete [J]. Cement andConcrete Composites,2003,25(1):69–76
    [251] Gallias JL, Kara-Ali R, Bigas JP. The effect of fine mineral admixtures on waterrequirement of cement pastes [J]. Cement and Concrete Research,2000,30(10):1543–1549
    [252] Powers TC. Absorption of water by Portland cement paste during the hardening process[J]. Industrial And Engineering Chemistry,1935,27(7):790–794
    [253] Frigioine G, Marra S. Relationship between particle size distribution and compressivestrength in Portland cement [J]. Cement and Concrete Research,1976,6(1):113–128
    [254]赵飞.粒径分布对水泥水化和性能影响的研究[D].武汉:武汉工业大学,1988
    [255] Kuhlmanm K, Ellerbrock HG, Sprung S, et al. Particle size distribution and propertiesof cement. Part I: Strength of Portland cement [J]. Zement-Kalk-Gips,1985,38(6):136–144
    [256] Sprung S, Kuhlmanm K, Ellerbrock HG, et al. Particle size distribution and propertiesof cement. Part II: Water demand of Portland cement [J]. Zement-Kalk-Gips,1985,38(11):275–281
    [257] Locher FW, Richartz W. Setting of cement: I, Reaction and development of structure [J].Zement-Kalk-Gips,1976,29(10):435–442
    [258] Kundsen T. The dispersion model for hydration of Portland cement: General concepts[J]. Cement and Concrete Research,1984,14(5):622–630
    [259] Guo Y, Huang X, Zhu BL, et al. Method for calculating packing density of powderparticles in paste with continuous particle size distribution [J]. Powder Technology,2008,187(1):88–93
    [260] Fung WWS, Kwan AKH. Role of water film thickness in rheology of CSF mortar [J].Cement and Concrete Composites,2010,32(4):255–264
    [261] Li LG, Kwan AKH. Mortar design based on water film thickness [J]. Construction andBuilding Materials,2010,25(5):2381–2390
    [262] Kwan AKH, Fung WWS. Packing density measurement and modeling of fineaggregate and mortar [J]. Cement and Concrete composites,2009,31(6):349–357
    [263] Rassouly SMK. The packing density of ‘perfect’ binary mixtures [J]. PowderTechnology,1999,103(2):145–150
    [264]乔龄山.水泥堆积密度理论计算方法介绍[J].水泥,2007,(7):1–7
    [265] Balonis M, Glasser FP. The density of cement phases [J]. Cement and ConcreteResearch,2009,39(9):733–739
    [266] Sakai E, Sugita J. Composite mechanism of polymer modified cement [J]. Cement andConcrete Research,1995,25(1):127–135
    [267] Olhero SM, Ferreira JMF. Influence of particle size distribution on rheology andparticle packing of silica-based suspensions [J]. Powder Technology,2004,139(1):69–75
    [268] Meinhard K, Lackner R. Multi-phase hydration model for prediction of hydration-heatrelease of blended cements [J]. Cement and Concrete Research,2008,38(6):794–802
    [269] Pane I, Hansen W. Investigation of blended cement hydration by isothermalcalorimetry and thermal analysis [J]. Cement and Concrete Research,2005,35(6):1155–1164
    [270] Hesse C, Goetz-Neunhoeffer F, Neubauer J. A new approach in quantitative in-situXRD of cement pastes: Correlation of heat flow curves with early hydration reactions[J]. Cement and Concrete Research,2011,41(1):123–128
    [271] R ler C, Eberhardt A, Ku erová H, et al. Influence of hydration on the fluidity ofnormal Portland cement pastes [J]. Cement and Concrete Research,2008,38(7):897–906
    [272] Hanehara S, Yamada K. Rheology and early age properties of cement systems [J].Cement and Concrete Research,2008,38(2):175–195
    [273] Janotka I, Puertas F, Palacios M, et al. Metakaolin sand-blended-cement pastes:Rheology, hydration process and mechanical properties [J]. Construction and BuildingMaterials,2010,24(5):791–802
    [274] Bentz DP, Ferraris CF. Rheology and setting of high volume fly ash mixtures [J].Cement and Concrete Composites,2010,32(4):265–270
    [275] Emoto T, Bier TA. Rheological behavior as influenced by plasticizers and hydrationkinetics [J]. Cement and Concrete Research,2007,37(5):647–654
    [276] Subramaniam KV, Wang XJ. An investigation of microstructure evolution in cementpaste through setting using ultrasonic and rheological measurements [J]. Cement andConcrete Research,2010,40(1):33–44
    [277] Sant G, Ferraris CF, Weiss J. Rheological properties of cement pastes: A discussion ofstructure formation and mechanical property development [J]. Cement and ConcreteResearch,2008,38(11):1286–1296
    [278] Esteves LP, Cachim PB, Ferreira VM. Effect of fine aggregate on the rheologyproperties of high performance cement-silica systems [J]. Construction and BuildingMaterials,2010,24(5):640–649
    [279] De Weerdt K, Ben HM, Le Saout G, et al. Hydration mechanisms of ternary Portlandcements containing limestone powder and fly ash [J]. Cement and Concrete Research,2011,41(3):279–291
    [280] Gallucci E, Mathur P, Scrivener K. Microstructural development of early age hydrationshells around cement grains [J]. Cement and Concrete Research,2010,40(1):4–13
    [281]许仲梓,唐明述. T.C. Powder模型若干问题的研究[J].硅酸盐学报,1991,19(2):104–111
    [282] Powders TC. Properties of cement paste and concrete: Part I. physical properties ofcement paste [A]. The4th International Symposium on the Chemistry of Cement [C],Washington DC,1960
    [283] Sakai E, Daimon M, Kondo R. Very early hydration of tricalcium silicate [A]. The7thInternational Congress on the Chemistry of Cement [C], Paris,1980
    [284] Kondo R, Ueda S. Kinetics and mechanisms of the hydration of cement [A]. The5thInternational Symposium on the Chemistry of Cement [C]. Tokyo,1968
    [285]阎培渝,郑峰.水泥基材料的水化动力学模型[J].硅酸盐学报,2006,34(5):555–559
    [286] Knudsen T. On particle size distribution in cementhydration [A]. The7th InternationalCongress on the Chemistry of Cement [C], Paris,1980
    [287] Krstulovic R, Dabic P. A conceptual model of the cement hydration process [J].Cement and Concrete Research,2000,30(5):693–698
    [288] Bezjak A, Jelenic I. On the determination of rate constants for hydration process incement in cement pastes [J]. Cement and Concrete Research,1980,10(3):553–563
    [289] Bezjak A. Kinetics analysis of cement hydration including various mechanisticconcepts: I. Theoretical development [J]. Cement and Concrete Research,1983,13(2):305–318
    [290] Bezjak A. Nuclei growth model in kinetic analysis of cement hydration [J]. Cement andConcrete Research,1986,16(4):605–609
    [291] Bentz DP. Influence of water-to-cement ratio on hydration kinetics: simple modelsbased on spatial considerations [J]. Cement and Concrete Research,2006,36(2):238–244
    [292] van Breugel K. Simulation of hydration and formation of structure in hardeningcement-based materials [D]. The Netherlands: Delft University of Technology,1991
    [293] Richardson IG. The nature of the hydration products in hardened cement pastes [J].Cement and Concrete Composites,2000,22(2):97–113
    [294] Skibsted J, Hall C. Characterization of cement minerals, cements and their reactionproducts at the atomic and nano scale [J]. Cement and Concrete Research,2008,38(2):205–225
    [295] Famy C, Scrivener KL, Atkinson A, et al. Effects of an early or a late heat treatment onthe microstructure and composition of inner C-S-H products of Portland cementmortars [J]. Cement and Concrete Research,2002,32(2):269–278
    [296] Goto S, Daimon M, Hosaka G, et al. Composition and morphology of hydratedtricalcium silicate [J]. Journal of the American Ceramic Society,1976,59(7-8):281–284
    [297]吴学权.矿渣水泥水化动力学研究[J].硅酸盐学报,1988,16(5):423–429
    [298] De Schutter G. Hydration and temperature development of concrete made with blast-furnace slag cement [J]. Cement and Concrete Research,1999,29(1):143–149
    [299] Wang XY, Lee HS, Park KB, et al. A multi-phase kinetic model to simulate hydrationof slag-cement blends [J]. Cement and Concrete Composites,2010,32(6):468–477
    [300] Venkiteela G, Sun ZH. In situ observation of cement particle growth during setting [J].Cement and Concrete Composites,2010,32(3):211–218
    [301] Abdelkader B, Kadri EH, Karim E. Efficiency of granulated blast furnace slagreplacement of cement according to the equivalent binder concept [J]. Cement andConcrete Composites,2010,32(3):226–231
    [302] Antiohos S, Maganari K, Tsimas S. Evaluation of blends of high and low calcium flyashes for use as supplementary cementing materials [J]. Cement and ConcreteComposites,2005,27(3):349–356
    [303] Papadakis VG, TsimasS. Supplementary cementing materials in concrete: Part I:efficiency and design [J]. Cement and Concrete Research,2002,32(10):1525–1532
    [304] Ganesh BK, Kumar SRV. Efficiency of GGBS in concrete [J]. Cement and ConcreteResearch,2000,30(7):1031–1036
    [305] Papadakis VG, Antiohos S, Tsimas S. Supplementary cementing materials in concrete:Part II: A fundamental estimation of the efficiency factor [J]. Cement and ConcreteResearch,2002,32(10):1533–1538
    [306] Benachour Y, Davy CA, Skoczylas F, et al. Effect of a high calcite filler addition uponmicrostructural, mechanical, shrinkage and transport properties of a mortar [J]. Cementand Concrete Research,2008,38(6):727–736
    [307] Gutteridge WA, Dalziel JA. Filler cement: The effect of the secondary component onthe hydration of Portland cement: Part I. A fine non-hydraulic filler [J]. Cement andConcrete Research,1990,20(5):778–782
    [308] Gutteridge WA, Dalziel JA. Filler cement: The effect of the secondary component onthe hydration of Portland cement: Part2: Fine hydraulic binders [J]. Cement andConcrete Research,1990,20(6):853–861
    [309] Bentz DP, Jensen OM, Coats AM, et al. Influence of silica fume on diffusivity incement-based materials I. Experimental and computer modeling studies on cementpastes [J]. Cement and Concrete Research,2000,30(6):953–962
    [310] Bentz DP. Influence of silica fume on diffusivity in cement-based materials II.Multi-scale modeling of concrete diffusivity [J]. Cement and Concrete Research,2000,30(7):1121–1129
    [311] Bentz DP, Haecker CJ. An argument for using coarse cements in high-performanceconcretes [J]. Cement and Concrete Research,1999,29(4):615–618
    [312] Bentz DP, Conway JT. Computer modeling of the replacement of ''coarse'' cementparticles by inert fillers in low w/c ratio concretes: Hydration and strength [J]. Cementand Concrete Research,2001,31(3):503–506
    [313] Bentz DP. Modeling the influence of limestone filler on cement hydration usingCEMHYD3D [J]. Cement and Concrete Composites,2006,28(2):124–129
    [314] Bentz DP. Replacement of coarse cement particles by inert fillers in low w/c ratioconcretes II. Experimental validation [J]. Cement and Concrete Research,2005,35(1):185–188
    [315] Cam HT, Neithalath N. Moisture and ionic transport in concretes containing coarselimestone powder [J]. Cement and Concrete Composites,2010,32(7):486–496
    [316] Bentz DP, Hansen AS, Guynn JM. Optimization of cement and fly ash particle sizes toproduce sustainable concretes [J]. Cement and Concrete Composites,2011,33(6):824–831
    [317] Bonavetti V, Donza H, Menéndez G, et al. Limestone filler cement in low w/c concrete:A rational use of energy [J]. Cement and Concrete Research,2003,33(6):865–871
    [318] Bentz DP, Irassar EF, Bucher BE, et al. Limestone fillers conserve cement: Part1. Ananalysis based on Powers’ model [J]. Concrete International,2009,(1):41–46
    [319] Barneyback RS, Diamond S. Expression and analysis of pore fluids from hardencement pastes and mortars [J]. Cement and Concrete Research,1981,11(2):279–285
    [320] Buckley LJ, Carter MA, Wilson MA, et al. Methods of obtaining pore solution fromcement pastes and mortars for chloride analysis [J]. Cement and Concrete Research,2007,37(11):1544–1550
    [321] Barret P, Bertrandie D. Importance of the liquid to solid weight ratio in the powderedsolid-liquid reactions: Example drawn from cement constituent hydration [J]. SolidState Ionics,1997,101-103(1):359–365
    [322] Gruyaert E, Robeyst N, De Belie N. Study of the hydration of Portland cement blendedwith blast-furnace slag by calorimetry and thermogravimetry [J]. Journal of ThermalAnalysis and Calorimetry,2010,102(3):941–951
    [323] Vedalakshmi R, Raj SA, Srinivasan S, et al. Quantification of hydrated cementproducts of blended cements in low and medium strength concrete using TG and DTAtechnique [J]. Thermochimica Acta,2003,407(1-2):49–60
    [324] Sha W, Pereira GB. Differential scanning calorimetry study of hydrated groundgranulated blast-furnace slag [J]. Cement and Concrete Research,2001,31(2):327–329
    [325] Papadakis VG. Effect of fly ash on Portland cement systems: Part II. High-calcium flyash [J]. Cement and Concrete Research,2000,30(10):1647–1654
    [326] Yildirim H, Sumer M, Akyuncu V, et al. Comparison on efficiency factors of F and Ctypes of fly ashes [J]. Construction and Building Materials,2011,25(6):2939–2947
    [327] Uzal B, Turanl L, Yücel H, et al. Pozzolanic activity of clinoptilolite: A comparativestudy with silica fume, fly ash and a non-zeolitic natural pozzolan [J]. Cement andConcrete Research,2010,40(3):398–404
    [328] Moesgaard M, Herfort D, Steenberg M, et al. Physical performances of blendedcements containing calcium aluminosilicate glass powder and limestone [J]. Cementand Concrete Research,2011,41(3):359–364
    [329] Mostafa NY, Mohsen Q, El-Hemaly SAS, et al. High replacements of reactivepozzolan in blended cements: Microstructure and mechanical properties [J]. Cementand Concrete Composites,2010,32(5):386–391
    [330] Frías M, Rodríguez C. Effect of incorporating ferroalloy industry wastes ascomplementary cementing materials on the properties of blended cement matrices [J].Cement and Concrete Composites,2008,30(3):212–219
    [331]王培铭,陈志源, Schola H.粉煤灰与水泥浆体间界面的形貌特征[J].硅酸盐学报,1997,25(4):475–479
    [332] Gu P, Xie P, Beaudoin JJ. Microstructural characterization of the transition zone incement systems by means of A. C. impedance spectroscopy [J]. Cement and ConcreteResearch,1993,23(3):581–591
    [333] Alonso C, Fernandez L. Dehydration and rehydration processes of cement pasteexposed to high temperature environments [J]. Journal of Materials Science,2004,39(9):3015–3024
    [334] El-Hosiny FI, Abo-EI-Enein SA, Helmy IM, et al. Effect of thermal treatment of ricehusk ash on surface properties of hydrated Portland cement-rice husk ash pastes [J].Journal of Thermal Analysis and Calorimetry,1997,48(4):809–817
    [335] Pimraksa K, Hanjitsuwan S, Chindaprasirt P. Synthesis of belite cement from lignite flyash [J]. Ceramics International,2009,35(6):2415–2425
    [336] Pan GY, Mao RQ, Yuan J. Dehydrated calcium silicate hydrates calcined at lowtemperature and its properties [J]. Journal of Wuhan University of Technology,1997,19(1):21–23
    [337] Shui ZH, Xuan DX, Wan HW, et al. Rehydration reactivity of recycled mortar fromconcrete waste experienced to thermal treatment [J]. Construction and BuildingMaterials,2008,22(8):1723–1729
    [338]张文生,陈益民,张洪滔,等.热处理粉煤灰及其胶凝性[J].材料科学与工艺,2002,10(1):73–76
    [339]潘国耀,毛若卿,袁坚.低温型水化硅酸钙脱水相及其特性[J].武汉工业大学学报,1997,19(3):21–23
    [340] Sahu S, Majling J. Preparation of sulphoaluminate belite cement from fly ash [J].Cement and Concrete Research,1994,24(6):1065–1072
    [341] Go i S, Guerrero A, Luxán MP, et al. Dehydration of pozzolanic productshydrothermally synthesized from fly ash: microstructure evolution [J]. MaterialsResearch Bulletin,2000,35(8):1333–1344
    [342] Go i S, Guerrero A, Luxán MP, et al. Activation of the fly ash pozzolanic reaction byhydrothermal conditions [J]. Cement and Concrete Research,2003,33(9):1399–1405
    [343] Guerrero A, Goni S, Campillo I, et al. Belite cement clinker from coal fly ash of highCa content. Optimization of synthesis parameters [J]. Environmental ScienceTechnology,2004,38(11):3209–3213
    [344] Guerrero A, Goni S, Macías A, et al. Effect of the starting fly ash on the microstructureand mechanical properties of fly ash-belite cement mortars [J]. Cement and ConcreteResearch,2000,30(4):553–559
    [345] Campillo I, Guerrero A, Dolado JS, et al. Improvement of initial mechanical strengthby nanoalumina in belite cements [J]. Materials Letters,2007,61(8-9):1889–1892
    [346] Guerrero A, Go i S, Moragues A. Microstructure and mechanical performance of belitecements from high calcium coal fly ash [J]. Journal of the American Ceramic Society,2005,88(7):1845–1853
    [347] Guerrero A, Go i S, Macías A, et al. Hydraulic activity and microstructuralcharacterization of new fly ash-belite cements synthesized at different temperatures [J].Journal of Materials Research,1999,14(6):2680–2687
    [348]高琼英,王志宏.水化硅酸钙脱水相的水化特性[J].武汉工业大学学报,1991,(1):25–33
    [349]刘银辉.粉煤灰预处理及其应用[J].北京工业大学学报,1999,25(3):70–75
    [350] Dovál1M, Palou1M, Mojumdar SC. Hydration behavior of C2S and C2ASnanomaterials, synthetized by sol-gel method [J]. Journal of Thermal Analysis andCalorimetry,2006,86(3):595–599
    [351] Dová M, Palou M, Majling J. Upgrade of hydraulicity of some cement phasessynthesised by sol-gel method [J]. Advances in Applied Ceramics,2006,105(4):197–200
    [352] Deng DH, Zhang CM. The effect of aluminate minerals on the phases in magnesiumoxychloride cement [J]. Cement and Concrete Research,1996,26(8):1203–1211
    [353]肖斐,崔洪涛,陈剑雄.超磨细石灰石粉高强混凝土的研究[J].硅酸盐通报,2010,29(6):1303–1307
    [354]张永娟,施惠生.用预水化法提高水泥早期强度的探讨[J].水泥,2000,(7):7–10
    [355] Thomas JJ, Jennings HM, Chen JJ. Influence of nucleation seeding on the hydrationmechanisms of tricalcium silicate and cement [J]. The Journal of Physical Chemistry C,2009,113(11):4327–4334
    [356] Garrault-Gauffinet S, Nonat A. Experimental investigation of calcium silicate hydrate(C-S-H) nucleation [J]. Journal of Crystal Growth,1999,200(3-4):565–574
    [357] Artelt C, Garcia E. Impact of superplasticizer concentration and of ultra-fine particleson the rheological behaviour of dense mortar suspensions [J]. Cement and ConcreteResearch,2008,38(5):633–642
    [358] Mahaut F, Mokéddem S, Chateau X, et al. Effect of coarse particle volume fraction onthe yield stress and thixotropy of cementitious materials [J]. Cement and ConcreteResearch,2008,38(11):1276–1285
    [359] Chougnet A, Palermo T, Audibert A, et al. Rheological behaviour of cement and silicasuspensions: Particle aggregation modeling [J]. Cement and Concrete Research,2008,38(11):1297–1301
    [360] Nehdi M, Mindess S, A tcin PC. Rheology of high-performance concrete: Effect ofultrafine particles [J]. Cement and Concrete Research,1998,28(5):687–697
    [361] Nanthagopalan P, Haist M, Santhanam M, et al. Investigation on the influence ofgranular packing on the flow properties of cementitious suspensions [J]. Cement andConcrete Composites,2008,30(9):763–768
    [362] Zhang X, Han JH. The effect of ultra-fine admixture on the rheological property ofcement paste [J]. Cement and Concrete Research,2000,30(5):827–830
    [363] Bentz DP. A review of early-age properties of cement-based materials [J]. Cement andConcrete Research,2008,38(2):196–204
    [364] Brouwers HJH, Eijk VRJ. Alkali concentrations of pore solution in hydrating OPC [J].Cement and Concrete Research,2003,33(2):191–196
    [365] Greenberg SA, Chang TN. Investigation of the colloidal hydrated calcium silicates. Ⅱ.Solubility relationships in the calcium oxide-silica-water system at25℃[J]. Journal ofphysical Chemistry,1965,69(1):182–188
    [366] Douglas E, Brandseter J. Preliminary study on the alkali activation of groundgranulated blast-furnace slag [J]. Cement and Concrete Research,1990,20(5):746–756
    [367] Larbi JA, Fraay ALA, Bijen JMJM. The chemistry of the pore fluid of silicafume-blended cement systems [J]. Cement and Concrete Research,1990,20(4):506–516
    [368] Zhou J, Ye G, van Breugel K. Characterization of pore structure in cement-basedmaterials using pressurization-depressurization cycling mercury intrusion porosimetry(PDC-MIP)[J]. Cement and Concrete Research,2010,40(7):1120–1128
    [369] Jiang LH, Guan YG. Pore structure and its effect on strength of high-volume fly ashpaste [J]. Cement and Concrete Research,1999,29(4):631–633
    [370] Arandigoyen M, Alvarez JI. Pore structure and mechanical properties of cement-limemortars [J]. Cement and Concrete Research,2007,37(5):767–775
    [371] Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength ofconcrete [J]. Cement and Concrete Research,2003,33(1):155–164
    [372] Carlson RW. Drying shrinkage of concrete as affected by many factors [A].Proceedings of American Society for Testing and materials [C], New York,1938
    [373] Carlson RW, Reading TJ. Model study of shrinkage cracking in concrete building walls[J]. ACI Structural Journal,1988,85(4):395–404
    [374] Grasley ZC, Leung CK. Desiccation shrinkage of cementitious materials as an aging,poroviscoelastic response [J]. Cement and Concrete Research,2011,41(1):77–89
    [375] Mehta PK. Reducing the environmental impact of concrete [J]. Concrete International,2001,23(1):61–66
    [376] Burrows RW, Kepler WF, Hurcomb D, et al. Three simple tests for selecting low-crackcement [J]. Cement and Concrete Composites,2004,26(5):509–519
    [377] Burrows RW. The visible and invisible cracking of concrete [M]. ACI Monograph (No.11), Farmington Hills, Michigan,1998
    [378] Mehta PK, Burrows RW. Building durable structures in the21st century [J]. ConcreteInternational,2001,23(3):57–63
    [379]高小建,巴恒静,马保国.混凝土早期自收缩、强度与水泥水化率的关系[J].工业建筑,2006,36(2):64–67
    [380] Tazawa E, Miyazawa S. Experimental study on mechanism of autogenous shrinkage ofconcrete [J]. Cement and Concrete Research,1995,25(8):1633–1638
    [381] Tazawa E, Miyazawa S. Influence of cement and admixture on autogenous shrinkage ofcement paste [J]. Cement and Concrete Research,1995,25(2):281–287
    [382] Bentz DP, Jensen OM, Hansen KK, et al. Influence of cement particle size distributionon early age autogenous strains and stresses in cement-based materials [J]. Journal ofthe American Ceramic Society,2001,84(1):129–135
    [383] Bentz DP, Jensen OM. Mitigation strategies for autogenous shrinkage cracking [J].Cement and Concrete Composites,2004,26(6):677–685
    [384] Gleize PJP, Cyr M, Escadeillas G. Effects of metakaolin on autogenous shrinkage ofcement pastes [J]. Cement and Concrete Composites,2007,29(2):80–87
    [385] Darquennes A, Khokhar MIA, Rozière E, et al. Early age deformations of concrete withhigh content of mineral additions [J]. Construction and Building Materials,2011,25(4):1836–1847
    [386] Chen JJ, Thomas JJ, Jennings HM. Decalcification shrinkage of cement paste [J].Cement and Concrete Research,2006,36(5):801–809
    [387] Rao GA. Long-term drying shrinkage of mortar: Influence of silica fume and size offine aggregate [J]. Cement and Concrete Research,2001,31(2):171–175
    [388] Norlling-Mjornell K. Self-desiccation in concrete [A]. The9th InternationalConferenec on the Chemistry of Cement [C], New Delhi,1992
    [389] Antonio AMN, Cincotto MA, Repette W. Mechanical properties, drying andautogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum [J].Cement and Concrete Composites,2010,32(4):312–318
    [390] Kosmatka SH, Kerkhoff B, Panarese WC. Design and control of concrete mixtures (4thEd.)[M]. Portland Cement Association, Illinois,2003
    [391] Termkhajornkit P, Nawa T, Nakai M, et al. Effect of fly ash on autogenous shrinkage [J].Cement and Concrete Research,2005,35(3):473–482
    [392] Chan YW, Liu CY, Lu YS. Effects of slag and fly ash on the autogenous shrinkage ofhigh performance concrete [A]. International Workshop on Autogenous Shrinkage ofConcrete [C], Hiroshima, Japan,1998
    [393] Bouasker M, Mounanga P, Turcry P, et al. Chemical shrinkage of cement pastes andmortars at very early age: Effect of limestone filler and granular inclusions [J]. Cementand Concrete Composites,2008,30(1):13–22
    [394] Justnes H, Reyniers B, van Loo D, et al. An evaluation of methods for measuringchemical shrinkage of cementitious paste [J]. Nord Concrete Research,1994,14(1):45–61
    [395] Justnes H. Influence of measuring method on bleeding and chemical shrinkage valuesof cement pastes [A]. The10th International Congress on the Chemistry of Cement [C],Gothenburg, Sweden,1997
    [396] Setter, Roy DM. Mechanical features of chemical shrinkage of cement paste [J].Cement and Concrete Research,1979,8(5):623–634
    [397]田倩.低水胶比大掺量矿物掺合料水泥基材料的收缩及机理研究[D].南京:东南大学,2005
    [398] Loser R, Münch B, Lura P. A volumetric technique for measuring the coefficient ofthermal expansion of hardening cement paste and mortar [J]. Cement and ConcreteResearch,2010,40(7):1138–1147
    [399] Aitcin PC. Autogenous shrinkage measurement [A]. International Workshop onAutogenous Shrinkage of Concrete [C], Hiroshima, Japan,1998
    [400] Jensen OM, Hansen PF. A dilatometer for measuring autogenous deformation inhardening Portland cement paste [J]. Materials and Structures,1995,28(7):406–409
    [401]田倩, Jensen OM.采用波纹管测试水泥基材料早期自收缩方法[J].硅酸盐学报,2009,37(1):39–45
    [402]陈美祝.水泥基材料组分对早期水化及收缩开裂影响的研究[D].武汉:武汉大学,2004
    [403] Peterson PE. Fracture energy of concrete: Method of determination [J]. Cement andConcrete Research,1980,10(1):79–89
    [404] Brown JH, Pomeroy CD. Fracture toughness of cement paste and mortars [J]. Cementand Concrete Research,1973,3(4):475–480
    [405] Mahmoud M, Reda T, Shrive NG. Enhancing fracture toughness of high-performancecarbon fiber cement composites [J]. ACI Materials Journal,2001,98(2):168–178
    [406] Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V. Influence of fly ash fineness onstrength, drying shrinkage and sulfate resistance of blended cement mortar [J]. Cementand Concrete Research,2004,34(7):1087–1092
    [407] Sabir BB, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: areview [J]. Cement and Concrete Composites,2001,23(6):441–454
    [408] Bentz DP. Internal curing of high-performance blended cement mortars [J]. ACIMaterials Journal,2007,104(4):408–414
    [409] Aitcin PC, Neville A, Acker P. Integrated View of Shrinkage Deformation [J].Concrete International,1997,19(9):35–41
    [410] Justnes H, Clemmens F, Depuydt P, et al. Correlating the deviation point betweenexternel and total chemical shrinkage with setting time and other characteristics ofhydrating cement paste [A]. In: Baroghel-Bouny V, A tcin PC. Ed. InternationalRILEM Workshop on Shrinkage of Concrete [C]. RILEM Publications Sarl,2000:57–73
    [411] Burlion N, Bourgeois F, Shao JF. Coupling damage-Drying shrinkage: Experimentalstudy and modelling [A]. In: Baroghel-Bouny V, A tcin PC. Ed. International RILEMWorkshop on Shrinkage of Concrete [C]. RILEM Publications Sarl,2000:315–339
    [412] Brooks JJ, Cabrera JG. Factors affecting the autogenous shrinkage of silica fumehigh-strength concrete [A]. International Workshop on Autogenous Shrinkage ofConcrete [C], Hiroshima, Japan,1998
    [413] Lee KM, Lee HK, Lee SH, et al. Autogenous shrinkage of concrete containinggranulated blast-furnace slag [J]. Cement and Concrete Research,2006,36(7):1279–1285
    [414] Holt E. Contribution of mixture design to chemical and autogenous shrinkage ofconcrete at early ages [J]. Cement and Concrete Research,2005,35(3):464–472
    [415] Mounanga P, Baroghel-Bouny V, Loukili A, et al. Autogenous deformations of cementpastes: Part I. Temperature effects at early age and micro-macro correlations [J].Cement and Concrete Research,2006,36(1):110–122
    [416] Baroghel-Bouny VR, Mounanga P, Khelidj A, et al. Autogenous deformations ofcement pastes: Part II. W/C effects, micro-macro correlations, and threshold values [J].Cement and Concrete Research,2006,36(1):123–136
    [417] Pierre-Claude A. Demystifying autogenous shrinkage [J]. Concrete International,1999,21(11):54–56
    [418] Bissonnette B, Pierre P, Pigeon M. Influence of key parameters on drying shrinkage ofcementitious materials [J]. Cement and Concrete Research,1999,29(10):1655–1662
    [419] Menashi DC, Jan O, William LD. Mechanism of plastic shrinkage cracking in Portlandcement and Portland cement-silica fume paste and mortar [J]. Cement and ConcreteResearch,1990,20(1):103–119
    [420] Pane I, Hansen W. Investigation on key properties controlling early-age stressdevelopment of blended cement concrete [J]. Cement and Concrete Research,2008,38(11):1325–1335
    [421] Akkaya Y, Ouyang CS, Shah SP. Effect of supplementary cementitious materials onshrinkage and crack development in concrete [J]. Cement and Concrete Composites,2007,29(2):117–123
    [422] Holt E, Leivo M. Cracking risks associated with early age shrinkage [J]. Cement andConcrete Composites,2004,26(5):521–530
    [423] Darquennes A, Staquet S, Delplancke-Ogletree MP, et al. Effect of autogenousdeformation on the cracking risk of slag cement concretes [J]. Cement and ConcreteComposites,2011,33(3):368–379
    [424] Richardson IG. The calcium silicate hydrates [J]. Cement and Concrete Research,2008,38(2):137–158
    [425] Richardson IG, Groves GW. Models for the composition and structure of calciumsilicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes [J]. Cement andConcrete Research,1992,22(6):1001–1010
    [426] Tennis PD, Jennings HM. A model for two types of calcium silicate hydrate in themicrostructure of Portland cement pastes [J]. Cement and Concrete Research,2000,30(6):855–863
    [427] Dolado JS, Griebel M, Hamaekers J. A molecular dynamic study of cementitiouscalcium silicate hydrate (C-S-H) gels [J]. Journal of the American Ceramic Society,2007,90(12):3938–3942
    [428] Vandamme M, Ulm FJ, Fonollosa P. Nanogranular packing of C-S-H atsubstochiometric conditions [J]. Cement and Concrete Research,2010,40(1):14–26
    [429] Richardson IG. The nature of C-S-H in hardened cements [J]. Cement and ConcreteResearch,1999,29(8):1131–1147
    [430] Plassard C, Lesniewska E, Pochard I, et al. Investigation of the surface structure andelastic properties of calcium silicate hydrates at the nanoscale [J]. Ultramicroscopy,2004,100(3-4):331–338
    [431] Bentz DP, Geiker M, Jensen OM. On the mitigation of early age cracking [A]. The3rdInternational Symposium on Self-desiccation and Its Importance in ConcreteTechnology [C], Lund, Sweden,2002
    [432] Escalante-Garcia JI, Sharp JH. The chemical composition and microstructure ofhydration products in blended cements [J]. Cement and Concrete Composites,2004,26(8):967–976
    [433] Fernández R, Nebreda B, Villa RV, et al. Mineralogical and chemical evolution ofhydrated phases in the pozzolanic reaction of calcined paper sludge [J]. Cement andConcrete Composites,2010,32(12):775–782
    [434] Taylor R, Richardson IG, Brydson RMD. Composition and microstructure of20-year-old ordinary Portland cement-ground granulated blast-furnace slag blendscontaining0to100%slag [J]. Cement and Concrete Research,2010,40(7):971–983
    [435] Fonseca PC, Jennings HM. The effect of drying on early-age morphology of C-S-H asobserved in environmental SEM [J]. Cement and Concrete Research,2010,40(12):1673–1680
    [436] Pardal X, Pochard I, Nonat A. Experimental study of Si-Al substitution incalcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions [J]. Cementand Concrete Research,2009,39(8):637–643
    [437] Hong SY, Glasser FP. Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role ofalumina [J]. Cement and Concrete Research,2002,32(7):1101–1111
    [438] Oh JE, Clark SM, Monteiro PJM. Does the Al substitution in C-S-H(I) change itsmechanical property [J]. Cement and Concrete Research,2011,41(1):102–106
    [439] Pellenq RJM, Lequeux N, van Damme H. Engineering the bonding scheme in C-S-H:The iono-covalent framework [J]. Cement and Concrete Research,2008,38(2):159–174
    [440] Gir o AV, Richardson IG, Taylor R, et al. Composition, morphology and nanostructureof C-S-H in70%white Portland cement-30%fly ash blends hydrated at55°C [J].Cement and Concrete Research,2010,40(9):1350–1359
    [441] Hong SY, Glasser FP. Alkali binding in cement pastes: Part I. The C-S-H phase [J].Cement and Concrete Research,1999,29(12):1893–1903
    [442] Chen W, Brouwers HJH. Alkali binding in hydrated Portland cement paste [J]. Cementand Concrete Research,2010,40(5):716–722
    [443] Shehata MH, Thomas MDA. Alkali release characteristics of blended cements [J].Cement and Concrete Research,2006,36(6):1166–1175
    [444] Li Y, Bao JL, Guo YL. The relationship between autogenous shrinkage and porestructure of cement paste with mineral admixtures [J]. Construction and BuildingMaterials,2010,24(10):1855–1860
    [445] Schmidt T, Lothenbach B, Romer M, et al. Physical and microstructural aspects ofsulfate attack on ordinary and limestone blended Portland cements [J]. Cement andConcrete Research,2009,39(12):1111–1121
    [446] Bonakdar A, Mobasher B. Multi-parameter study of external sulfate attack in blendedcement materials [J]. Construction and Building Materials,2010,24(1):61–70
    [447] Jiang W, Silsbee MR, Roy DM. Similarities and differences of microstructure andmacro properties between Portland and blended cement [J]. Cement and ConcreteResearch,1997,27(10):1501–1511
    [448] Pipilikaki P, Katsioti M. Study of the hydration process of quaternary blended cementsand durability of the produced mortars and concretes [J]. Construction and BuildingMaterials,2009,23(6):2246–2250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700