新型苯并环丁烯(BCB)单体的合成及其树脂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超大规模集成电路(ULSI)的迅速发展,芯片特征尺寸不断减小,器件的集成度越来越高。当特征尺寸降低到亚微米级时,由线间和层间寄生电容引起的RC延迟、串扰、功耗已经成为限制器件性能的主要因素。研究和开发出性能优异的低介电常数材料,以取代传统的SiO2介电材料是解决上述问题的有效方法。苯并环丁烯(BCB)树脂由于其优异的热、机械和介电性能,已成为高性能低介电材料的选择之一。本论文从分子结构设计出发,合成出了一系列新型苯并环丁烯(BCB)单体,并对合成单体的溶解性、固化动力学以及固化后树脂的热、机械、介电性能等进行了系统研究。具体内容包括以下几部分:
     1.设计并合成了三种含硅氧烷结构的BCB单体/共聚物。室温下,三者均为液态,显示出良好的加工性能。固化后,三种BCB树脂具有高热稳定性(Td5>450℃)、高玻璃化转变温度、高储能模量、低介电常数、低吸水率和良好的表面平整性。其中,含环状硅氧烷结构的BCB树脂由于其内部高度的交联结构表现出特别优异的热机械性能:室温下模量达到3.9GPa,热膨胀系数为32ppm/℃
     2.经酰亚胺和Heck反应两步法合成出了三种BCB封端的酰亚胺单体。室温下,三种BCB封端的酰亚胺单体可溶于绝大部分有机溶剂。经热固化后三种BCB树脂显示出良好的热稳定性(Td5>435℃)和热氧化稳定性、高玻璃化转变温度(>300℃)及高储能模量(>2GPa)。但由于酰亚胺结构的高极性,固化后树脂具有较高的介电常数和吸水率。此外,BCB单体与光敏剂混合后,可直接应用于光刻加工工艺,获得清晰图形。
     3.以两种不同分子量氢封端的硅氧烷为前体,经硅氢化和酰亚胺化两步反应合成出了含硅氧烷及酰亚胺结构的BCB单体。两种BCB单体具有良好的溶解性能。固化后,两种BCB树脂显示出良好的热稳定性,5%失重时的温度分别为462℃和468℃。由于非极性的单体结构,树脂的介电常数和吸水率均较低。此外,旋涂膜表现出优异的表面平整性及透光性。含有较短硅氧烷链结构的BCB树脂具有更高的玻璃化转变温度和储能模量,以及更低的热膨胀系数,表明可以通过改变硅氧烷前体结构来调节树脂模量、玻璃化转变温度等热、机械性能。
With the development of the Ultra-large-scale integrated circuit (ULSI), the increasing of device density has significantly made the feature size continue to decrease. As feature size reaching beyond submicron, the resistance-capacity (RC) delay, crosstalk noise and power dissipation induced by parasitic capacitance between interconnected metal lines have largely limited the progress of integrated circuits. One of the strategies to meet this problem is replacing the traditional SiO2insulator by materials with low dielectric constant. BCB-based resins have been considered as the most promising dielectrics for the manufacturing of ULSI for their superior thermal, mechanical and electrical properties. In this research, a series of novel BCB monomers were synthesized. The properties of BCB resins were also investigated systematically. The main contents and results of this paper are listed below.
     1. Three kinds of BCB-functionalized monomers/copolymer were synthesized, which were liquid at room temperature, implying they have excellent processability. All the BCB resins exhibited good thermal stability, high Tg, high storage moduli, low dielectric constants, low water absorptions and well planarization. Due to the high cross-linking density, BCB resin with cyclic siloxane structure showed very good thermal and mechanical properties with a modulus of3.9GPa and a CTE of32ppm/℃.
     2. Three kinds of BCB-functionalized imide monomers were synthesized by imidization and Heck reaction. At room temperature, the three BCB monomers exhibited good solubility in general organic solvents. After cure, the BCB resins showed good thermal stability (Td5>435℃), high Tg(>300℃), high storage moduli (>2GPa). However, the resins exhibited high dielectric constants (>2.8at1MHz) and water absorptions for the polarity of the imide structure. Furthermore, the photosensitivity of the BCB monomers was also investigated. After photolithography, fine patterns were obtained with a high resolution.
     3. Two kinds of BCB-based siloxane-containing imide monomers were synthesized through imidization between siloxane-containing dianhydride and4-aminoBCB. The obtained BCB monomers exhibited good solubility in organic solvents. The two resins revealed high thermal stability as evidenced by the temperatures of5wt%weight loss at462and468℃, respectively. The cured resins also demonstrated with low dielectric constants (2.7at1MHz) and low-water absorptions. The films prepared from spin-casting the acetic acid solution of BCB monomers showed a well planarization and high transparency. Moreover, the thermal and mechanical properties of the BCB resins could be adjusted by the length of siloxane chain. The resin with a shorter siloxane structure demonstrated higher Tg, higher storage modulus and lower CTE than the longer one.
引文
1. Volksen W, Miller R D, Dubois G. Low dielectric constant materials. Chemical reviews,2010,110(1):56-110.
    2. Shamiryan D, Abell T, Iacopi F, et al. Low-k dielectric materials. Materials Today, 2004,7(1):34-39.
    3. Robert S P. Three-dimensional integrated circuits and the future of system-on-chip designs. Proceedings of the IEEE,2006,94(6):1214-1224.
    4. International technology roadmap for semiconductors,2007 Edition. Available from:www.itrs.net.
    5. Maex K, Baklanov M R, Shamiryan D, et al. Low dielectric constant materials for microelectronics. Journal of Applied Physics,2003,93(11):8793-8841.
    6. Alonso J C, Diaz-Bucio X M, Pichardo E, et al. On the contributions of the electronic polarizability and porosity to the reduction of the refractive index of SiOF films deposited by remote plasma-enhanced chemical vapor deposition. Thin Solid Films,2005,474(1-2):294-300.
    7. Ma Y J, Yang H N, Guo J, et al. Structural and electronic properties of low dielectric constant fluorinated amorphous carbon films. Applied Physics Letters,1998, 72(25):3353-3355.
    8.徐洪耀,严正权,张超,等.多面体笼型倍半硅氧烷纳米杂化低介电材料的研究[J].高等学校化学学报,2011,9,1962-1969.
    9. Wang M R, Rusli, Yu M B, et al. Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from trimethylsilane. Thin Solid Films, 2004,462-463 219-222.
    10. Kim C Y, Kim S H, Navamathavan R, et al. Characteristics of low-k SiOC(-H) films deposited at various substrate temperature by PECVD using DMDMS/O2 precursor. Thin Solid Films,2007,516(2-4):340-344.
    11. Yang C S, Yu Y H, Lee KM, et al. Investigation of low dielectric carbon-doped silicon oxide films prepared by PECVD using methyltrimethoxysilane precursor. Thin Solid Films,2006,506-507 50-54.
    12. Wang Y Z, Chen W Y, Yang C C, et al. Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. Journal of Polymer Science, Part B: Polymer Physics,2007,45(4):502-510.
    13. Lee B, Park Y H, Hwang Y T, et al. Ultralow-k nanoporousorganosilicate dielectric films imprinted with dendritic spheres. Nature Materials,2005, 4(2):147-150.
    14. Maier G. Low dielectric constant polymers for microelectronics. Progress in Polymer Science,2001,26(1):3-65.
    15. Treichel H, Ruhl G, Ansmann P, et al. Low dielectric constant materials for interlayer dielectric. Microelectronic Engineering,1998,40(1):1-19.
    16.丁孟贤,何天白.聚酰亚胺新型材料,科学出版社,1998.
    17. Ree M, Chen K J, Chen D P, et al. Anisotropic properties of high-temperaturepolyimide thin films:Dielectric and thermal-expansion behaviors. Journal of Applied Physics,1992,72:2014-2018.
    18. Ting C H. Dielectric materials/process development; Process of the 1995 VMIC, State-of-the-art Seminar,1995,113-116.
    19. Xie K, Zhang S Y, Liu J G, et al. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. Journal of Polymer Science, Part A:Polymer Chemistry,2001,39(15):2581-2590.
    20. Tsay S Y, Tsai M F, Chen B K. Synthesis and properties of fluorinated polyamideimides with high solubility. Journal of Applied Polymer Science, 95(2):321-327.
    21.Yang C P, Chen R S, Chen K H. Organosoluble and light-colored fluorinated polyimides based on 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]propane and aromatic dianhydrides. Journal of Applied Polymer Science,2005,95(4): 922-935.
    22. Myung B Y, Ahn C J, Yoon T H. Synthesis and characterization of polyimides from novel 1-(3',5'-bis(trifluoromethyl)benzene) pyromelliticdianhydride (6FPPMDA). Polymer,2004,45(10):3185-3193.
    23. Hsiao S H, Chang Y H. Synthesis and properties of soluble trifluoromethyl-substituted polyimides containing laterally attached p-terphenyls. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(5):1255-1271.
    24.Wang K L, Jikei M, Kakimoto M A. Synthesis of soluble branched polyimides derived from an ABB' monomer. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(13):3200-3211.
    25. Fang X Z, Li Q X, Wang Z, et al. Synthesis and properties of novel polyimides derived from 2,2',3,3'-benzophenonetetracarboxylic dianhydride. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(9):2130-2144.
    26. Song N, Qi W, Qiu X P, et al. Synthesis and chirooptical properties of optically active poly(ester imide)s based on axially asymmetric 1,1'-binaphthyls.Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(17):4318-4326.
    27. Su T H, Hsiao S H, Liou G S. Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties. Journal of Polymer Science, Part A:Polymer Chemistry,2005, 43(10):2085-2098.
    28. Carter K R, DiPietro R A, Sanchez M I, et al. Nanoporous polyimides derived from highly fluorinated polyimide/poly(propylene oxide) copolymers. Chemistry of Materials,2001,13(1):213-221.
    29. Ge Z Y, Yang S Y, Tao Z Q, et al. Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines. Polymer,2004,45(11):3627-3635.
    30. Liaw D J, Huang C C, Chen W H. Color lightness and highly organo-soluble fluorinated polyamides, polyimides and poly(amide-imide)s based on noncoplanar 2,2'-dimethyl-4,4'-biphenylene units. Polymer,2006,47(7):2337-2348.
    31. Miyagawa T, Fukushima T, Oyama T, et al. Photosensitive fluorinated polyimides with a low dielectric constant based on reaction development patterning. Journal of Polymer Science, Part A:Polymer Chemistry,2003,41(6):861-871.
    32. Stoakley D M, St C, Anne K, et al. Low-dielectric, fluorinate polyimide copolymers. Journal of Applied Polymer Science,1994,51(8):1479-1483.
    33. Yang C P, Hsiao S H, Chung C L. Organosoluble, low-dielectric-constant fluorinated polyimides based on 2,6-bis(4-amino-2-trifluoromethylphenoxy)naphthalene. Polymer International,2005, 54(4):716-724.
    34.赵春宝,金鸿,陈森,等.低介电常数聚酰亚胺材料制备的研究进展.绝缘材料,2010,43(2):33-37.
    35. Wang W C, Vora R H, Kang E T, et al. Nanoporous ultra-low-films prepared from fluorinated polyimide with grafted poly(acrylic acid) side chains. Advanced Materials, 2004,16(1):54-57.
    36. Jiang L Z, Liu J G, Wu D Z, et al. A methodology for the preparation of nanoporous polyimide films with low dielectric constants. Thin Solid Films,2006, 510(1-2):241-246.
    37. Leu C M, Chang Y T, Wei K H. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chemistry of Materials,2003,15(19):3721-3727.
    38. Leu C M, Reddy G M, Wei K H, et al. Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chemistry of Materials,2003,15(11):2261-2265.
    39. Leu C M, Chang Y T, Wei K H. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules,2003,36(24):9122-9127.
    40. Lee Y J, Huang J M, Kuo S W, et al. Low-dielectric, nanoporous polyimide films prepared from PEO-POSS nanoparticles. Polymer,2005,46(23):10056-10065.
    41. Lee Y J, Huang J M, Kuo S W, et al. Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer,2005, 46(1):173-181.
    42. Huang J C, Lim P C, Shen L, et al. Cubic silsesquioxane-polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Materialia,2005,53(8):2395-2404.
    43. Tamaki R, Choi J, Laine R M. A Polyimide Nanocomposite from Octa(aminophenyl)silsesquioxane. Chemistry of Materials,2003,15(3):793-797.
    44. Wahab A M, Khine M Y, He C B. Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. Journal of Polymer Science, Part A:Polymer Chemistry,2008,46(17):5887-5896.
    45. Somboonsub B, Thongyai S, Praserthdam P. Dielectric properties and solubility of multilayer hyperbranched polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Journal of Applied Polymer Science,2009,114(5):3292-3302.
    46. Ye Y S, Yen Y C, Chen W Y, et al. A simple approach toward low-dielectric polyimide nanocomposites:blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane. Journal of Polymer Science, Part A:Polymer Chemistry,2008,46(18):6296-6304.
    47. Tsuchiya K, Ishii H, Shibasaki Y, et al. Synthesis of a novel poly(binaphthylene ether) with a low dielectric constant. Macromolecules,2004,37(13):4794-4797.
    48. Tsuchiya K, Shibasak Y, Aoyagi M, et al. Synthesis of a novel poly(binaphthylene ether) containing trifluoromethyl groups with a low dielectric constant. Macromolecules,2006,39(11):3964-3966.
    49.呼微,刘佰军,张丽梅,等.低介电常数含氟聚芳醚的合成.高等学校化学学报,2003,24(1):184-185.
    50.赵恩顺,唐安斌.低介电常数苯并嗯嗪树脂的合成.化工新型材料,2007,35(1):41-45.
    51. Liu Y L, Chou C I. High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science, Part A:Polymer Chemistry, 2005,43(21),5267-5282.
    52. Su Y C, Chang F C. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer,2003,44:7989-7996.
    53. Su Y C. Chen W C. Oua K. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine copolymers. Polymer,2005,46:3758-3766.
    54. Martin S J, Godschalx J P, Mills M E, et al. Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect. Advanced Materials,2000,12(23):1769-1778.
    55. Mills M E, Townsend P. Castillo D, et al. Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material. Microelectronic Engineering,1997, 33(1-4):327-334.
    56. Wu Q, Lorenz N, Hand D P. Localised laser joining of glass to silicon with BCB intermediate layer. Microsystem Technology,2009,15:1051-1057.
    57. Tan L S, Venkatasubramanian N, Mather P T, et al. Synthesis and thermal properties of thermosetting bis-benzocyclobutene terminated arylene ether monomers. Journal of Polymer Science, Part A:Polymer Chemistry,1998,36:2637-2651.
    58. Oaks F L, Calif S C, Moyer E S, et al. Photodefineable cyclobutarene compositions. US Pat.6083661.
    59. Foster P S, Ecker E L, Rutter E W, et al. Photodefineable formulation containing a partially polymerized bisbenzocyclobutene resin. US Pat.5882836.
    60. So Y H, Stark E, Thurston S, et al. A novel positive-tone and aqueous-base-developable photosensitive benzocyclobutent-based material for microelectronics. Electronics Packaging Technology Conference,2004,473-477.
    61. So Y H, Stark E J, Li Y F, et al. Aqueous-base-developable benzocyclobutene (BCB)-based material curable in air. IEEE Transactions on Advanced Packaging, 2006,29(4):741-750.
    62. Fukukawa K, Shibasaki Y. A photosensitive semi-alicyclic poly(benzoxazole) with high transparency and low dielectric constant. Macromolecules,2004, 37:8256-8261.
    63.赵雄燕.低介电常数聚喹啉衍生物薄膜的合成与表征.物理化学学报,2010,26:1164-1170.
    64. Sato Y, Nakayama Y, Yasuda H. Controlled vinyl-addition-type polymerization of norbornene initiated by several cobalt complexes having substituted terpyridine ligands. Journal of Organometallic Chemistry,2004,689(4):744-750.
    65. Kirchhoff R A, Bruza K J. Benzocyclobutenes in polymer synthesis. Progress in Polymer Science,1993,18:85-185.
    66. John M W, William C P, Robert A D. Benzocyclobutenes as styrene monomer scavengers and molecular weight "stabilizers" in atactic and syndiotactic polystyrenes. Journal of Applied Polymer Science,2000,78:2008-2015.
    67. So Y H, Foster P, Im J H, et al. Divinylsiloxane-bisbenzocyclobutene-based polymer modified with polystyrene-polybutadiene-polystyrene triblock copolymers. Journal of Polymer Science, Part A:Polymer Chemistry,2006,44:1591-1599.
    68. Chino K, Takata T, Endo T. Polymerization of o-quinodimethanes. Ⅲ. Polymerization of o-quinodimethanes bearing electron-withdrawing groups formed in situ by thermal ring-opening isomerization of corresponding benzocyclobutenes. Journal of Polymer Science, Part A:Polymer Chemistry,1999,37(10):1555-1563.
    69. Finkelstein H. Synthesis of 1,2-dibromobenzocyclobutene by sodium iodine. Chem. Ber,1910,43:1528-1530.
    70. Tan L S, Arnold F E. Bisbenzocyclobutene compounds and polymers from them. US Pat.4711964.
    71.吴士杰.环丁烯类化合物的合成.化学试剂,1994,13(5):289-292.
    72. Cava M P, Deana A A. Condensed cyclobutane aromatic compounds. Ⅵ. The pyrolysis of 1,3-dihydroisothianaphthene 2,2-dioxide:a new synthesis of benzocyclobutene. Journal of the American Chemical Society,1959,81:4266-4268.
    73. Schiess P, Rutschmann S, Toan V V. Formation of substituted benzocyclobutenes through flash vacuum pyrolysis. Tetrahedron Letters,1982,23(36):3669-3672.
    74. Lloyd J B F, Ongley P A. The electrophilic substitution of benzocyclobutene-II: Benzoylation, sulphonation, bromination and chlorination. Tetrahedron,1965, 21:245-254.
    75. Lloyd J B F, Ongley P A. The electrophilic substitution of benzocyclobutene-I: Nitration, acetylation and hydrobromination. Tetrahedron,1964,20:2185-2194.
    76. Bruza K J, Young A E. Process for preparing aminobenzocyclobutenes. US Pat. 5274135.
    77. Thomas P J, Pews R G. Bromination of benzocyclobutene by liquid bromine. Synthetic Communications,1991,22:2335-2336.
    78. Corley L S. Bisbenzocyclobutene/bisstyrene radical polymerization inhibitor composition. US Pat.4935477.
    79. Corley L S. Polymers made from quaternary ammonium acrylic monomers. US Pat.4973637.
    80. Zuo X B, Zhao X J, Liu B, et al. Synthesis and properties of fluorinated bis-benzocyclobutene-terminated arylene ether monomers. Journal of Applied Polymer Science,2009,112:2781-2791.
    81. Corley L S. Bisbenzocyclobutene/bisimide compositions for copolymers with good toughness. US Pat.5032451.
    82. Zuo X B, Yu R L, Shi S, et al. Synthesis and characterization of photosensitive benzocyclobutene-functionalized siloxane thermosets. Journal of Polymer Science, Part A:Polymer Chemistry,2009,47(22):6246-6258.
    83. Kirchhoff R A. Polymers derived from poly(arylcyclobutenes). US Pat.4540763.
    84. Kirchhoff R A. Alkynyl-bridged poly(arylcyclobutene) resins. US Pat.4687823.
    85. Kirchhoff R A, Schrock A, Gilpin J A. Prepolymer processing of arylcyclobutene monomeric compositions. US Pat.4642329.
    86.杨军校,谢如刚.苯并环丁烯单体的合成及其聚合物性能研究(博士学位论文),2005.
    87. Tan L S, Arnold F E. Benzocyclobutene in polymer synthesis. Ⅰ. Homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins. Journal of Polymer Science, Part A: Polymer Chemistry,1988,26:1819-1834.
    88. Tan L S, Arnold F E. Benzocyclobutene in polymer synthesis. Ⅲ. Heat-resistant thermosets based on Diels-Alder polymerization of a bisbenzocyclobutene and a bismaleimide. Journal of Polymer Science:Part A:Polymer Chemistry,1988, 26:3103-3117.
    89. Zhang Y Q, Gao J Y, Shen X N, et al. The preparation, characterization, and cure Reactions of new bisbenzocyclobutene-terminated aromaticimides. Journal of Applied Polymer Science,2006,99:1705-1719.
    90. So Y H. Pyrolytic preparation of benzocyclobutenes in the presence of a diluent. Industrial and Engineering Chemistry Research,1993,32(5):952-954.
    91.徐婷婷,梁国正,卢婷利,等.苯并环丁烯类化合物的合成.高分子通报,2006,11:69-77.
    92. Tan L S, Venkatasubramanian N, Mather P T, et al. Synthesis and thermal properties of thermosetting bis-benzocyclobutene-terminated arylene ether monomers. Journal of Polymer Science, Part A:Polymer Chemistry,1998,36(14):2637-2651.
    93. Parker R. Method of producing improved microstructure and properties for ceramic superconductors. US Pat.5525586.
    94. Wong P K. Olefinic benzocyclobutene polymers. US Pat.4667004.
    95. Wong P K, Handlin D L. Anionic polymerization process. US Pat.4708990.
    96.王靖,张富新,沈学宁,等.苯并环丁烯及其材料.玻璃钢/复合材料,2002,2:50-53.
    97. Ito Y, Nakatsuka M, Saegusa T. Syntheses of polycyclic ring systems based on the new generation of o-quinodimethanes. Journal of the American Chemical Society, 1982,104:7609-7622.
    98. Ito Y, Nakatsuka M, Saegusa T. An efficient and versatile generation of o-xylylenes by fluoride anion. Journal of the American Chemical Society,1980, 102:863-865.
    99. Ito Y, Nakatsuka M, Saegusa T. New stereoselective synthesis of steroids. Journal of the American Chemical Society,1981,103:476-477.
    1. David B, Paul T, Joseph C. Benzocyclobutene (BCB) dielectrics for the fabrication of high density thin film multichip modules. Journal of Electronic Materials,1990, 19:1357-1366.
    2. Qian Z G, Pang Z Z, Li Z X, et al. Photoimageable polyimides derived from a,a-(4-amino-3,5-dimethylphenyl)phenylmethane and aromatic dianhydride. Journal of Polymer Science, Part A:Polymer Chemistry,2002,40:3012-3020.
    3. Ho T H, Wang C S. Modification of epoxy resin with siloxane containing phenolaralkyl epoxy resin for electronic encapsulation application. European Polymer Journal,2001,37:267-274.
    4. Michael E, Paul M T, Dan C, et al. Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material. Microelectronic Engineering,1997,33:327-334.
    5. Wu Q, Lorenz N, Hand D P. Localised laser joining of glass to silicon with BCB intermediatelayer. Microsystem Technology,2009,15:1051-1057.
    6. Tan L S, Venkatasubramanian N, Mather P T, et al. Synthesis and thermal properties of thermosetting bis-benzocyclobuteneterminated arylene ether monomers. Journal of Polymer Science, Part A:Polymer Chemistry,1998,36:2637-2651.
    7. Hahn S F, Martin S J, McKelvy M L, et al. Thermal polymerization of bis(benzocyclobutene) monomers containing, alpha.,.beta,-disubstitutedethenes. Macromolecules,1993,26:3870-3877.
    8. Kirchhoff R A, Bruza K J. Benzocyclobutenes in polymer synthesis. Progress in Polymer Science,1993,18:85-185.
    9. John M W, William C P, Robert A D. Benzocyclobutenes as styrene monomer scavengers and molecular weight "stabilizers" in atactic and syndiotactic polystyrenes. Journal of Applied Polymer Science,2000,78:2008-2015.
    10. So Y H, Foster P, Im J H, et al. Divinylsiloxane-bisbenzocyclobutene-based polymer modified with polystyrene-polybutadiene-polystyrene triblock copolymers. Journal of Polymer Science, Part A:Polymer Chemistry,2006,44:1591-1599.
    11. Tan L S, Arnold F E. Bisdiene from bis-benzocyclobutene compound. US Pat. 4711964.
    12. Tan L S, Aronld F E. Benzocyclobutene in polymer synthesis. Ⅲ. Heat-resistant thermosets based on Diels-Alder polymerization of a bisbenzocyclobutene and a bismaleimide. Journal of Polymer Science, Part A:Polymer Chemistry,1988, 26:3103-3117.
    13. Tan L S, Aronld F E. Benzocyclobutene in polymer synthesis. I. homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins. Journal of Polymer Science, Part A: Polymer Chemistry,1988,26:1819-1834.
    14. Zhang Y Q, Gao J Y, Shen X N, et al. The preparation, characterization, and cure reactions of new bisbenzocyclobutene-terminated aromatic imides. Journal of Applied Polymer Science,2006,99:1705-1719.
    15. Kirchhoff R A. Mich M. Polymers derived from poly(arylcyclobutenes). US Pat. 4540763.
    16. Schrock A K, Harris W J. Monomers, oligomers, and polymers of biscyclobutarenes bridged by at least one benzoxazole linkage. US Pat.4864010.
    17. Kirchhoff R A, Carriere C J, Bruza K J, et al. Benzocyclobutenes:a new class of high performance polymers. Journal of Macromolecular Science Chemistry,1991, 28:1079-1113.
    18. Kirchhoff R A. Schrock A, Gilpin J A. Prepolymer processing of arylcyclobutene monomeric compositions. US Pat.4642329.
    19. Schrock A K, Jackson L. Polyorganosiloxane-bridged bisbenzocyclobutene monomers. US Pat.4812588.
    20. Zuo X B, Yu R L, Shi S, et al. Synthesis and characterization of photosensitive benzocyclobutene-functionalized siloxane thermosets. Journal of Polymer Science, Part A:Polymer Chemistry,2009,47:6246-6258.
    21. Zuo X B, Chen J S, Zhao X J, et al. Synthesis and characterization of siloxane resins derived from silphenylene-siloxane copolymers bearing benzocyclobutene pendant groups. Journal of Polymer Science, Part A:Polymer Chemistry,2008, 46:7868-7881.
    22. Zuo X B, Zhao X J, Liu B, et al. Synthesis and properties of fluorinated bis-benzocyclobutene-terminated arylene ether monomers. Journal of Applied Polymer Science,2009,112:2781-2791.
    23. Foster P S, Ecker E L, Rutter E W, et al. Photocurable formulation containing a partially polymerized divinylsiloxane linked bisbenzocyclobutene resin. US Pat. 5882836.
    24. DeVries R A, Ash M L. Process for purifying vinylically-unsaturated organosilicon compounds. US Pat.5138081.
    25. DeVries R A, Stark E J. Preparation of vinylsilane-benzocyclobutenes. US Pat. 5416233.
    26. Hahn S F, Martin S J, Mckelvy M L. Thermally induced polymerization of an aryl vinylbenzocyclobutene monomer. Macromolecules,1992,25:1539-1545.
    27. Liu G D, Zhou B, Zhao D M, et al. Novel triaromatic ester mesogenic liquid crystalline epoxy resin containing both methyl substituent and ethoxy flexible spacer: synthesis and curing. Macromolecular Chemistry and Physics,2008,209:1160-1169.
    28. Rocks J, Rintoul L, Vohwinkel F, et al. The kinetic and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer,2004,45:6799-6811.
    29. Scherzer T, Decker U. The effect of temperature on kinetics of diacrylate photo polymerizations studied by real-time FTIR spectroscopy. Polymer,2004, 41:7681-7690.
    30. Yoo M J, Kim S H, Park S D, et al. Investigation of curing kinetics of various cycloaliphatic epoxy resinsusing dynamic thermal analysis. European Polymer Journal,2010,46:1158-1162.
    31. Kissinger H E. Reaction kinetics in differential thermal analysis. Anal Chem,1957, 29:1702-1706.
    32. Kotal A, Si S, Paira T K, et al. Synthesis of semitelechelic POSS-polymethacrylate hybrids by thiol-mediated controlled radical polymerization with unusual thermal behaviors. Journal of Polymer Science, Part A:Polymer Chemistry,2008, 46:1111-1123.
    33. Madhavan K, Gnanasekaran D, Reddy B S R. Synthesis and characterization of Poly(dimethylsiloxaneurethane) nanocomposites:effect of (In) Completely condensed silsesquioxanes on thermal, morphological, and mechanical properties. Journal of Applied Polymer Science,2009,114:3659-3667.
    34. Xiao F, Sun Y, Xiu Y, et al. Preparation, thermal and mechanical properties of POSS epoxy hybrid composites. Journal of Applied Polymer Science,2007, 104:2113-2121.
    1.丁孟贤,何天白,聚酰亚胺新型材料,科学出版社,1998.
    2. Ghosh M K, Mittal K L, Editors. Polyimides:fundamentals and applications.1996.
    3. Chung C L, Yang C P, Hsiao S H. Organosoluble and colorless fluorinated poly(ether imide)s from 1,2-bis(3,4-dicarboxyphenoxy)benzene dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. Journal of Polymer Science, Part A:Polymer Chemistry,2006,44:3092-3102.
    4. Xie K, Zhang S Y, Liu J G, et al. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. Journal of Polymer Science, Part A:Polymer Chemistry,2001,39(15):2581-2590.
    5. Tsay S Y, Tsai M F, Chen B K. Synthesis and properties of fluorinated polyamideimides with high solubility. Journal of Applied Polymer Science, 95(2):321-327.
    6. Yang C P, Chen R S, Chen K H. Organosoluble and light-colored fluorinated polyimides based on 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]propane and aromatic dianhydrides. Journal of Applied Polymer Science,2005,95(4):922-935.
    7. Myung B Y, Ahn C J, Yoon T H. Synthesis and characterization of polyimides from novel 1-(3',5'-bis(trifluoromethyl)benzene) pyromelliticdianhydride (6FPPMDA). Polymer,2004,45(10):3185-3193.
    8. Hsiao S H, Chang Y H. Synthesis and properties of soluble trifluoromethyl-substituted polyimides containing laterally attached p-terphenyls. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(5):1255-1271.
    9. Wang K L, Jikei M, Kakimoto M A. Synthesis of soluble branched polyimides derived from an ABB'monomer. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(13):3200-3211.
    10. Fang X Z, Li Q X, Wang Z, et al. Synthesis and properties of novel polyimides derived from 2,2',3,3'-benzophenonetetracarboxylic dianhydride. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(9):2130-2144.
    11. Song N, Qi W, Qiu X P, et al. Synthesis and chirooptical properties of optically active poly(ester imide)s based on axially asymmetric 1,1'-binaphthyls. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42(17):4318-4326.
    12. Su T H, Hsiao S H, Liou G S. Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties. Journal of Polymer Science, Part A:Polymer Chemistry,2005, 43(10):2085-2098.
    13. Burdeaux D, Townsend P, Carr J, et al. Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules. Journal of Electronic Materials,1990,19(12):1357-1366.
    14. Kirchhoff R A, Bruza K J. Benzocyclobutenes in polymer synthesis. Progress in Polymer Science,1993,18:85-185.
    15. Farona, M. F. Benzocyclobutenes in polymer chemistry. Progress in Polymer Science,1996,21:505-555.
    16. Kirchhoff R A, Carriere C J, Braza K J, et al. Benzocyclobutenes:A new class of high performance polymers. Journal of Macromolecular Science Chemistry,1991, 28:1079-1113.
    17. Ying-Hung, S, Philip G, Jang-Hi I, et al. Benzocyclobutene-basedpolymers for microelectronics. Chemical innovation,2001,31(12):40-47.
    18. Oaks F L, Calif S C, Moyer E S, et al. Photodefineable cyclobutarene compositions. US Pat.6083661.
    19. Foster P S, Ecker E L, Rutter E W, et al. Photodefineable formulationcontaining a partially polymerized bisbenzocyclobutene resin. US Pat.5882836.
    20. Andre S, Guida-Pietrasanta F, Rousseau A, et al. Synthesis, characterization, and thermal properties of anhydride terminated and allyl terminated oligoimides. Journal of Polymer Science, Part A:Polymer Chemistry,2000,38(16):2993-3003.
    21. Kuznetsov A A, Tsegelskaya A Y, Belov M Y, et al. Macromol Symp,1998, 128:203.
    22. Elderfield R C, Mertel H E, Mitch R T, et al. Synthesis of primaquine and certain of its analogs. Journal of American Chemical Society,1955,77:4816-4819.
    23. Ghadir M, Zymonyi E, Nagy J. Periodica Polytechnica Ser Chem Eng,1992,36, 89.
    24. Ghadir M, Zimonyi E, Nagy J. Preparation and investigation of silicone rubber containing imide-siloxane copolymers. Angewandte Makromolekulare Chemie,1994, 214:123-136.
    25. Zuo X B, Yu R L, Shi S, et al. Synthesis and characterization of photosensitive benzocyclobutene-functionalized siloxane thermosets. Journal of Polymer Science, Part A:Polymer Chemistry,2009,47:6246-6258.
    26. Liu J G, He M H, Li Z X, et al. Synthesis and characterization of organosoluble polyimides with trifluoromethyl-substituted benzene in the side chain. Journal of Polymer Science, Part A:Polymer Chemistry,2002,40(10):1572-1582.
    27. Yang C P, Chen R S, Chen K H. Effects of diamines and their fluorinated groups on the color lightness and preparation of organo-soluble aromatic polyimides from2,2-Bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-hexafluoropropane. Journal of Polymer Science, Part A:Polymer Chemistry,2003,41(7):922-938.
    28. Tan L S, Arnold F E. Bisdiene from bis-benzocyclobutene compound. US Pat. 4711964.
    29. Tan L S, Aronld F E. Benzocyclobutene in polymer synthesis. Ⅲ. Heat-resistant thermosets based on Diels-Alder polymerization of a bisbenzocyclobutene and a bismaleimide. Journal of Polymer Science, Part A:Polymer Chemistry,1988, 26:3103-3117.
    30. Tan L S, Aronld F E. Benzocyclobutene in polymer synthesis. Ⅰ. homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins. Journal of Polymer Science, Part A: Polymer Chemistry,1988,26:1819-1834.
    31. Zhang Y Q, Gao J Y, Shen X N, et al. The preparation, characterization, and cure reactions of new bisbenzocyclobutene-terminated aromatic imides. Journal of Applied Polymer Science,2006,99:1705-1719.
    32. Yoo M J, Kim S H, Park S D, et al. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. European Polymer Journal,2010,46:1158-1162.
    33. Kissinger H E. Reaction kinetics in differential thermal analysis. Anal Chem,1957, 29:1702-1706.
    34. Yang C P, Su Y Y. Synthesis and properties of organosoluble polyimides based on 4,4-Bis(4-amino-2-trifluoromethylphenoxy)-benzophenone. Journal of Polymer Science, Part A:Polymer Chemistry,2004,42:222-236.
    35. Hariharan R, Sarojadevi M. Synthesis and organosoluble polyimides derived from bis(4-amino-3,5-dimethyl phenyl) halo phenyl methane and various dianhydrides. Journal of Applied Polymer Science,2006,102:4127-4135.
    36.左小彪.低介电常数苯并环丁烯树脂的合成与性能研究(博士学位论文),2008.
    1. Mills M E, Townsend P, Castillo D, et al. Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material. Microelectronic Engineering,1997, 33(1-4):327-334.
    2. Wu Q, Lorenz N, Hand D P. Localised laser joining of glass to silicon with BCB intermediate layer. Microsystem Technologies,2009,15(7):1051-1057.
    3. Tan L S, Venkatasubramanian N, Mather P T, et al. Synthesis and thermal properties of thermosetting bis-benzocyclobutene-terminated arylene ether monomers. Journal of Polymer Science, Part A:Polymer Chemistry,1998,36(14):2637-2651.
    4. Hahn S F, Martin S J, McKelvy M L, et al. Thermal polymerization of bis(benzocyclobutene) monomers containing-disubstituted ethenes. Macromolecules, 1993,26(15):3870-3877.
    5. Kirchhoff R A, Bruza K J. Benzocyclobutenes in polymer synthesis. Progress in Polymer Science,1993,18(1):85-185.
    6. Warakomski J M, Pike W C, Devries R A. Benzocyclobutenes as styrene monomer scavengers and molecular weight "stabilizers" in atactic and syndiotactic polystyrenes. Journal of Applied Polymer Science,2000,78(11):2008-2015.
    7. So Y H, Foster P, Im J H, et al. Divinylsiloxane-bisbenzocyclobutene-based polymer modified with polystyrene-polybutadiene-polystyrene triblock copolymers. Journal of Polymer Science, Part A:Polymer Chemistry,2006,44(5):1591-1599.
    8. Tan L S, Arnold F E. Bisbenzocyclobutene compounds and polymers from them. US Pat.4711964.
    9. Tan L S, Arnold F E, Soloski E J. Benzocyclobutene in polymer synthesis. Ⅲ. Heat-resistant thermosets based on Diels-Alder polymerization of bisbenzocyclobutene and a bismaleimide. Journal of Polymer Science, Part A: Polymer Chemistry,1988,26(11):3103-3117.
    10. Tan L S, Arnold F E. Benzocyclobutene in polymer synthesis. I. Homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins. Journal of Polymer Science, Part A: Polymer Chemistry,1988,26(7):1819-1834.
    11. Zhang Y Q, Gao J Y, Shen X N, et al. The preparation, characterization, and cure reactions of new bisbenzocyclobutene-terminated aromatic imides. Journal of Applied Polymer Science,2006,99(4):1705-1719.
    12. Kirchhoff R. A. Mich M. Polymers derived from poly(arylcyclobutenes). US Pat. 4540763.
    13. Parker R. Method of producing improved microstructure and properties for ceramic superconductors. US Pat.5525586.
    14. Bruza K J, Carriere C J, Kirchhoff R A, et al. Benzocyclobutenes:a new class of high performance polymers. Journal of Macromolecular Science Chemistry,1991, A28(11-12):1079-1113.
    15. Kirchhoff R A, Schrock A, Gilpin J A. Prepolymer processing of arylcyclobutene monomeric compositions. US Pat.4642329.
    16. Schrock A K. Room-temperature-processable siloxane-bridged bisbenzocyclobutene monomers. US Pat.4812588.
    17. Zuo X B, Yu R L, Shi S, et al. Synthesis and characterization of photosensitive benzocyclobutene-functionalized siloxane thermosets. Journal of Polymer Science, Part A:Polymer Chemistry,2009,47(22):6246-6258.
    18. Zuo X B, Chen J S, Zhao X J, et al. Synthesis and characterization of siloxane resins derived from silphenylene-siloxane copolymers bearing benzocyclobutene pendant groups. Journal of Polymer Science, Part A:Polymer Chemistry,2008, 46(23):7868-7881.
    19. Zuo X B, Zhao X J, Liu B, et al. Synthesis and properties of fluorinated bis-benzocyclobutene-terminated arylene ether monomers. Journal of Applied Polymer Science,2009,112(5):2781-2791.
    20. Burdeaux D, Townsend P, Carr J, et al. Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules. Journal of Electronic Materials,1990,19(12):1357-1366.
    21. Bothra S, Kellam M, Garrou P. Feasibility of BCB as an interlevel dielectric in integrated circuits. Journal of Electronic Materials,1994,23(8),819-825.
    22. Devries R A, Stark E J. Preparation of vinylsilane-benzocyclobutenes by hydrosilylation of acetylenebenzocyclobutenes. US Pat.5416233.
    23. Yin L X, Liebscher J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chemical reviews,2007,107(1):133-173.
    24. Ghosh A, Banerjee S, Komber H, et al. New Semifluorinated Siloxane-Grafted Copolyimides:Synthesis and Comparison with Their Linear Analogs. Macromolecular Materials and Engineering,2011,296(5):391-400.
    25. Liu Y L, Hsu C W, Chou C I. Silicon-containing benzoxazines and their polymers: copolymerization and copolymer properties. Journal of Polymer Science, Part A: Polymer Chemistry,2007,45(6):1007-1015.
    26. Lin B P, Pan Y, Qian Y, et al. Comparative study of silicon-containing polyimides from different oxydianilines. Journal of Applied Polymer Science,2004, 94(6):2363-2367.
    27. Li H T, Chuang H R, Wang M W, et al. Synthesis, properties and pyrolysis of siloxane-and imide-modified epoxy resin cured with siloxane-containing dianhydride. Polymer International,2005,54(10):1416-1421.
    28. Ryang H S. Silylnorbornane anhydrides. US Pat.4381396.
    29. Yoo M J, Kim S H, Park S D, et al. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. European Polymer Journal,2010,46(5):1158-1162.
    30. Kissinger H E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957,29:1702-1706.
    31. Xiao F, Sun Y Y, Xiu Y H, et al. Preparation, thermal and mechanical properties of POSS epoxy hybrid composites. Journal of Applied Polymer Science,2007, 104(4):2113-2121.
    32. Qian Z G, Pang Z Z, Li Z X, et al. Photoimageable polyimides derived from a,a-(4-amino-3,5-dimethylphenyl)phenylmethane and aromatic dianhydride. Journal of Polymer Science, Part A:Polymer Chemistry,2002,40(17):3012-3020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700