钢轨磨损特性实验研究与数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢轨作为轮轨系统的重要组成部分,是发展高速、重载以及实现繁忙铁路运输的基础。然而钢轨断裂、波浪形磨损、压溃以及疲劳裂纹扩展等摩擦磨损问题造成的列车脱轨、振动等问题已造成了巨大的人力、物力和材料的损失,钢轨的摩擦磨损问题已成为制约铁路发展的重要问题。研究钢轨的摩擦磨损产生的机理以及影响因素,对减缓钢轨磨损,延长其使用寿命具有重要的现实和经济意义。
     论文采用实验研究方法从微观和宏观两方面研究钢轨材料的机械性能与摩擦磨损特性,得到了一些磨损量和硬度值;同时采用Kalker的三维弹性体非赫兹滚动接触理论模型和弹性理论的相关知识,为利用摩擦功预测钢轨磨损量提供理论基础。基于实验研究提供的磨损量参考值和理论分析的结果,采用利用轮轨摩擦功和偏最小二乘法分析两种方法预测钢轨磨损量,为研究钢轨磨损量提供一定的参考价值。取得的主要结果和结论如下:
     (1)微观与宏观实验结果表明,钢轨材料的摩擦磨损性能对其机械性能具有很强的依赖性,即U71Mn钢轨硬度低,强度较PD3钢轨低,耐磨性能较差。
     (2)钢轨宏观磨损量与列车轴重呈线性增长关系;随曲线半径和列车运行速度的增大,磨损量呈非线性减小趋势发展;在车速小于160km/h,曲线半径小于1200m工况下,磨损量变化速度较快。
     (3)随着循环次数增加,轮轨磨损量均增大,但车轮磨损量的增加量大于钢轨增加值,钢轨磨损量随着循环次数增加呈线性增长趋势,而与之配对的车轮磨损量呈曲线趋势增加。在相同的循环时间段内,U71Mn轮轨接触副磨痕宽度、深度以及表面不平度均要较PD3轮轨副大。
     (4)轮轨接触斑粘/滑区面积比重相等点随着夕,(?)和(?)增大向着横移量降低的方向移动,随着摩擦系数增大逐渐向着横移量增大的方向移动。在纯机械载荷作用下,最高应力、等效应力、最高塑性应变和剪应力均产生于易使轮轨材料产生破坏表层位置。
     (5)基于宏观实验和数值分析基础,利用摩擦功和偏最小二乘法回归两种方法,得到钢轨和磨损量关于随轴重、曲线半径和车速变化的经验公式,对实验室和现场进步研究轮轨磨损问题和预测钢轨磨损量有参考价值。
As an important component of wheel/rail system, steel rail plays an important role in of the development of high-speed and heavy-haul railway transportation. However, as the derailment, vibration and other problems of trains caused by friction and wear, such as rail fracture, corrugation, crushing and fatigue crack propagation, have led to great losses of manpower and materials. The friction and wear of steel rail has become a main restricting factor for the development of railway. Therefore, it is of important economic and realistic significance to study the wear mechanism and factors of steel rail to decrease its wear rate and prolong its service life.
     In this paper, experimental methods of both micro-scale and macro-scale were used to investigate the mechanical and triboloigical properties of rail materials. Numerical calculation was also conducted using Kalker's non-Hertzian rolling contact theory of three dimensional elastic bodies, aiming to provide a theoretical basis for the wear prediction of steel rail based on friction work. Based on the experimental data and the results of calculation, the wear volume formulas of steel rail were explored by means of friction work of rail-wheel and PLS. Main conclusions were drawn as follows:
     (1) The tribological behavior of steel rail depended strongly on its mechanical properties. Owning lower hardness, lower intensity, and U71Mn rail material exhibited poorer wear-resisting performance compared to PD3rail material.
     (2) There exist a linear relation between the wear loss of rail and the axle load of trains. With curve radius and train speed increasing, the wear rate of rail reduced nonlinearly. The wear rate changed rapidly especially when the speed was no more than160Km/h and curve radius less than1200m.
     (3) As the number of cycles increased, the wear volume of steel rail increased linearly, while the wheel exhibited a nonlinear increase in the wear volume. And the increase rate of wear volume was higher for wheel than for steel rail. Compared with PD3rail, a wear scar with bigger width and depth and uneven surface appeared on the surface of U71Mn rail.
     (4) With the increase of y, φ andφ, the adhesion/slip area equivalence point of the contact zones of rail/wheel moved forward the direction where lateral displacement reduced. But the point moved forward the direction where lateral displacement increased with the increase of friction coefficient. For sliding condition, the maximum value of normal stress, equivalent stress, plastic strain, and shear stress, were observed in the surface layer where the damage of wheel/rail material easily occurred under the action of mechanical loading.
     (5) Based on the experimental data and the results of numerical calculation, empirical equations of the variation of the wear loss of steel rail versus axle load, curve radius and wheel speed were established by means of friction work of wheel-rail and PLS respectively. The equations would be helpful to further studies on the wear of wheel/rail and the prediction of rail's wear volume of both in the laboratory and in the field.
引文
[1]王晓刚.国外高速铁路建设及发展趋势[J].建筑机械.2007,3(上半月刊):30-36
    [2]金学松,刘启跃.轮轨摩擦学[M].中国铁道出版社,1997
    [3]M.R. Zhang, H.C. Gu. Fracture toughness of nanostructured railway wheels[J]. Engineering Fracture Mechanics,2008,75:5113-5121
    [4]Stuart L.Grassie. Rolling contact fatigue on the British railway system:treatment[J]. Wear,2005,258:1310-1318
    [5]卜继玲,李芾,付茂海,等.重载列车车辆轮轨作用研究[J].中国铁道科学,2005,26(5):52-56
    [6]刘启跃,张波,周仲荣.铁路钢轨损伤机理研究[J].中国机械工程,2002,13(18):1596-1599
    [7]俞展遒.日本新干线高速列车的发展历程[J].机车电传动.2003(2):1-1
    [8]仲川兹.欧洲与日本高速铁路的发展[J].交流技术与电力牵引.2000(3):1-6
    [9]秋山芳弘.世界高速铁路的现状与前景[J].动态·综述译自日本《铁路车辆と技术》,2004,6(11):1-5
    [10]李世斌.世界高速铁路技术的发展[J].郑州科技通讯,2006(2):1-7
    [11]李世斌.世界高速铁路发展的动向[J].铁道技术监督,2007,35(1):35-37
    [12]梁栋.英国铁路考察报告[J].铁道经济研究.2010(4):15-20
    [13]Francois BRESSY.法国TGV高速列车的社会经济效益[J].中国铁路,1998(10):7-13
    [14]高速列车法国人的自豪.今日是世界
    [15]姜志武.高速铁路发展概况[J].科技信息,2007(3):166
    [16]孟祥春.美国铁路的货运与客运[J].国外铁路.2008(4):72-75
    [17]窦桂丽,戴新鎏,孙晓峰.美、日、俄、印国家铁路发展概况[J].环球铁路,2009(2):7-10
    [18]刘长安.浅谈高速列车的优越性[J].新西部,2008(04):218-219
    [19]王平.基于实验数据的钢轨滚动接触磨损预测[D].西南交通大学.2012
    [20]李杰.我国铁路重载运输发展研究[J].铁道运输与经济.2011.1,33(1):42-46
    [21]苏艳辉.减轻重载列车轮轨磨耗的研究[J].中国铁道,1997(6):42-43
    [22]刘启跃,张波,周仲荣.铁路钢轨损伤机理研究[J].中国机械工程,2002,13(18): 1596-1599
    [23]刘启跃.钢轨的安定状态研究[J].西南交通大学学报,1995,30(4):466-471
    [24]Bower A F,Johnson K L. Plastic flow and shakedown of the rail surface in repeated wheel-rail contact[J].wear,1991,144:1-18
    [25]孙国英,刘学毅,万复光.小曲线半径上的钢轨磨耗[J].西南交通大学学报,1994,29(1):65-70
    [26]颜秉善.淬火钢轨间断润滑减缓侧磨的接触力学分析[J].铁道建筑,1993(12):1-7
    [27]段固敏.轴重和摩擦系数对钢轨侧磨影响的分析[J].兰州铁道学报.1994,13(3):9-13
    [28]刘启跃,周仲荣,石心余.表面摩擦力对滚动磨损特性影响的研究[J].摩擦学学报,2001,21(1):33-36
    [29]沈志云.高速、重载轮轨接触表面波浪形磨损及接触疲劳的研究[J].基础科学研究.2004(2):19-23
    [30]温泽峰.钢轨波浪形磨损研究[D].西南交通大学,2006
    [31]张继业,金学松,张卫华.高频轮轨相互作用下钢轨的波磨[J].摩擦学学报,2003(2):128-131
    [32]Suda Y. Effects of vibration system and rolling conditions on the development of corrugations[J]. Wear,1991,144:227-242
    [33]Ahlheck D R, Daniels L E. Investigation of rail corrugations on the Baltimore Metro[J]. Wear,1991.144:197-210
    [34]Hayes W F, Tucker H G Wheelset-track resonance as a possible source of corrugation[J]. Wear,1991,144:211-226
    [35]Igeland A, ILLias H. Rail head corrugation growth predictions based on nonlinear high frequency vehicle/track interaction[J].W ear,1997,213:90-97
    [36]Nielsen J B. Evolution of rail corrugation predicted with a non-linear wear model[J].Journal of Sound and Vibration,1999,227(5):915-933
    [37]Zarembskim A. M. Classifying rail corrugation.Railway Track &Structures.1994:12-13
    [38]Clark R A, oster P. n the mechanism of rail corrugation formation.Proc.8 th LAVSD Symposium.1983:72-56
    [39]Sato Y,Moto K.Review on rail corrugation studies[J].Wear,2002,253(1-2):130-139
    [40]Knothe K, Grassie S L. Modelling of railway track and vehicle/track interaction at high frequencies[J]. Vehicle Systems Dynamics,1993,22:209-262.
    [41]刘启跃,王夏秋,周仲荣.钢轨表面波浪形磨损研究[J].摩擦学学报,1998(4): 337-340
    [42]刘学毅,王平,万复光.重载线路钢轨波形磨耗成因研究[J].铁道学报,2000(2):98-103
    [43]Beret S,Trabert G R.铁路轮轨润滑效果评价.杨启镦译[J].铁道建筑,1993(12):8-11
    [44]郭俊.轮轨滚动接触疲劳损伤机理研究[D].西南交通大学,2006
    [45]萧育光.轮轨磨损与固体润滑[J].机车电传动,1996(4):44-46
    [46]边疆,蒋文娟,王彩芸,等.润滑剂对轮轨摩擦与磨损的影响[J].润滑与密封,2012,04,37(4):70-72
    [47]周清跃,田海常.高速铁路钢轨打磨关键技术研究[J].中国铁道科学,2012,33(2):66-70
    [48]金学松,杜星,郭俊,等.钢轨打磨技术研究进展[J].西南交通大学学报,2010,45(1):1-11
    [49]王文健,陈明韬,郭俊,等.高速铁路钢轨打磨技术及其应用[J].西南交通大学学报,2007,42(5):574-577
    [50]郭战伟.基于轮轨润滑最小化的钢轨打磨研究[J].中国铁道科学,2011,32(6):9-15
    [51]崔大宾,李立,金学松,等.铁路钢轨打磨目标型面研究[J].工程力学,2011,28(4):178-184
    [52]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003
    [53]J. J. Karker. Contact Mechanics and Wear of Rail/Wheel Systems [M]. University of Waterloo Press.1993. p.600
    [54]刘启跃,王夏秋.轮轨接触几何参数匹配对应力值影响的探讨[J].西南交通大学学报,1992(4):13-18
    [55]刘启跃,王夏秋.轮轨接触应力数值计算分析.铁道学报[J].铁道学报,1998,20(2):45-49
    [56]Hamid Jahed, Behrooz Farshi,Mohammad A. Eshraghi,Asghar Nasr. A numerical optimization technique for design of wheel profiles.wear,2007.
    [57]I.Y. Shevtsov,V.L. Markine,C. Esveld.Optimal design of wheel profile for railway vehicles[J].wear,2005(258):1022-1030.
    [58]Johson K L.接触力学[M].徐秉业译.北京:机械工业出版社,1981
    [59]Johson K L.Development of corrugations on surfaces in rolling contact [J]. Process Mechanics Engineers.1975,189:45-48
    [60]藤本裕.车轮踏面形状对高速动车运动特性的影响[J].国外内燃机车,1999(2): 22-29.
    [61]FUJIMOTO H. Influence of arc and conic profile on vehicle dynamics[J]. Foreign DieselLocomotive,1999(2):22-29.
    [62]SOUZAA F D. Influence of thewheel and rail treads profile on the hunting of the vehicle[J]. Transactof theASME,1985,107(1):167-174.
    [63]严隽耄,王开文.锥形及磨耗形踏面轮对的空间轮轨接触几何约束特点[J].铁道学报,1985,6(2):9-17.
    [64]YANG Junmao, WANG Kaiwen. Spatialwheel/rail contact geometric constraint characteristics of cone and worn-profiledtread wheel sets[J]. Journal of the China Railway Society,1985,6(2):9-17.
    [65]董仲美,王自力,蒋海波.车轮踏面外形对机车曲线通过性能的影响[J].电力机车与城轨车辆,2006,29(2):13-15.
    [66]DENG Zhongme,i WANG Zil,i JIANG Haibo. Influence on the locomotive curve passing performance with wheel treadshape[J]. Electric Locomotives&MassTransitVehicles.2006,29(2):13-15.
    [67]孙善超,王成国,李海涛,等.轮/轨接触几何参数对高速客车动力学性能的影响[J].中国铁道科学,2006,27(5):93-98.
    [68]柳拥军.高速轮轨接触几何学及高速轮轨几何型面优化的研究[D].北京:铁道部科学研究院,1999:66-83.
    [69]王开文.车轮接触点迹线及轮轨接触点几何参数的计算[J].西南交通大学学报,1984,1(1):89-99.
    [70]WANG Kaiwen. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters[J] Journal ofSouthwest JiaotongUniversity,1984,1(1): 89-99.
    [71]HELLER R, LAWEH. Optimizing thewheel profile to improve rail vehicle dynamic performance[C]//Proceedings of the6th IAVSD-Symposium Technica.l Berlin:University Berlin,1979:179-195.
    [72]WUHM. Investigations ofwheel/rail interaction onwheel flange climb derailmentandwheel/railprofile compatibility[D].
    [73]Chicago:The Graduate College of the Illinois Institute of Technology,2000:122-141.
    [74]LEARY J F, HANDAL SN, RAJKUMAR B. Developmentof freight carwheelprofile-a case study[J]. Wear,1991,144(1-2):353-362.
    [75]张剑,温泽峰,孙丽萍,等.基于钢轨型面扩展法的车轮型面设计[J].机械工程学 报,2008,44(3):44-49.
    [76]ZHANG Jian, WEN Zefeng, SUN Liping, et a.l Wheel profile design design based on rail profile expansion method[J].Chinese Journal of MechanicalEngineering,2008, 44(3):44-49.
    [77]沈刚,叶志森.用接触角曲线反推法设计铁路车轮踏面外形[J].同济大学学报,2002,30(9):1095-1098.
    [78]SHEN Gang, YE Zhisen. Unique designmethod forwheel profile considering contact angle function[J]. Journal of TongjiUniversity,2002,30(9):1095-1098.
    [79]叶志森,沈钢.独立轮踏面外形的设计[J].铁道车辆,2003,41(1):19-21.
    [80]YE Zhisen, SHEN Gang. Design of profile[J]. Rolling Stock,2003,41(1):19-21.
    [81]SHEVTSOV IY, MARKINE V L, ESVELD C. Optimaldesign ofwheelprofile for railway vehicles[J]. Wear,2005,258(7-8):1002-1030.
    [82]JAHED H, BEHROOZ F, MOHAMMAD A. et a.l A numerical optimization technique for design ofwheel profiles[J].Wear,2008,264(1-2):1-10.
    [83]李立,崔大宾,金学松.车轮型面优化的研究进展[J].西南交通大学学报,2009,44(1):14-19
    [84]David D Davis,et al. Track Steels:Past, Prestent and Future[J].Railway Track &Structures.1998,11:14-17
    [85]Kouichi Uchino,et al. Development of Hypereutectoid Steel Rail for Heavy Haul Railways[C].39TH MWSP.CONF.PROC.ISS.1998:1047-1055
    [86]邢娜,何立波,高真凤,等.国外高性能轨钢最新进展[J].世界钢铁.2011(4):52-57
    [87]KJ Sawley,et al. Investigating the Bainitic Option[J]. Advanced Rail Steels. 1997,3:22-27.
    [88]蒋文娟.钢轨材料对轮轨磨损及微观结构影响的研究[D].西南交通大学,2011
    [89]赵雪芹,钟雯,王文健,等.高速重载线路钢轨损伤特性分析[J].润滑与密封,2007,32(10):100-103
    [90]刘启跃,王文健.钢轨磨损特性实验研究及分级使用建议[J].润滑与密封,2008,33(11):5-7
    [91]郭福安.钢轨质量现状与高速铁路钢轨的技术条件[J].中国铁路,1999,17(5):11-14
    [92]A.S.Babbetal, Railsteels,1S1 Meeting23Nov,1972 Paper, No7。
    [93]S.marich,P.Curcio, Sp.Teeh.Pub.644 ASTM,1978.
    [94]马钢钢研所,铁路车轮与钢轨的试验室磨耗试验研究,1980年8月
    [95]D.F.Moor, The Prineiples and Applieation of Tribology[J], Pergamon Press, 1975,314-316
    [96]李家驹,杨开庭,应慧敏,等.车轮和钢轨硬度匹配的研究[J].中国铁道科学,1984,1(4):49-59
    [97]Harris J, Lundgren J, Tournay H. Guidelines to Best Practices Heavy Haul Railway Operations:Wheel and Rail Interface Issuse [M]. Virginia:International Heavy Haul Association,2001.
    [98]周清跃,刘丰收,朱梅,等.轮轨关系中的硬度匹配[J].中国铁道科学,2006,27(5):35-41
    [99]王文健,陈明韬,刘启跃.基于BP神经网络的钢轨磨损量预测.润滑与密封.2007,32(12):20-24
    [100]Fries R H, Davila C G. Analytical methods for wheel and rail wear prediction.Proceedings 10th IAVSD symposium. Swets and Zeitlinger,1988:112-125
    [101]Pearce T G, Sherratt N D. Prediction of wheel profile wear. Wear,1991 (144):343-351
    [102]Szabor A, Zobory I. On combined simulation of rail/wheel profile wear. Proceedings 2nd mini conference on contact mechanics and wear ofrail/wheel systems. Budapest,1996:196-206.
    [103]Li Z L, Kalker J J, Wiersma P K,Snijders E R. Non-Herztian wheel-rail wear simulation in vehicle dynamical systems. Proceedings 4th international conference on railway bogies and running gears. Budapest,1998:187-196.
    [104]A. Ward, R. Lewis, R.S. Dwyer-Joyce. Incorporating a Railway Wheel Wear Model into Multi-Body Simulations of Wheelset Dynamics.29th Leeds-Lyon Symposium on Tribology, Lyon,2002:1-11
    [105]Asadi A, Brown M, Rail vehicle wheel wear prediction:a comparison between analytical and experimental approaches. VSD2008,00(0):1-9
    [106]Robert H.FRIESa,Carlos G. DAVILAa.Analytical Methods for Wheel and Rail Wear Prediction[J]. Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility.1985:1-5
    [107]Podra P, Andersson S. Wear simulation with the Winkler surface model [J]. Wear, 1997,207:79-85.
    [108]Jendel T. Prediction of wheel profile wear-comparisons with field measurements [J]. Wear,2002,253:89-99
    [109]J. DE ARIZON, O. VERLINDEN, P. DEHOMBREUX. Prediction of wheel wear in urban railway transport:comparison of existing models[J]. Vehicle System Dynamics.2007,45(9):849-866
    [110]李霞.车轮磨耗预测初步研究[D].西南交通大学,2009
    [111]王平,王彩芸,王文健,等.GA-BP网络在钢轨磨损量预测中的应用[J],润滑与密封.2011,36(2):99-102
    [112]赵雪芹,王文健,钟雯,等.钢轨滚动疲劳裂纹与磨损耦合关系研究[J].铁道学报,2009,31(2):84-87
    [113]W.J. Wang, J. Guo, Q.Y. Liu, M.H. Zhu, Z.R. Zhou. Study on relationship between oblique fatigue crack and rail wear in curve track and prevention[J].Wear,267(2009):540-544
    [114]Zhang Weihua,Cheng jianzhen,Wu Xuejie,etal.Wheel/rail adhesion and analysis by using full scale rollerring[J].wear,2002,253:82-88
    [115]金学松.轮轨蠕滑理论以及实验研究[D].西南交通大学,1999
    [116]Sciammarella C A,Kumar S,Nailescu L,etal. Similitude law for the creep-adhesion function in dry contact[J]. ASME Journal of Engineering for Industry,1979,101:278-284
    [117]Matsumoto A, Sato Y, Ono H, etal. Formation mechanism and countermeasures of rail corrugation on curved track[J].wear,2002,253:178-184
    [118]Hahn H,Seigl G.Numerical simulation and experimental verification of the German roller rig for rail vehicles [J]. Vehicle System Dynamics,1986,15,303-304
    [119]Cannon D F,Pradier H.Rail rolling contact fatigue research by the European Rail Research institute[J].wear,1996,191:1-13
    [120]Heliot C.Small-scale test method for railway dynamics.Proc,Tht 9th IAVSD Symp.Linkoping,1985,197-207
    [121]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998
    [122]王亚珍,龚忠良,黄平.法相载荷和滑动速度队纳米摩擦的影响[J].润滑与密封,2011,36(6):60-62
    [123]杨超.单晶硅与镍钛形状记忆合金的划痕损伤研究[D].西南交通大学,2009
    [124]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2004
    [125]Oliver W, Pharr G An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res. 1992,7:1564-1583
    [126]张爽.氮化铬和氮化碳薄膜的径向纳动运行与损伤研究[D].西南交通大学,2008
    [127]H.A. Francis. Phenomenological analysis of plastic spherical indentation[J].ASME, Transactions, Series H-Journal of Engineering Materials and Technology,1976,98: 272-281.
    [128]张赜雯.压头曲率半径对单晶硅和氮化钛薄膜径向纳动损伤的影响[D],西南交通大学,2010
    [129]Hertz H, "Uber die Beruhrung fester Elastische Korper and Uber die Harte (On the Contact of Rigid Elastic Solids and on Hardness)". Verhandlungen des Vereins zur Beforderung des Gewerbefleisses, Leipzig,1882.
    [130]Johnson K L. Contact mechanics.Cambridge University Press,1985
    [131]M.R. Zhang, H.C. Gu. Fracture toughness of nanostructured railway wheels. Engineering Fracture Mechanics,2008,75:5113-5121
    [132]Stuart L.Grassie. Rolling contact fatigue on the British railway system:treatment. Wear,2005,258:1310-1318
    [133]许金国,傅茂海.重载铁路轮轨磨损原因探讨[J].铁道机车车辆,2008,28(4):12-15
    [134]张伟,钢轨滚动接触疲劳实验研究[D].西南交通大学,2005
    [135]王文健.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D].西南交通大学,2008
    [136]邓建辉,刘启跃.车速对钢轨接触疲劳伤损的影响及高速线路钢轨选用[J].钢铁钒钛,2006,27(3):48-54
    [137]翟婉明,蔡成标.列车提速对线路的动力影响研究与决策[J].中国铁道科学,2000,21(3):11-20
    [138]钟雯.钢轨损伤机理与选材研究[D].西南交通大学,2011
    [139]张向龙.U71Mn钢轨与车轮材料匹配试验研究[D].西南交通大学,2011
    [140]Kalker JJ.Computation Contact Mechanics of Wheel-rail System, In:Rail Quality and Maintenance in Modern Railway Operation. Kluwer Academic Publisher,Dordrecht/Boston/Londen,1993
    [141]Kalker J J. Variation Principles of Contact Elastostatics. J.Inst.Maths. Applics,1977,20:199-219.
    [142]Kalker J J. The Compution of Three-dimensional Rolling Contact with Dry Friction. Int.J.for Num.Meth.eng.,1979,14:1293-1307.
    [143]Kalker J J. Three-dimensional Elastic Bodies in Rolling Contact. Kluwer Publishers, Dordrech,1990.
    [144]肖新标.轨道运动对列车脱轨影响的研究初探[D].西南交通大学,2005.
    [145]李玲,车轮多边形化对直线电机车辆动力学行为的研究[D].西南交通大学,2010
    [146]B.Morys. Enlargement of Out-of-Round Wheel Profiles on High Speed Trains. Journal of Sound and Vibration.1999,227(5):965-978.
    [147]翟婉明著.车辆-轨道耦合动力学(第三版).北京:科学出版社,2007.
    [148]温泽峰,金学松,刘兴奇.两种型面轮轨滚动接触蠕滑率和摩擦功[J].摩擦学学报,2001,21(4):288-292.
    [149]申鹏.轮轨黏着特性试验研究[D].西南交通大学,2012
    [150]沈志云.轮轨磨损的动力学预测及减少轮轨磨损的措施[J].铁道学报.1992,14(2):64-70
    [151]Bolton P J, Clayton P, McEwan I J. Rolling-sliding wear damage in rail and tyre steels. Wear,1987,120(2):145-165
    [152]Ludger Deters, Matthias Proksch. Friction and wear testing of rail and wheel material[J]. Wear,2005,258:981-991
    [153]李霞,温泽峰,张健,等.轨底坡对轮轨滚动接触行为的影响[J].机械强度,2009,31(3):475-480
    [154]廖海平.线接触高副机构摩擦学设计与分析[D].西南交通大学,2011
    [155]李伟,温泽峰,吴磊,金学松.车轮滑动时钢轨热机耦合有限元分析[J].润滑与密封,2009,34(1):24-29.
    [156]王伟,基于ANSYS的轮轨摩擦生热分析[D].西南交通大学,2011.
    [157]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002
    [158]李娟,夏建中.磨损预测模型的实验研究[J].现代制造工程,2011,5:117-119
    [159]Ludem a K C.Mechanism-based modeling of friction and wear[J].Wear,1996(200):1-7
    [160]秦浩,林志娟,陈景武.偏最小二乘回归原理、分析步骤及程序[J].数理医学杂志,2007,20(4):450-451
    [161]吴琼,原忠虎,王晓宇.基于偏最小二乘法回归分析总数[J].沈阳大学学报,2007,19(2):33-35
    [162]张云风.随机过程的模型可靠性预测及若干问题研究[D].东北大学,2011
    [163]张伏生,汪鸿.基于偏最小二乘回归分析的短期负荷预测[J],电网技术,2003,27(3):37-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700