轮轨滚动接触弹塑性分析及疲劳损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮轨关系是轨道交通系统中的基础问题之一,其中轮轨接触问题一直以来都是国内外学者非常重视且从未停止研究的重要问题。近些年,随着数值方法和计算机的发展,有限元方法在轮轨滚动接触问题研究中得到广泛应用。为了高效、准确的研究轮轨滚动接触问题,本论文采用有限元方法在并行计算环境中完成了轮轨接触静态、稳态和瞬态分析,并在此基础之上结合轮轨间函数型摩擦系数模型完成了轮轨接触疲劳寿命预测和轮轨接触表面裂纹扩展分析。
     具体开展的研究工作如下:
     (1)针对轮轨接触区网格尺寸细化至1mm后,轮轨接触三维大规模有限元模型节点数在百万以上且在单机上难以完成计算的情况。采用非线性有限元软件ABAQUS的区域分解并行计算方式,在MPI通信模式的12节点并行计算环境中完成轮轨接触大规模有限元模型的并行计算。根据隐式计算和显式计算的特点,合理选择并行计算节点数以实现优质的并行计算效率,可以较好的解决有限元计算精度和计算效率的矛盾问题。
     (2)以CRH2型动车组使用的LMA磨耗型车轮和我国标准CHN60钢轨为分析对象,按照Lagrangian方法建立轮轨滚动接触静态模型,重点研究轮对横移、冲角、轴重、转矩和摩擦系数对轮轨接触静态特性的影响。轮轨滚动接触稳态分析则采用mixed Lagrangian/Eulerian方法建立轮轨滚动接触有限元模型,其中车轮的滚动用Eulerian方法描述,而钢轨采用Lagrangian方法描述,轮轨网格无相对运动,采用隐式方法完成轮轨滚动接触稳态分析;以mixedLagrangian/Eulerian轮轨接触有限元模型的稳态计算结果为初始条件,按照Lagrangian方法建立轮轨滚动接触瞬态分析有限元模型并用显式方法完成计算。通过轮轨接触静态、稳态和瞬态分析结果发现摩擦系数对轮轨接触斑内纵向剪切应力和横向剪切应力影响较大,其值与摩擦系数取值成倍率变化,在轮轨滚动接触疲劳寿命分析和裂纹扩展分析中应予以重视。
     (3)考虑到轮轨摩擦系数对轮轨滚动接触切向特性的影响,在有限元模型的接触定义中采用轮轨函数型摩擦系数替换传统的常数摩擦系数,并结合非线性有限元软件ABAQUS中集成的金属棘轮效应塑性本构模型进行轮轨滚动接触棘轮效应分析;在此基础上使用基于损伤因子的Jiang-Sehitoglu疲劳寿命预测模型进行轮轨滚动接触疲劳寿命分析;最后对滚动接触疲劳寿命分析结果与日本学者AKAMAM和瑞典学者Ringsberg的轮轨接触疲劳分析结果进行了对比,结果表明本文计算结果与日本学者计算结果更为接近,主要是因为轮轨材料参数以及计算工况等与日本学者AKAMAM所使用参数大致相同。
     (4)扩展有限元方法是求解不连续力学问题的有效方法,在求解裂纹问题时不需要对裂尖进行高密度的网格细化,在模拟裂纹扩展时也不需要对裂纹进行网格重划。以轮轨滚动接触疲劳分析结果为基础,建立轮轨接触扩展有限元裂纹模型,重点分析了轮轨摩擦系数、裂纹位置和裂纹尺寸对轮轨接触表面裂纹扩展的影响。结果表明:轮轨表面裂纹尺寸在8mm左右时J积分值较大,超出钢轨材料在常温下的断裂韧度,裂纹易于扩展,可能导致钢轨横向断裂,该结果与现场观测结果较吻合。
     已有的轮轨函数型摩擦系数虽然在一定程度上能反映轮轨间摩擦真实状态,但对于存在第三介质(如水、油、磁场)等多场耦合作用下的高速轮轨来说,还需要开展更深入的研究来揭示高速轮轨间的摩擦行为,建立更为准确的轮轨间函数型摩擦系数。另外,轮轨滚动接触疲劳寿命和表面裂纹扩展也与多因素相关,后续研究需要将试验手段和数值分析手段有效结合,系统开展轮轨滚动接触表面损伤的研究。
Wheel/rail relationship is one of basic issues in rail transportation system. In which,wheel/rail contact is an important problem continuous studied by domestic and foreign scholars.Recently, with the development of numerical method and computer, the finite element method(FEM) is widely applied in rolling contact problem. To efficiently andaccurately research wheel/rail rolling contact, the static, steady and transient analyses ofwheel/rail contact are finished by using FEM in parallel computing environment. Based onthose analysis results, the wheel/rail contact fatigue life prediction and wheel/rail contactsurface crack propagation are studied combined with wheel/rail functional friction coefficient.
     Specific research work as follows:
     (1) When the sizes of mesh in wheel/rail contact zone are refined to1mm, the number ofnodes of3D finite element model of wheel/rail contact is in a million. So this model is difficultto process in single computer. The large-scale wheel/rail contact finite element model isparallel computed in MPI parallel computing environment with12nodes. According to theimplicit and explicit calculation, reasonable parallel computing nodes are choosen to gain highquality efficiency of parallel computation. The contradiction with calculation precision andcalculation efficiency of finite element model is solved better.
     (2)As analysis object of LMA worn profile wheel of CRH2EMU and Chinese standardrail CHN60, the wheel/rail rolling contact static model is established with Lagrangian methodand focuses on influence analysis of lateral displacements, attack angle, axle load, torque andfriction coefficient to wheel/rail contact static characteristic. The wheel/rail rolling contactfinite element model for steady analysis is constructed by using mixed Lagrangian/Eulerianmethod. The rolling of wheel is described with Eulerian, and Lagrangian method is used todescribe rail. There is no relative movement between wheel mesh and rail mesh. The steadyanalysis of wheel/rail rolling contact is computed by implicit method. The results of steadyanalysis as initial conditions, the finite element model for transient analysis of wheel/railrolling contact is established with Lagrangian method and computed with explicit method.Through static, steady and transient analysis results show that the friction coefficient influenceon the longitudinal shear stress and transverse shear stress of wheel/rail contact patch strongly.Their values change ratably with wheel/rail friction coefficient. So it should be attachedimportance to the wheel/rail rolling contact fatigue life analysis and simulation of crackpropagation.
     (3) Considering the influence of friction coefficient to wheel/rail rolling contact tangentialcharacteristic, the ratcheting finite element model is established. In this model, the functionalfriction coefficient replace conventional constant friction coefficient. The ratcheting analysisfor wheel/rail rolling contact is done by using metal plasticity constitutive model integrated in the nonlinear finite element software-ABAQUS. Based on the ratcheting analysis results, thewheel/rail rolling contact fatigue life analysis is done by using fatigue life prediction model ofJiang-Sehitoglu. The fatigue life analysis results are compared with wheel/rail contact fatigueanalysis results of the Japanese scholar AKAMA M and Swedish scholar Ringsbergrespectively. It is found that the results in this paper are close to the results by Japanesescholars due to wheel/rail material parameters and conditions parameters roughly same tocalculation parameters of Japanese scholar AKAMA M.
     (4) The extended finite element method is presented for solving discontinuous mechanicsproblem. It is no need high density mesh refinement to crack tip in solving crack problem andremeshing for crack in simulating crack growth. Based on wheel/rail rolling contact fatigueanalysis, the extended finite element crack model of wheel/rail contact is constructed. Theinfluence analysis of wheel/rail friction coefficient, crack location and size on the contactsurface crack growth are mainly done. The results show that J-integral value is large whenwheel/rail surface crack size of about8mm. It is beyond the fracture toughness of rail materialat room temperature. In this condition, crack propagation is so easy, may lead to lateral fractureof the rail. It is coincide with the results of the field observation.
     The existing wheel/rail functional friction coefficient can reflect the real state of thefriction between wheel and rail to a certain extent. However, for high speed wheel/rail, thereare coupling third mediums, such as water, oil, magnetic field. So it is need to conduct morein-depth studies to reveal friction behavior of high-speed wheel/rail and construct moreaccurate functional friction coefficient between wheel and rail. In addition, the wheel/railrolling contact fatigue life and surface crack propagation is also associated with multiplefactors. It is need to systematic study wheel/rail rolling contact surface damage by effectivelycombining test method and the numerical method.
引文
[1]沈志云.关于高速铁路及高速列车的研究[J].振动测试与诊断,1998,18(1):1-7.
    [2]郭俊.轮轨滚动接触疲劳损伤机理研究[D].西南交通大学,2006.
    [3]陈厚嫦,臧其吉.高速铁路列车轮轨粘着特性的理论探讨[J].铁道学报,1998,20(5):28-34.
    [4]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [5] OHYAMA T. Fundamental adhesion phenomena between wheel and rail athigher speeds [J]. Quarterly Report of RTRI,1985,26(4):134-140.
    [6] OHYAMA T. Some basic studies on the influence of surface contaminationon adhesion force between wheel and rail at higher speeds [J]. RailwayTechnical Research Institute, Quarterly Reports,1989,30(3):127-135.
    [7] OHYAMA T. Adhesion at high speeds, its characteristics, its improvementand same related problems [J]. Japanese Railway Engineering,1989,100):19-23.
    [8] OHYAMA T. Adhesion between the rails and running wheels on main lines:results of investigations by slipping adhesion test Bogie [J]. QR of RTRI,1989,(100):19-23.
    [9] MATSUMOTO A, SATO Y, ONO H, et al. Creep force characteristicsbetween rail and wheel on scaled model [J]. Wear,2002,253(1-2):199-203.
    [10]孙琼,臧其吉.轮轨粘着问题的微观模型研究[J].中国铁道科学,1998,19(2):1-9.
    [11]金雪岩,刘启跃,王夏秋.轮轨粘着—蠕滑特性试验研究[J].铁道学报,2000,22(1):36-39.
    [12]张卫华,黄丽湘.具有水介质条件下的轮轨粘着特性试验研究[J].铁道学报,1999,21(3):28-32.
    [13]金学松.单轮对轮轨蠕滑力试验研究[J].机械工程学报,1998,34(4):22-27.
    [14]ZHANG W, CHEN J, WU X, et al. Wheel/rail adhesion and analysis byusing full scale roller rig [J]. Wear,2002,253(1-2):82-88.
    [15]陈泽深.轮轨间粘着机理的再认识[J].铁道机车车辆,1995,(1):19-26.
    [16]KUMAR S, RAJKUMAR B, SCIAMMARELLA S. ExperimentalInvestigation ot Dry Friction Behavior in Rolling Contact under Traction andBraking Conditions: A [J]. Friction and Traction, Proc7th Leeds—Lyon Sym onTribology rC] I eeds, i980,207-219.
    [17]EKBERG A, KABO E. Fatigue of railway wheels and rails under rollingcontact and thermal loading--an overview [J]. Wear,2005,258(7-8):1288-1300.
    [18]GHONEM H, KALOUSEK J. Surface crack initiation due to biaxialcompression/shear loading [J]. Contact Mechanics and Wear of Rail/WheelSystems II,1986,339-360.
    [19]SU X, CLAYTON P. Ratchetting strain experiments with a pearlitic steelunder rolling/sliding contact [J]. Wear,1997,205(1-2):137-143.
    [20]RINGSBERG J. Rolling contact fatigue of railway rails with emphasis oncrack initiation [D]; Chalmers University of Technology,2000.
    [21]KAPOOR A. A RE‐EVALUATION OF THE LIFE TO RUPTURE OFDUCTILE METALS BY CYCLIC PLASTIC STRAIN [J]. Fatigue&Fractureof Engineering Materials&Structures,1994,17(2):201-219.
    [22]EKBERG A, SOTKOVSZKI P. Anisotropy and rolling contact fatigue ofrailway wheels [J]. International journal of fatigue,2001,23(1):29-43.
    [23]LUND N R. Fatigue durability of tread-braked railway wheels—onadmissible combinations of axle load, train speed and signalling distance [J].Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Railand Rapid Transit,1991,205(1):21-33.
    [24]WONG S, BOLD P, BROWN M, et al. A branch criterion for shallowangled rolling contact fatigue cracks in rails [J]. Wear,1996,191(1-2):45-53.
    [25]BOLD P, BROWN M, ALLEN R. Shear mode crack growth and rollingcontact fatigue [J]. Wear,1991,144(1-2):307-317.
    [26]LUNDEN R. Cracks in railway wheels under rolling contact load, F,1992
    [C].163-167.
    [27]BOGDANSKI S, OLZAK M, STUPNICKI J. The effects of face frictionand tractive force on propagation of3D ‘squat’type of rolling contact fatiguecrack, F,1996[C].164-173.
    [28]BOWER A. The influence of crack face friction and trapped fluid onsurface initiated rolling contact fatigue cracks [J]. Journal of Tribology,1988,(110):704-711.
    [29]BOGDA S, OLZAK M, STUPNICKI J. NUMERICAL MODELLING OFA3D RAIL RCF ‘SQUAT’‐TYPE CRACK UNDER OPERATING LOAD[J]. Fatigue&Fracture of Engineering Materials&Structures,1998,21(8):923-935.
    [30]阎国臣,何庆复.车轮滚动接触疲劳研究[J].铁道机车车辆,2002,004):17-20.
    [31]ALFREDSSON B. A study on contact fatigue mechanisms [D]; Doctoralthesis, Royal Institute of Technology, Stockholm, Sweden,2000.
    [32]OLSSON M. Contact fatigue and tensile stresses [J]. Engineering againstfatigue,1999,17-21.
    [33]ZHOU R, CHENG H, MURA T. Micropitting in rolling and sliding contactunder mixed lubrication [J]. Journal of Tribology,1989,(111):605-615.
    [34]CHENG W, CHENG H, KEER L. Experimental investigation onrolling/sliding contact fatigue crack initiation with artificial defects [J].Tribology transactions,1994,37(1):1-12.
    [35]CHENG W, CHENG H, KEER L. Longitudinal Crack Initiation Under PureRolling Contact Fatigue [J]. Tribology transactions,1994,37(1):51-58.
    [36]LITTMAN W, WIDNER R, WOLFE J, et al. The role of lubrication inpropagation of contact fatigue cracks [J]. J LUBRIC TECH--TRANS ASME--,1968,90(1):89-100.
    [37]FUJII Y, MAEDA K. Flaking failure in rolling contact fatigue caused byindentations on mating surface (I):: Reproduction of flaking failureaccompanied by cracks extending bi-directionally relative to the load-movement[J]. Wear,2002,252(9-10):787-798.
    [38]FUJII Y, MAEDA K. Flaking failure in rolling contact fatigue caused byindentations on mating surface (II):: Formation process of flaking failureaccompanied by cracks extending bi-directionally relative to the load-movement[J]. Wear,2002,252(9-10):799-810.
    [39]FUJII Y, MAEDA K. Flaking failure in rolling contact fatigue caused byindentations on mating surface (III):: Mechanism of crack growth in thedirection opposite to the load-movement [J]. Wear,2002,252(9-10):811-823.
    [40]FAJA R. The Failure of the Railway Tyres, Repaired by Surfacing [J].1992,
    [41]KALOUSEK J, MASEL E, GRASSIE S. Perspective on metallurgy andcontact mechanics, F,1999[C].14-17.
    [42]HODGSON W. RAIL METALLURGY AMD PROCESSING, F,1993[C].Kluwer Academic Pub,29-35.
    [43]金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展[J].铁道学报,2001,23(002):92-108.
    [44]张焱.铁路轮轨接触应力研究[D].成都:西南交通大学,1998.
    [45]OLZAK M, STUPNICKI J, WOJCIK R. Investigation of crack propagationduring contact by a finite element method [J]. Wear,1991,146(2):229-240.
    [46]OLZAK M, STUPNICKI J, WOJCIK R. Numerical analysis of3D crackspropagating in the rail-wheel contact zone, F,1993[C]. Kluwer AcademicPub.385-391.
    [47]DUBOURG M, KALKER J. Crack behaviour under rolling contact fatigue,F,1993[C].373-384.
    [48]BOGDANSKI S, OLZAK M, STUPNICKI J. Numerical stress analysis ofrail rolling contact fatigue cracks [J]. Wear,1996,191(1-2):14-24.
    [49]BOGDANSKI S, BROWN M W. Modelling the three-dimensionalbehaviour of shallow rolling contact fatigue cracks in rails [J]. Wear,2002,253(1-2):17-25.
    [50]LUNDEN R. Contact region fatigue of railway wheels under combinedmechanical rolling pressure and thermal brake loading [J]. Wear,1991,144(1-2):57-70.
    [51]OSUCH K, STONE D, ORRINGER O. European and American wheelsand their resistance to thermal damage, F,1995[C].18-22.
    [52]AHLSTR M J, KARLSSON B. Microstructural evaluation andinterpretation of the mechanically and thermally affected zone under railwaywheel flats [J]. Wear,1999,232(1):1-14.
    [53]JERG US J. Martensite formation and residual stresses around railwaywheel flats [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1998,212(1):69-75.
    [54]MAGEL E, KALOUSEK J. Identifying and interpreting railway wheeldefects, F,1996[C].9-12.
    [55]SAWLEY K, ROSSER J. Tread damage in disc-braked wheels, F,1988[C].
    [56]FRIES R H, D VILA C G. Analytical methods for wheel and rail wearprediction [J]. Vehicle System Dynamics,1986,15(sup1):112-125.
    [57]PEARCE T, SHERRATT N. Prediction of wheel profile wear [J]. Wear,1991,144(1-2):343-351.
    [58]SZABO A, ZOBORY I. On combined simulation of rail/wheel profile wear,F,1996[C].196-206.
    [59]LI Z, KALKER J, WIERSMA P, et al. Non-Herztian wheel-rail wearsimulation in vehicle dynamical systems, F,1998[C].187-196.
    [60]JENDEL T. Prediction of wheel profile wear--comparisons with fieldmeasurements [J]. Wear,2002,253(1-2):89-99.
    [61]RESTA F. Wear of railway wheel profiles: a comparison betweenexperimental results and a mathematical model, F,2003[C]. Taylor&Francis.478-489.
    [62]ENBLOM R, BERG M. Simulation of railway wheel profile developmentdue to wear--influence of disc braking and contact environment [J]. Wear,2005,258(7-8):1055-1063.
    [63]ENBLOM R. On simulation of uniform wear and profile evolution in thewheel-rail contact [M].2006.
    [64]ASADI A, BROWN M. Rail vehicle wheel wear prediction: a comparisonbetween analytical and experimental approaches [J]. Vehicle System Dynamics,2008,46(6):541-549.
    [65]常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析[J].中国铁道科学,2008,29(4):89-95.
    [66]YIN J. A study on wear mechanism of high-speed wheel/rail [M].China-Korea-Japan Railway Research Technical Meeting. Beijing, China.2006:20-28.
    [67]FLETCHER D I, BEYNON J H. Development of a machine for closelycontrolled rolling contact fatigue and wear testing [J]. Journal of testing andevaluation,2000,28(4):267-275.
    [68]ARIAS-CUEVAS O, LI Z, LEWIS R, et al. Rolling-sliding laboratory testsof friction modifiers in dry and wet wheel-rail contacts [J]. Wear,2010,268(3-4):543-551.
    [69]张卫华,周文祥.高速轮轨粘着机理试验研究[J].铁道学报,2000,22(002):20-25.
    [70]LIU Q, JIN X, ZHOU Z. An investigation of friction characteristic of steelsunder rolling-sliding condition [J]. Wear,2005,259(1-6):439-444.
    [71]CANNON D, PRADIER H. Rail rolling contact fatigue research by theEuropean Rail Research Institute [J]. Wear,1996,191(1-2):1-13.
    [72]UEDA M, UCHINO K, KOBAYASHI A. Effects of carbon content on wearproperty in pearlitic steels [J]. Wear,2002,253(1-2):107-113.
    [73]李家驹.车轮与钢轨硬度匹配的研究[z].铁道部科学研究院金化所.1998.
    [74]陈扬枝,李东亮.轮轨滚滑磨损试验研究[J].大连铁道学院学报,1995,16(001):47-51.
    [75]张挺.轮轨磨耗问题及减缓措施的研究[D].大连交通大学,2008.
    [76]SATO Y. Historical study on designing Japanese rail profiles [J]. Wear,2005,258(7-8):1064-1070.
    [77]成棣,王成国,刘金朝,等.2种响应面方法在车轮踏面优化中的应用分析比较[J].中国铁道科学,2010,31(003):64-69.
    [78]王文健,陈明韬,郭俊,等.高速铁路钢轨打磨技术及其应用[J].西南交通大学学报,2007,42(005):574-577.
    [79]HERTZ H. Ueber die Berührung fester elastischer K rper [J]. Journal fürdie reine und angewandte Mathematik (Crelle's Journal),1882,(92):156-71.
    [80]任尊松.车辆系统动力学[M].中国铁道出版社,2007.
    [81]张军,刘迎曦,吴昌华.基于有限元法的轮轨蠕滑理论研究[D].大连理工大学,2003.
    [82]金学松.轮轨蠕滑理论及其试验研究[M].西南交通大学出版社,2006.
    [83]常崇义.有限元轮轨滚动接触理论及其应用研究[D].北京:中国铁道科学研究院,2010.5.
    [84]CARTER F. On the action of a locomotive driving wheel [J]. Proceedingsof the Royal Society of London Series A, Containing Papers of a Mathematicaland Physical Character,1926,112(760):151-157.
    [85]JOHNSON K. The effect of a tangential contact force upon the rollingmotion of an elastic sphere on a plane [J]. J Appl Mech,1958,25(3):339-343.
    [86]VERMEULEN. P. J. J K L. Contact of non-spherical bodies transmittingtangential forces [J]. Journal of Applied Mechanics,1964,(31):338-340.
    [87]HAINES D, OLLERTON E. Contact stress distributions on ellipticalcontact surfaces subjected to radial and tangential forces [J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers1847-1982(vols1-196),1963,(177):95-114.
    [88]KALKER J J. On the rolling contact of two elastic bodies in the presence ofdry friction[D],1973.
    [89]孔祥安.固体接触力学[M].中国铁道出版社,1999.
    [90]詹斐生.机车动力学[M].中国铁道出版社,1990.
    [91]JIN X, ZHANG W, HU L. Effect of lateral motion on the creep forces inwheel/rail rolling contact [J]. J Southwest Jiaotong Univ,1997,(5):44-54.
    [92]PIOTROWSKI J, KALKER J. The elastic cross-influence between twoquasi-Hertzian contact zones [J]. Vehicle System Dynamics,1988,17(6):337-355.
    [93]KNOTHE,杨春雷,金学松.轮轨接触力学的最新进展[J].国外铁道车辆,2002,39(5):27-33.
    [94]金学松,张雪珊,张剑, et al.轮轨关系研究中的力学问题[J].机械强度,2005,27(004):408-418.
    [95]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [96]AKAMA M. Development of finite element model for analysis of rollingcontact fatigue cracks in wheel/rail systems [J]. QR of RTRI,2007,48(1):8-15.
    [97]A K. Analytical and experimental studies of railway vehicle [D]. Princeton,NJ,USA; Princeton University,1981.
    [98]LIU Y, STRATMAN B, MAHADEVAN S. Fatigue crack initiation lifeprediction of railroad wheels [J]. International journal of fatigue,2006,28(7):747-756.
    [99]常崇义,王成国.基于ALE有限元的轮轨稳态滚动接触分析[J].中国铁道科学,2009,30(002):87-93.
    [100]赵腾伦. ABAQUS6.6在机械工程中的应用[M].中国水利水电出版社,2007.
    [101]曾攀.有限元分析及应用[M].清华大学出版社,2004.
    [102]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].机械工业出版社,2006.
    [103]张汝清,物理.并行计算结构力学[M].重庆大学出版社,1993.
    [104]亓文果,金先龙,张晓云,等.汽车碰撞有限元仿真的并行计算及其性能研究[J].系统仿真学报,2004,16(11):2428-2431.
    [105]王福军.冲击接触问题有限元法并行计算及其工程应用[D];清华大学,2000.
    [106]尚福林,王子昆.塑性力学基础[M].西安交通大学出版社,2011.
    [107]曹金凤,石亦平. ABAQUS有限元分析常见问题解答[M].机械工业出版社,2009.
    [108]王伯铭.高速动车组总体及转向架[M].西南交通大学出版社,2008.
    [109]申鹏,宋建华,李自彬,等.轮轨黏着特性试验研究[J].润滑与密封,2009,34(7):10-13.
    [110]大野薰,彭惠民.轮轨间滚动摩擦及其控制[J].国外铁道车辆,2001,38(1):36-40.
    [111]肖乾,王成国,周新建,等.不同摩擦系数条件下的轮轨滚动接触特性分析[J].中国铁道科学,2011,32(4):66-71.
    [112] QIAN X, CHENGGUO W, GE G. The research of parallel computingfor large-scale finite element model of wheel/rail rolling contact, F,2010[C].IEEE.254-257.
    [113] LIU Y, LIU L, MAHADEVAN S. Analysis of subsurface crackpropagation under rolling contact loading in railroad wheels using FEM [J].Engineering fracture mechanics,2007,74(17):2659-2674.
    [114] JIANG Y, SEHITOGLU H. Rolling contact stress analysis with theapplication of a new plasticity model [J]. Wear,1996,191(1-2):35-44.
    [115]温泽峰,金学松,肖新标.非稳态载荷对二维轮轨纯滚动接触应力和变形的影响[J].交通运输工程学报,2006,6(4):14-19.
    [116] HIBBITT, KARLSSON, SORENSEN. ABAQUS theory manual [M].Hibbitt, Karlsson&Sorensen,1998.
    [117]庄茁, BELYTSCHKO T.连续体和结构的非线性有限元[M].北京:清华大学出版社.2002.
    [118] JOHNSON K L. Contact mechanics [M]. Cambridge Univ Pr,1987.
    [119] CAI Y, CAO Z, SUN H, et al. Effects of the dynamic wheel-railinteraction on the ground vibration generated by a moving train [J].International Journal of Solids and Structures,2010,47(17):2246-2259.
    [120] AKAMA M. Development of Finite Model for Analysis of RollingContact Fatigue Cracks in Wheel/Rail Systems [J]. QR of RTRI,2007,48(1):8-14.
    [121] RINGSBERG J, LOO-MORREY M, JOSEFSON B, et al. Prediction offatigue crack initiation for rolling contact fatigue [J]. International journal offatigue,2000,22(3):205-215.
    [122] XIAOYU J, XUESONG J. Numerical simulation of wheel rolling overrail at high-speeds [J]. Wear,2007,262(5-6):666-671.
    [123] EKH M J A, THORBERNTSSON H, JOSEFSON B L. Models forcyclic ratcheting plasticity-integration and calibration [J]. ASME Journal ofEngeering Matererials and Technology,2000,(122):49-55.
    [124]温泽峰,金学松,肖新标.多步非稳态载荷下钢轨滚动接触应力和弹塑性变形分析[J].工程力学,2008,24(12):158-163.
    [125]赵鑫,温泽峰,金学松.轮轨滚动摩擦温升分析[J].摩擦学学报,2005,25(4):358-363.
    [126] ZHAO X, LI Z, DOIIEVOET R. SOLUTION OF THE WHEEL-RAILROLLING CONTACT IN ELASTICITY AND ELASTO-PLASTICITYUSING A TRANSIENT FLNITE ELEMENT MODEL [J]. CM2009.
    [127] BOCHET B. Nouvelles recherches experimentales sur le frottement deglissement [J]. Ann Mines,1981,(38):27-32.
    [128] POPOV V, PSAKHIE S, SHILKO E, et al. Friction coefficient in"rail-wheel"-contacts as a function of material and loading parameters [J].PHYSICAL MESOMECHANICS,2002,5(3/4):17-24.
    [129] BUCHER F, DMITRIEV A, ERTZ M, et al. Multiscale simulation ofdry friction in wheel/rail contact [J]. Wear,2006,261(7-8):874-884.
    [130] ALFREDSSON B, CADARIO A. A study on fretting friction evolutionand fretting fatigue crack initiation for a spherical contact [J]. Internationaljournal of fatigue,2004,26(10):1037-1052.
    [131] ALDAJAH S. Tribological effect of laser glazing and top of raillubrication on wheel-rail interaction [D], Illinois Intitute of Technology.2003,
    [132]齐万明,孙传喜,张军,等.车轮滑行轮轨热接触耦合有限元分析[J].计算机辅助工程,2010,19(1):40-43.
    [133]吴磊,温泽峰,金学松.轮轨摩擦温升有限元分析[J].铁道学报,2008,30(3):19-25.
    [134]王文健.车轮滚动剥离磨损特性研究[D].西南交通大学,2004.
    [135]王文健.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[J].中国铁道科学,2009,30(4):137-139.
    [136]邹定强,杨其全,卢观健,邢丽贤等.钢轨失效分析和伤损图谱[M].北京:中国铁道出版社,2010.
    [137] RINGSBERG J W. Life prediction of rolling contact fatigue crackinitiation [J]. International journal of fatigue,2001,23(7):575-586.
    [138] BANNANTINE J, COMER J, HANDROCK J. Fundamentals of MetalFatigue Analysis, by Prentice-Hall [J]. Inc, A Division of Simon&Shuster,Englewood Cliffs, NewJersy,1990,(7632):273-288.
    [139] GARUD Y. A new approach to the evaluation of fatigue undermultiaxial loadings [J]. Journal of Engineering Materials and Technology,1981,(103):118-123.
    [140] LIU K. A method based on virtual strain-energy parameters formultiaxial fatigue life prediction [J]. ASTM SPECIAL TECHNICALPUBLICATION,1993,(1191):67-72.
    [141] CHU C C, CONLE F A, BONNEN J J F. Multiaxial stress-strainmodeling and fatigue life prediction of SAE axle shafts [J]. ASTM SPECIALTECHNICAL PUBLICATION,1993,(1191):37-45.
    [142] JIANG Y, SEHITOGLU H. A model for rolling contact failure [J].Wear,1999,224(1):38-49.
    [143]高炳军.材料多轴棘轮效应本构描述及压力管道棘轮效应预测[D].天津大学,2005.
    [144] JOHNSON K. The strength of surfaces in rolling contact [J].ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science1989-1996(vols203-210),1989,203(33):151-163.
    [145]李霞,温泽峰,金学松.重载铁路车轮磨耗和滚动接触疲劳研究[J].铁道学报,2011,33(3):28-34.
    [146] MROZ Z. On the description of anisotropic workhardening [J]. Journalof the Mechanics and Physics of Solids,1967,15(3):163-175.
    [147] DAFALIAS Y, POPOV E. A model of nonlinearly hardening materialsfor complex loading [J]. Acta Mechanica,1975,21(3):173-192.
    [148]陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展[J].力学进展,2003,33(4):461-470.
    [149]张娟.循环硬化材料高温非比例循环棘轮行为的本构描述及其有限元实现[D].西南交通大学,2006.
    [150] TARAF M, ZAHAF E, OUSSOUADDI O, et al. Numerical analysisfor predicting the rolling contact fatigue crack initiation in a railway wheel steel[J]. Tribology international,2010,43(3):585-593.
    [151] RINGSBERG J, BJARNEHED H, JOHANSSON A, et al. Rollingcontact fatigue of rails―finite element modelling of residual stresses, strainsand crack initiation [J]. Proceedings of the Institution of Mechanical Engineers,Part F: Journal of Rail and Rapid Transit,2000,214(1):7-19.
    [152]王建西,许玉德,曹亮.钢轨踏面疲劳裂纹扩展行为分析[J].华东交通大学学报,2009,26(2):1-7.
    [153]李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].ADVANCES IN MECHANICS,2005,35(1):5-19.
    [154]庄茁,柳占立,成斌斌,等.扩展有限元单元法[D].北京:清华大学出版社,2012,1.
    [155]茹忠亮,朱传锐,张友良,等.断裂问题的扩展有限元法研究[J].岩土力学,2011,32(7):2171-2176.
    [156]冯宝锐,王元清,周晖,等低温下铁路钢轨钢材CTOD和J积分的分析与讨论[J].低温建筑技术,2010,(9):1-4.
    [157]彭亮.钢轨踏面斜裂纹模拟再现实验研究[D].西南交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700