控制梯型轨道钢轨波磨的动力性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着我国社会经济发展,城市化进程不断加快,交通需求日益加剧,对城市交通功能提出了更高的要求和挑战。城市轨道交通以其运量大、快速、准时、便捷、安全、环保等突出特点,已成为各大城市解决交通拥堵首选交通方式。同时,为保护轨道交通沿线敏感地段(诸如学校、医院等)免受振动影响,目前在建的轨道交通多采用了不同类型的减振措施,其中铺设梯型轨道结构是采用较多的减振措施之一。但是,在线路开通运营后,部分使用梯型轨道结构的线路不同程度地出现了振动噪声加剧及钢轨异常波磨现象。为解决该异常现象,本文在总结归纳前人研究的基础上,从轮轨系统振动角度出发,对该异常现象的产生机理及防治措施进行了综合分析,其主要研究内容和结论包括:
     (1)建立列车动车轮对和拖车轮对分析模型,分析轮对垂向振动和扭转振动特性,并进一步分析电机位置和一系悬挂参数对轮对垂向及扭转振动特性的影响。研究表明,电机位置对轮对垂向振动特性影响较小,而对其扭转振动特性影响较大,且电机设备距离轮对中心越远,轮对的二阶扭转共振频率越大;一系悬挂参数仅影响轮对一阶垂向振动特性(即刚体振动),而对其他频率振动特性影响较小。
     (2)结合现场测试分析得知梯型轨道结构的钢轨波磨相关频率;建立梯型轨道结构振动传递特性分析模型和轮对-轨道系统耦合频域分析模型,分析了梯型轨道结构振动特性,并揭示了梯型轨道结构振动与钢轨波磨之间的密切关系。研究表明,梯型轨道结构共振和车轮的锤击循环作用是钢轨波磨产生和发展的主要原因。
     (3)建立车辆-轨道耦合动力学模型,分析了不同行车速度和列车轴重所激起梯型轨道结构的主要振动特性。研究表明,除行车速度降至20km/h以下外,其他行车速度激起的钢轨主要振动频率均与钢轨波磨相关频率相近;列车轴重对梯型轨道结构的主要振动频率影响较小。
     (4)分别利用梯型轨道结构振动传递特性分析模型和车辆-轨道耦合动力学模型,分析了扣件参数(包括扣件刚度、扣件阻尼及扣件间距),轨枕参数(包括轨枕质量、轨枕长度、轨枕截面高度和轨枕截面宽度),减振垫层参数(包括减振刚度、减振阻尼及减振间距)对梯型轨道结构振动特性的影响,尤其对引起钢轨波磨的轨道共振特性的影响进行了分析。研究表明,仅通过调整某一结构参数较难达到减缓钢轨波磨产生和发展的目的,需要进行各结构参数最优匹配的综合研究。
     (5)为了减缓已运营线路中梯型轨道钢轨波磨的产生和发展,分别运用基因遗传算法和多点近似算法,对扣件刚度、扣件阻尼、减振垫层刚度及减振垫层阻尼等4个参数进行了综合优化分析。研究表明,可通过调整这4个参数达到控制梯型轨道结构振动,减缓钢轨波磨产生和发展的目的,并给出了各相应参数的建议值。
     (6)为了在设计阶段有效避免轮/轨共振,控制轨道结构振动,并有效预防梯型轨道结构钢轨波磨的产生,利用多点近似算法,对扣件刚度、扣件阻尼、扣件间距、轨枕长度、减振垫层刚度、减振垫层阻尼及减振垫层间距等7个参数进行综合优化分析。研究表明,可通过调整这7个参数达到控制梯型轨道结构振动,预防钢轨波磨产生和发展的目的,并且给出了各相应参数的建议设计值。
     (7)7参数优化结果优于4参数优化结果,4参数优化结果优于纵连轨枕结果,因此,在已运营线路上,应首先采用4参数优化结果,在尚未建设的梯型轨道结构上,应首先采用7参数优化结果,以减缓钢轨波磨的产生和发展。若条件暂不成熟(如:尚无研发出相关参数的扣件或减振垫层等),可采用纵连轨枕的方法减缓钢轨波磨的产生和发展,此时纵连轨枕需满足两个条件:①轨枕片数大于或等于15片;②减振垫层阻尼大于或等于20kN·m/S。
ABSTRACT:With the development of the economic society of our country, the processes of urbanization become faster and increase the traffic demand. Urban rail transit with large volume, rapid, on time, convenience, safe and environmental friendly has become the first choice to solve the traffic congestion of cities. At the same time, to protect the sensitive regions along with the rail traffic (such as schools, hospitals, etc.) from vibration, more and more vibration reducing measures used in subway lines. Using ladder track to minimize the subway vibration is one of the most popular vibration reducing measures. However, serious track vibration and noise incidents were observed in some ladder track subway lines, even some abnormal rail corrugation were also observed. To solve the anomalies, this thesis analysis the generation mechanism and prevention measures based on summarizing the previous studies and researches. The research contents and conclusions main include:
     (1) Wheelsets model (locomotive wheelset and vehicle wheelset) are developed. Vertical and torsional vibration receptance of wheelsets are carried out using the wheelsets models, and further analysize the effect of the electric machine locations and primary suspension parameters on wheelset vertical and torsional vibration receptance. The conclusions show that:(a) the effect of the electric machine locations on wheelset vertical vibration receptance is small and on wheelset torsional vibration receptance is large. The distance of electric machine and wheelset central is larger; the second order torsional resonance frequency is larger,(b) The primary suspension parameters only affect the wheelset first order vertical vibration receptance (rigid body vibration).
     (2) Based on the field test, rail corrugation frequency on ladder track can be obtained. Ladder track vertical vibration receptance model and wheelset-ladder track coupling model are set up, then using these models, the ladder track vibration receptance and the relationship between ladder track vibration mode and rail corrugation are carried out. The conclusions show that the third order vertical resonance of ladder track is the main reason of rail corrugation, and the third order vertical resonance of ladder track is caused by second order bending vibration of ladder sleeper.
     (3) Vehicle-ladder track coupling dynamic model is developed. Using this model, the ladder track main vibration characteristics with different speeds and axle loads are carried out. The conclusions show that the rail main vibration frequency cased by vehicle speed is close to the rail corrugation frequency except less than20km/h, and the effect of train axle load on rail main vibration frequency is small. So, changing the train speed (except less than20km/h) or axle load to solve the rail corrugation is not efficient.
     (4) Based on the ladder track vibration receptance model and vehicle-track coupling modle, the effect of fastener parameters (fastener stiffness, fastener damping and fastener interval), ladder sleeper parameters (sleeper mass and sleeper length), and resilient material parameters (resilient material stiffness, resilient material damping and resilient material interval) on ladder track vertical vibration receptance, especially, on the third order vertical resonance of ladder track, the main reason of rail corrugation, are carried out. The conclusions show that it is difficult to minimize the chance of rail corrugation only changing one structure parameter. In order to minimize the chance of rail corrugation, optimizing the comprehensive properties of ladder track is needed.
     (5) In order to minimize the chance of rail corrugation in operation subway lines, optimizing the4parameters of stiffness and damping of fastener and resilient material using genetic algorithms and multipoint approximation method are carried out, respectively. The conclusions show that changing the four parameters can minimize the chance of rail corrugation, and the recommended values are obtained.
     (6) In order to avoid the wheel/rail resonance, control the ladder track vibration and prevent the generation of rail corrugation effectively, optimizing the7parameters of stiffness, interval and damping of fastener and resilient material and sleeper length using the multipoint approximation method are carried out. The conclusions show that changing the seven parameters can minimize the chance of rail corrugation, and the recommended values of these parameters are obtained.
     (7) The results of optimizing the seven parameters are better than the results of optimizing the four parameters, and the results of optimizing the four parameters are better than the results of connecting ladder sleepers. So, It should be used the optimized results first in subway lines. If there are not conditions (e.g. there are not the fastners and resilient meterials with optimized parameters.), the method of connecting ladder sleepers could be used, but it should meet two conditions:①the number of connectiong ladder sleeper should be equal or greater than15.②the resilient material damping should be equal or greater than20kN·m/s.
引文
1 本章主要内容已发表于Journal of Central South University (SCI检索,DOI:10.1007/s11771-012-1327-4).
    (?) 本章主要内容已发表于Journal of Rail and Rapid Transit (SCI检索,DOI:10.1177/0954409712472329).
    § 本章主要内容已发表于Journal of Vibration and Control (SCI检索,DOI:10.1177/1077546313480539).
    [1]顾保南,叶霞飞.城市轨道交通工程(第二版)[M].武汉:华中科技大学出版社,2010.
    [2]中国城市轨道交通年度报告课题组.中国城市轨道交通2011年度报告[R].北京:北京交通大学出版社,2011.
    [3]丁树奎.城市轨道交通钢轨异常波磨专题研究序言[J].都市快轨交通,2012,24(3):1.
    [4]H. Wakui. Ladder sleepers perform well in tests [J]. Railway Gazette International,1997, 159:589-592.
    [5]H. Wakui. Technological innovation in railway structures system with ladder sleeper [J]. Concrete Journal,1998,36(5):8-16.
    [6]W. Hajime, M. Nobuyuki, O. Hiroyuki, A. Kiyoshi. Performance and application of ballast ladder track [J]. New Railway Structure,2002,52(4):32-34.
    [7]W. Hajime, M. Nobuyuki, O. Hiroyuki, A. Kiyoshi. Structure and design of ladder sleeper [J]. New Railway Structure,2006,56 (3):26-28.
    [8]H. Xia, Y. Deng, Y. Zou. Dynamic analysis of rail transit elevated bridge with ladder track [J]. Frontiers of architecture and civil engineering in china,2009,3(1):3-8.
    [9]黄德君,王新年,虞雍.北京市轨道交通昌平线高架线梯型轨枕机铺法施工技术[J].铁道标准设计,2011,1:76-77.
    [10]杨其振,程保青,刘道通.北京市轨道交通大兴线减振轨道结构的选型设计[J].铁道标准设计,2011,1:58-60.
    [11]丁静波,王青,任树文.北京市轨道交通房山线轨道结构设计研究[J].铁道标准设计,2011,1:32-34.
    [12]刘维宁,任静,刘卫丰等.北京地铁钢轨波磨测试分析[J].都市快轨交通,2011,24(3):6-9.
    [13]周亮.上海地铁曲线轨道减磨措施试验研究[J].城市轨道交通研究,2009,9:62-66.
    [14]颜怡翥.广州地铁5号线小半径曲线钢轨磨耗分析[J].城市轨道交通研究,2011,6:55-57.
    [15]张学华.城市轨道钢轨波浪形磨耗的产生和预防[J].上海铁道科技,2008,1:100-101.
    [16]练松良,孙琦,王午生.铁路曲线钢轨波磨及其减缓措施[M].北京:中国铁道出版社.2001,161-172.
    [17]K.H. Oostermeijer. Review on short pitch rail corrugation studies [J]. Wear,2008, 265:1231-1237.
    [18]A. Haarmann. Die Baustoffe der Spurbahnen [M]. Stahl und Eisen,1913,1-12.
    [19]M. Fink. Die Entstehung der Schienriffeln, Der Stand der Riffelforschung nachrund 60 Jahren (part 1 of 2) [M]. Glasers Annalen,1953,342-350.
    [20]M. Fink. Die Entstehung der Schienriffeln, Der Stand der Riffelforschung nachrund 60 Jahren (part 2 of 2) [M]. Glasers Annalen,1953,373-380.
    [21]L.P. Delgado. Experience obtained concerning the undulatorywear of rails [C]. Bull IRCA 1958,963-990.
    [22]M. Birmann. Rail Corrugation, Research and Preventive Measures:new results from corrugation research at DB, Part I. Vibrational Investigation [C]. VDIZ,1958,26.
    [23]M. Birmann. Rail Corrugation, Research and Preventive Measures:new results from corrugation research at DB, Part II. Material Investigations [C]. VDIZ,1958,30.
    [24]Yoshihiko Sato, Akira Matsumoto, Klaus Knothe. Review on rail corrugation studies [J]. Wear,2002,253:130-139.
    [25]N.C. Vogan. Question 9, Experience Obtained Concerning the Undulatory Wear of Rails, Monthly Bulletin of the International Railway Congress Association [C]. Bulletin of IRCA, 1958.
    [26]L.P. Delgado. Question 9, Experience Obtained Concerning the Undulatory Wear of Rails[C]. Bulletin of IRCA,1958.
    [27]Y. Kato. On Rail Corrugation [R]. Tetsudo Senro,1958.
    [28]W. Spieker, H. Kohler, M. Kuhlmeyer. Untersuchungen uber die Riffelbildung auf Schienen in Versuchsstrecken unter ublichen Bedingungen des Fahrbetriebes [J]. Stahl und Eisen,1971,91(26):1470-1487.
    [29]M. Srinivasan. Prevention and cure of corrugation [J]. Railway Gazette 3 (1971) 97-101.
    [30]R.M. Carson, K.L. Johnson. Surface corrugations spontaneously generated in a rolling contact disc machine [J]. Wear,1971,17(1):59-72.
    [31]K.L. Johnson, GG Gray. Development of Corrugations on Surfaces in Rolling Contact [J]. Proceedings of the Institution of Mechanical Engineers,1975,189:567-580.
    [32]R.I. Mair, R.MurPhy. Rail wear and corrugation studies [C]. ARER, Bulletin660, Proc. 1976,68:265-272.
    [33]R.I. Mair. Natural Frequency of Rail Track and its Relationship to Rail Corrugation [C]. Civil Engineering Transportation, the Institution of Engineers, Paper 3494, Australia, 1977.
    [34]R.I.Mair, R.A. Jupp, R. Groenhout. The characteristic and control of long pitch rail corrugation at heavy axle loads [C]. Proc. of the Seeond Heavy Haul Railways Conefrence, Perth, Australia,1978, Paper18.
    [35]R.I. Mair, R.Groenhout. Predietion of rail steel strength requirement-A reliability approach [C]. Rail Steels-Developments, Processing and Use, ASTM Special Tech. Publ,1978: 265-272.
    [36]R.I. Mair. Track design to prevent long-pitch rail corrugation [C]. Bulletin,1983,692(84): 289-300.
    [37]J. Eisenmann. Formation of short corrugations in rails [C]. The First International Conefrence on Heavy Haul Railway, Perth, Australia,1978, Session 413, Paper 413.
    [38]P.S. Bate, D.V. Wilson. Analysis of the bauschinger effect [J]. Acta Metallurgies 1986, 34(6):1097-1105.
    [39]Devine, T. J., Daniels, L. E., Blume, N. Rail corrugation investigationsat FAST [C]. December 1979 through August 1981. Proc. of Conference on FAST Engng, Report no FRA/TTC-82/01,165-174.
    [40]Daniels, L. E., Devine, T. J. FAST sheds light on corrugations [J]. Railway Gazette Int., March 1983,174-176.
    [41]R.A. Clark, P. Foster. On the Mechanics of Rail Corrugation Formation [C]. Proc.8th IAVSD-Symp. Cambridge, MA (1983.8), Swets Zeitlinger (Amsterdam/Lisse) (1984) 72-85.
    [42]R.A. Clark, GA. Scott, W. Poole. Short Wave Corrugations-An explanation based on stick-slip vibrations [J]. Applied Mechanics Rail Transportation Symposium, Vol.96 (AMD), Vol.2 (RTD), ASME,1988,141-148.
    [43]C.O. Frederick, W.G. Bugden. Corrugation Research on British Rail [C]. in:K. Knothe, R. Gasch (Eds.), Proceedings of the Presentation of the Rail Corrugations at the Symposium on Rail Corrugation Problems, Vol.56, Berlin (1983.6), ILR-Bericht, Berlin,1983,7-33.
    [44]W.G Bugden. Characteristics of short-wavelength corrugation on rails [C]. in:Proceedings of the Presentation of Seminar on Rail Corrugation (1983.9), Institution of the Mechanical Engineers, London,1983.
    [45]G Baumann, H.Feeht, S.Liebelt. Formation of white etching layers on the rail treads [J]. Wear,1996,191:133-140.
    [46]C.O. Frederick. A rail corrugation theory [C]. in:Proceedings of the Second Conference on the Contact Mechanics and Wear of Rail/Wheel Systems,1986.
    [47]A. Valdivia. A Linear Dynamic Wear Model to Explain the Initiating Mechanism of Corrugation, in:M. Apetaur (Ed.) [C]. The Dynamics of Vehicles on Roads and on Tracks, Proceedings of the Tenth IAVSD-Symposium, Prague,1987, Swets Zeitlinger (Amsterdam/Lisse),1988,493-496.
    [48]K. Hempelmann. Short-pitch Corrugation on Railway Rails:A Linear Model for Prediction [C]. VDI Fortschritt-Berichte (also Dissertation, TU Berlin),12-231, VDI-Verlag, Dusseldorf,1994.
    [49]K. Hempelmann, K. Knothe. An extended linear model for the prediction of short-pitch corrugation [J]. Wear,1996,191:161-169.
    [50]Y. Suda, M. Iguchi, H. Imaizumi. The mechanism of corrugation phenomenon on rolling surface [C]. in:Proceedings of the Symposium on the Applied Mechanics Rail Transportation, Vol.96 (ASME, AMD), Vol.2 (RTD),1988,29-36.
    [51]Y. Suda, M. Iguchi. Basic study of Corrugation Mechanism on Rolling Contact in Order to Control Rail Surfaces [C]. in:Proceedings of the 11th IAVSD Symposium,1989,566-577.
    [52]Y. Suda. Effects of vibration system and condition on the development of corrugations [J]. Wear,1991,144:227-242.
    [53]Y. Suda. The mechanics for self-generation of corrugations [J]. Jpn. J.Tribol.,1993,38: 1553-1563.
    [54]D.R. Ahlbeek, L.E. Daniels. A review of rail corrugation processes under dieffrent operation modes [C]. Proc. ASME/IEEE Joint Railroad Conf.,1990,13-18.
    [55]Y. Suda, H. Komine. Contact vibration with high damping alloy [J]. Wear,1996, 191:72-77.
    [56]Y. Suda, T. Nishigaito, K. Okamoto, H. Komine. Creep characteristics with high damping alloy for corrugation phenomenon [C]. Proeeedings of the Second Mini Conefrence on CM,1996,325-332.
    [57]Y. Suda, T. Nishigaito, H. Komine, K. Okamoto. Study of corrugation phenomenon on rolling/sliding contact using a corrugation simulator [C]. in:Proceedings of the Conference (IMechE) RAILTECH'96, Vol.16, C511,1996.
    [58]Y. Suda, H. Komine, T. Iwasa, Y. Terumichi. Study on Mechanism of Corrugation Phenomenon with Longitudinal Slips [C]. in:Proceedings of the Asia-Pacific Vibration Conf.'99 (1999), Vol.2, pp.660-665.
    [59]Y. Suda, H. Komine, T. Iwasa, Y. Terumichi. in:Proceedungs of the Fifth CM on the Experimental Study on Mechanism of Rail Corrugation Using Corrugation Simulator [C]. 2000,66-73.
    [60]Y. Suda, M. Hanawa, M. Okumura, T. Iwasa. Study on rail corrugation in sharp curves of commuter line [J]. Wear,2002,253:193-198.
    [61]A. Matsumoto, Y. Sato, M. Tanimoto, Q. Kang T. Amano, M. Chishima. Experimental Study on Wheel/Rail Contact Mechanism on Curved Track (first and second reports), in: Proceedings of the Conference of the Japan Society of Mechanical Engineers (JSME), No. 940-261 (1994) No.95-1 (1995).
    [62]A. Matsumoto, Y. Sato, M. Nakata, M. Tanimoto, Wheel/rail contact mechanics at full-scale on the test stand [J]. Wear,1996,191:101-106.
    [63]A. Matsumoto, Y. Sato, M. Fujii, M. Tanimoto, Q. Kang, E. Miyauchi, M. Furuta. Characteristics of Bogie and Track on Sharp Curve and Their Effects to Formation of Corrugation (from first to fifth reports), in:Proceedings of the Conference of the JSME No. 95-10, No.95-44 (1995), No.96-1,96-5 I,96-51 (1996).
    [64]A. Matsumoto, Y. Sato, M. Fujii, M. Tanimoto, Y. Oka, E. Miyauchi. The formation mechanism of rail corrugation on curved track (first report), longitudinal stick-slip vibration model considering contact stiffness [C]. Trans. JSME 62c-597,1996,49-57.
    [65]A. Matsumoto, Y. Sato, M. Tanimoto, Y. Oka, E. Miyauchi. The formation mechanism of rail corrugation on curved track (second report) [C]. Basic Formation Mech., Trans. JSME 64c-623,1998,315-322.
    [66]A. Matsumoto, Y. Sato, M. Tanimoto, Q. Kang. Study on the formation mechanism of rail corrugation on curved track [J]. Vehicle Syst. Dynam.,1996,25:450-465.
    [67]A. Matsumoto, Y. Sato, M. Tanimoto, Y. Oka, Improvement of curving performance of steerable bogie in urban railway [C]. STECH'96, IMechE,1996.
    [68]D.R. Ahlbeck, L.E. Daniels. Investigation of rail corrugations on the Baltimore Metro [J]. Wear,1991,144:197-210.
    [69]E. Tassilly, N. Vincent. Rail corrugations:analytical model and field tests [J]. Wear,1991, 144:163-178.
    [70]E. Tassilly, N. Vincent. A liner model for the corrugation of rails [J]. Journal of sound and vibration,1991,150(1):25-45.
    [71]J. Kalousek, K.L. Johnson. An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system [J]. IMechE, Part F:Journal of Rail and Rapid Transit, 1992,206:127-135.
    [72]A. Igeland, H. Ilias. Rail head corrugation growth predictions based non-linear high frequency vehiele/track interaetion [J]. Wear,1997,213:90-97.
    [73]H. Ilias.The influence of rail-pad stinffess on wheelset/track interaction and corrugation growth [J]. Journal of Sound and Vibration,1999,227(5):935-948.
    [74]J.B. Nielsen. A nonlinear wear model [J]. ASME, Rail Transportation,1997, RTD-13: 7-20.
    [75]J.B. Nielsen. Evolution of rail corrugation predicted with a nonlinear wear model [J]. Journal of Sound and Vibration,1999,227(5):915-933.
    [76]S. Muller. A linear wheel-rail model to prediet instability and short pitch corrugation [J]. Journal of Sound and Vibration,1999,227(5):899-913.
    [77]S. Muller. A linear wheel-rail model to investigat estability and corrugation on straight track [J]. Wear,2000,243:122-132.
    [78]R. Gasch, A. Gross-Thebing, K. Knothe, A. Valdivia, Linear. Self-excited vibrations as initiating mechanism of corrugation [C]. in:K. Knothe, R. Gasch (Eds.), Proceedings of the Presentation of the Symposium on Rail Corrugation Problems, Berlin (1983.6), ILR-Bericht 56, TU Berlin, Institut fur Luft-und Raumfahrt, Berlin,1983,207-230.
    [79]A. Bhaskar, K.L. Johnson, G.D. Wood, J. Woodhouse. Wheel-rail dynamics with closely conformal contact. Part 1. Dynamic modeling and stability analysis [J]. Proc. Instn. Mech. Eng.1997,211(F):11-26.
    [80]S.L. Grassie, J. Kalousek. Rail corrugation:characteristics, causes and treatments [J]. IMechE, Part F:Journal of Rail and Rapid Transit,1993,57-68.
    [81]C.O.Frederick,尹振远译.轨道研究概况[J].中国铁道科学,1982,3(1):63-73.
    [82]E.G. Vadillo, J.A. Tarrago, G.G Zubiaurre, C.A. Duque. Effect of sleeper distance on rail corrugation [J]. Wear,1998,217:140-146.
    [83]I. Gomez, E.G Vadillo. An analytical approach to study a special case of booted sleeper track rail corrugation [J]. Wear,2001,251:916-924.
    [84]I. Gomez, E.G. Vadillo. A linear model to explain short pitch corrugation on rails [J]. Wear, 2003,255:1127-1142.
    [85]J. Gomez, E.G Vadillo, J. Santamaria. A comprehensive track model for the improvement of corrugation models [J]. Journal of Sound and Vibration,2006,293:522-534.
    [86]L. Gry. Dynamic modelling of railway track based on wave propagation [J]. Journal of Sound and Vibration,1996,195(3):477-505.
    [87]O. Oyarzabal, J. Gomez, J. Santamaria, E.G. Vadillo. Dynamic optimization of track components to minimize rail corrugation [J]. Journal of Sound and Vibration,2009,319: 904-917.
    [88]N. Correa, O. Oyarzabal, E.G. Vadillo, J. Santamaria, J. Gomez. Rail corrugation development in high speed lines [J]. Wear,2011,271:2438-2447.
    [89]O. Oyarzabala, N. Correaa, E.G. Vadilloa, J. Santamariaa, J. Gomeza. Modelling rail corrugation with specific-track parameters focusing on ballasted track and slab track [J]. Vehicle System Dynamics,2011,49(11):1733-1748.
    [90]J.B. Lorenzo, J. Santamaria, E.G Vadillo, O. Oyarzabal. Dynamic comparison of different types of slab track and ballasted track using a flexible track model [J]. IMechE, Part F: Journal of Rail and Rapid Transit,2011,225:574-592.
    [91]X. Jin, P. Wu, Z. Wen. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact [J]. Wear,2002,253:247-256.
    [92]X. Jin, Z. Wen, K. Wang, W. Zhang. Effect of a scratch on curved rail on initiation and evolution of rail corrugation [J]. Tribology International,2004,37:385-394.
    [93]Z. Wen, X. Jin. Effect of track lateral geometry defects on corrugations of curved rails [J]. Wear,2005,259:1324-1331.
    [94]X. Jin, Z.Wen, W. Zhang, Z. Shen. Numerical simulation of rail corrugation on a curved track [J]. Computers and Structures,2005,83:2052-2065.
    [95]Z. Wen, X. Jin, X. Xiao, Z. Zhou. Effect of a scratch on curved rail on initiation and evolution of plastic deformation induced rail corrugation [J]. International Journal of Solilds and Structures,2008,45:2077-2096.
    [96]X. Jin, Z. Wen, K. Wang. Effect of track irregularities on initiation and evolution of rail corrugation [J]. Journal of Sound and Vibration,2005,285:121-148.
    [97]X. Jin, Z. Wen, K. Wang, X. Xiao. Effect of passenger car curving on rail corrugation at a curved track [J]. Wear,2006,260:619-633.
    [98]X. Jin, Z. Wen, K. Wang, Z. Zhou, Q. Liu, C. Li. Three-dimensional train-track model for study of rail corrugation [J]. Journal of Sound and Vibration,2006,293:830-855.
    [99]X. Jin, Z. Wen. Effect of discrete track support by sleepers on rail corrugation at a curved track [J]. Journal of Sound and Vibration,2008,315:279-300.
    [100]X. Jin, X. Xiao, Z. Wen, Z. Zhou. Effect of sleeper pitch on rail corrugation at a tangent track in vehicle hunting [J]. Wear,2008,265:1163-1175.
    [101]S. Zhang, X. Xiao, Z. Wen, X. Jin. Effect of unsupported sleepers on wheel/rail normal load [J]. Soil Dynamics and Earthquake Engineering,2008,28:662-673.
    [102]X. Jin, X. Xiao, Z. Wen, J. Guo, M. Zhu. An investigation into the effect of train curving on wear and contact stresses of wheel and rail [J]. Tribology International,2009,42: 475-490.
    [103]G.X. Chen, Z.R. Zhou, H. Ouyang, X.S. Jin, M.H. Zhu, Q.Y. Liu. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system [J]. Journal of Sound and Vibration,2010,329:4643-4655.
    [104]A. Bohmer, T. Klimpel. Plastic deformation of corrugated rails-a numerical approach using material data of rail steel [J]. Wear,2002,253:150-161.
    [105]M. Hiensch, J.C.O. Nielsen, E. Verheijen, Rail corrugation in The Netherlands measurements and simulations [J]. Wear,2002,253:140-149.
    [106]A. Johansson, J.C.O. Nielsen. Rail corrugation growth-influence of powered wheelsets with wheel tread irregularities [J]. Wear,2007,262:1296-1307.
    [107]J.C.O. Nielsen. High-frequency vertical wheel-rail contact forces-validation of a prediction model by field testing [J]. Wear,2008,265:1465-1471.
    [108]J.C.O. Nielsen, A. Ekberg. Acceptance criterion for rail roughness level spectrum based on assessment of rolling contact fatigue and rolling noise [J]. Wear,2011,271:319-327.
    [109]P.T. Torstensson, J.C.O. Nielsen. Monitoring of rail corrugation growth due to irregular wear on a railway metro curve [J]. Wear,2009,267:556-561.
    [110]P.T. Torstensson, J.C.O. Nielsen. Simulation of dynamic vehicle-track interaction on small radius curves [J]. Vehicle System Dynamics,2011,49(10):1711-1732.
    [111]P.T. Torstensson, J.C.O. Nielsen, L. Baeza. Dynamic train-track interaction at high vehicle speeds-Modelling of wheelset dynamics and wheel rotation [J]. Journal of Sound and Vibration,2011,330:5309-5321.
    [112]C. Andersson, A. Johansson. Prediction of rail corrugation generated by three-dimensional wheel-rail interaction [J]. Wear,2004,257:423-434.
    [113]S.L. Grassie. Rail corrugation:advances in measurement, understanding and treatment [J]. Wear,2005,258:1224-1234.
    [114]S.L. Grassie, J.W. Edwards. Development of corrugation as a result of varying normal load [J]. Wear,2008,265:1150-1155.
    [115]S.L. Grassie. Rail corrugation:characteristics, causes, and treatments [J]. IMechE, Part F: Journal of Rail and Rapid Transit,2009,223:581-596.
    [116]T.X. Wu, D.J. Thompson. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions [J]. Wear,2005,258:1115-1125.
    [117]T.X. Wu. Parametric excitation of wheel/track system and its effects on rail corrugation [J]. Wear,2008,265:1176-1182.
    [118]T.X.Wu. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper [J]. Wear,2011,271:339-348.
    [119]B. Croft, C. Jones, D. Thompson. Velocity-dependent friction in a model of wheel-rail rolling contact and wear [J]. Vehicle System Dynamics,2011,49(11):1791-1802.
    [120]P.A. Meehan, WJ.T. Daniel, T. Campey. Prediction of the growth of wear-type rail corrugation [J], Wear,2005,258:1001-1013.
    [121]P. A. Meehan, W.J.T. Daniel. Effects of wheel passing frequency on wear-type corrugations [J]. Wear.2008,265:1202-1211.
    [122]P.A. Meehan, P.A. Bellette, R.D. Batten, W.J.T. Daniel, R.J. Horwood. A case study of wear-type rail corrugation prediction and control using speed variation [J]. Journal of Sound and Vibration,2009,325:85-105.
    [123]WJ.T. Daniel, R.J. Horwood, P.A. Meehan, N. Wheatley. Analysis of rail corrugation in cornering [J]. Wear,2008,265:1183-1192.
    [124]P.A. Bellette, P.A. Meehan, W.J.T. Daniel. Contact induced wear filtering and its influence on corrugation growth [J]. Wear,2010,268:1320-1328.
    [125]P.A. Bellette, P.A. Meehan, W.J.T. Daniel. Validation of a tangent track corrugation model with a two disk test rig [J]. Wear,2011,271:268-277.
    [126]R.D. Batten, P.A. Bellette, P.A. Meehan, R.J. Horwood, W.J.T. Daniel. Field and theoretical investigation of the mechanism of corrugation wavelength fixation under speed variation [J]. Wear,2011,271:278-286.
    [127]T.T. Vuong, P.A. Meehan, D.T. Eadie, K. Oldknow, D. Elvidge, P.A. Bellette, W.J. Daniel. Investigation of a transitional wear model for wear and wear-type rail corrugation prediction [J]. Wear,2011,271:287-298.
    [128]J.I. Egana, J. Vinolas, M. Seco. Investigation of the influence of rail pad stiffness on rail corrugation on a transit system [J]. Wear,2006,261:216-224.
    [129]G Xie, S.D. Iwnicki. Simulation of wear on a rough rail using a time-domain wheel-track interaction model [J]. Wear,2008,265:1572-1583.
    [130]G. Xie, S.D. Iwnicki. Calculation of wear on a corrugated rail using a three-dimensional contact model [J]. Wear,2008,265:1238-1248.
    [131]G Xie, S.D. Iwnicki. A rail roughness growth model for a wheelset with non-steady, non-Hertzian contact [J]. Vehicle System Dynamics,2010,48(10):1135-1154.
    [132]L. Baeze, P. Vila, G. Xie, S.D. Iwnicki. Prediction of rail corrugation using a rotating flexible wheelset coupled with a flexible track model and a non-Hertzian/non-steady contact model [J]. Journal of Sound and Vibration,2011,330:4493-4507.
    [133]L. Ren, G Xie, S.D. Iwnicki. Non-linearity of non-steady rolling contact mechanics under the half-space assumption [J]. Vehicle System Dynamics,2011,49(11):1771-1790.
    [134]L. Ren, G Xie, S.D. Iwnicki. Properties of wheel/rail longitudinal creep force due to sinusoidal short pitch corrugation on railway rails [J]. Wear,2012,284:73-81.
    [135]P. Gullers, L. Andersson, R. Lunden. High-frequency vertical wheel-rail contact forces-field measurements and influence of track irregularities [J]. Wear,2008,265:1472-1478.
    [136]Y.Q. Sun, S. Simson. Wagon-track modeling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track [J]. Wear,2008,265:1193-1201.
    [137]L. Afferrante, M. Ciavarella. Short-pitch rail corrugation:A possible resonance-free regime as a step forward to explain the "enigma"? [J]. Wear,2009,266:934-944.
    [138]L. Afferrante, M. Ciavarella. Short pitch corrugation of railway tracks with wooden or concrete sleepers:An enigma solved? [J]. Tribology International,2010,43:610-622.
    [139]L. Afferrante, M. Ciavarella, A. Sackfield. Rolling cylinder on an elastic half-plane with harmonic oscillations in normal force and rotational speed. Part Ⅰ:Solution of the partial slip contact problem [J]. International Journal of Mechanical Sciences,2011,53:989-999.
    [140]L. Afferrante, M. Ciavarella, M. Dell'Orco, G Demelio. Rolling cylinder on an elastic half-plane with harmonic oscillations in normal force and rotational speed. Part Ⅱ:Energy dissipation receptances and example calculations of corrugation in the short-pitch range [J]. International Journal of Mechanical Sciences,2011,53:1000-1007.
    [141]B. Kurzeck, M. Hecht. Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results [J]. Vehicle System Dynamic,2010,48(suppl.):121-138.
    [142]B. Kurzeck. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation [J]. Wear,2011,271:299-310.
    [143]C. Collette, M. Horodinca, A. Preumont. Rotational vibration absorber for the mitigation of rail rutting corrugation [J]. Vehicle System Dynamic,2009,47(6):641-659.
    [144]Z. Yan, A. Gu, W. Liu V.L. Markine, Q. Liang. Effects of wheelset vibration on initiation and evolution of rail short-pitch corrugation [J]. Journal of Central South University,2012, 19(9):2681-2688.
    [145]Z. Yan, V.L. Markine, A. Gu, Q. Liang. Dynamic optimization of ladder track components to minimize the subway vibration [C]. in:Proceedings of the Eleventh International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, Scotland,2012.
    [146]刘钟华,王夏鍫.关于钢轨波纹磨损问题的探讨[J].西南交通大学学报,1981,2:10-16.
    [147]刘钟华,王夏鍫.塑性变形和钢轨波纹磨损[J].西南交通大学学报,1986,1:32-38.
    [148]郑安启.钢轨波浪形磨损的成因分析与实验研究[J].西南交通大学学报,1986,2:106-112.
    [149]刘启跃,刘钟华,王夏鍫.沪杭线钢轨波磨成因分析[J].西南交通大学学报,1990, 77(3):23-29.
    [150]俞良家,朱金荣,于国平等.钢轨波浪磨耗成因的研究[J].北方交通大学学报,1989,13(2):95-99.
    [151]赵德录.钢轨的波浪磨耗[J].铁道建筑,1991,8:22-23.
    [152]范钦海.钢轨波浪形磨耗形成机理及减缓措施研究[J].中国铁道科学,1994,15(2):22-40.
    [153]Q.H. Fan. Analysis on mechanism of rail corrugation and studies with model tests-effect of the bending vibration of wheelset on rail corrugation [C]. ASME Winter Annual Meeting,1998,127-132.
    [154]范钦海.轮轨中低频相互作用与钢轨波浪形磨耗[J].中国铁道科学,1997,18(3):55-65.
    [155]刘学毅.钢轨波形磨耗成因研究[D].成都:西南交通大学,1996.
    [156]刘学毅,王平,万复光.重载线路钢轨波形磨耗成因研究[J].铁道学报,2000,22(1):98-103.
    [157]刘学毅,印洪.钢轨波形磨耗的影响因素及减缓措施[J].西南交通大学学报,2002,37(5):483-487.
    [158]王平,刘学毅,万复光.轮轴扭转振动与曲线地段钢轨波形磨耗[J].西南交通大学学报,1996,31(1):55-62.
    [159]马培德,王雪红.钢轨波浪磨耗形成原因及预防[J].石家庄铁道学院学报,1995,8(4):64-68.
    [160]马培德,张常有.石太线钢轨波浪磨耗机理分析[J].铁道标准设计,1997,8(2):44-46.
    [161]刘兴奇.钢轨波浪磨耗的调查分析及减缓措施[J].铁道建筑,2000,12:2-4.
    [162]张波,刘启跃.钢轨波浪形磨损的研究分析[J].西南交通大学学报,2001,36(5):500-504.
    [163]张波,刘启跃.钢轨波磨的试验研究[J].铁道学报,2003,25(1):104-108.
    [164]刘启跃,张波,周仲荣,张卫华.滚动轮波形磨损试验研究[J].摩擦学报,2003,23(2):132-135.
    [165]Q.Y. Liu, B. Zhang, Z.R. Zhou. An experimental study of rail corrugation [J]. Wear,2003, 255:1121-1126.
    [166]王步康,谢友柏.钢轨短波波磨的产生机理[J].摩擦学学报,2001,21(5):375-378.
    [167]王步康,董光能,刘永红等.钢轨短波长波浪形磨损的安定性分析[J].摩擦学学报,2004,24(1):70-73.
    [168]王步康.钢轨接触表面短波长波浪形磨损的机理研究[D].西安:西安交通大学,2003.
    [169]张立民.轮轨接触应力与钢轨波磨分析[J].西南交通大学学报,2003,38(1):34-37.
    [170]张立民,张卫华.轮轨波磨形成机理与再现试验[J].西南交通大学学报,2005,40(4):435-439.
    [171]张继业,金学松,张卫华.高频轮轨相互作用下钢轨的波磨[J].摩擦学学报,2003,23(2):228-131.
    [172]张继业,金学松,张卫华.基于高频轮轨作用的波浪形磨损研究[J].应用力学学报,2004,21(4):6-11.
    [173]金学松,温泽峰,王开云.钢轨磨耗型波磨计算模型与数值方法[J].交通运输工程学报,2005,5(2):12-18.
    [174]金学松,王开云,温泽峰,李成辉.钢轨横向不均匀支撑刚度对钢轨波磨的影响[J].力学学报,2005,37(6):737-749.
    [175]温泽峰.钢轨波浪形磨损研究[D].成都:西南交通大学,2006.
    [176]熊嘉阳,金学松.铁路曲线钢轨初始波磨演化分析[J].机械工程学报,2006,42(6):60-66.
    [177]熊嘉阳,金学松.铁路曲线钢轨横向凹坑对初始波磨形成的影响[J].工程力学,2006,23(6):135-141.
    [178]温泽峰,金学松.非稳态载荷下轮轨滚动接触及其钢轨波磨研究[J].摩擦学学报,2007,27(3):252-258.
    [179]金学松,温泽峰,肖新标.曲线钢轨初始波磨形成的机理分析[J].机械工程学报,2008,44(3):1-8.
    [180]王国新,陈光雄,邬平波.轨枕支撑刚度和阻尼对小半径曲线钢轨磨耗型波磨影响的有限元研究[J].振动与冲击,2011,30(2):99-103.
    [181]李刚,金城,陈光雄,周仲荣.摩擦振动引起的波状磨耗的试验研究[J].润滑与密封,2012,37(9):24-27.
    [182]任静,孙京健,陈鹏,王进.从钢轨异常波磨研究反思地铁设计[J].都市快轨交通,2011,24(3):2-5.
    [183]刘维宁,任静,刘卫丰,王文斌,张厚贵.北京地铁钢轨波磨测试分析[J].都市快轨交通,2011,24(3):6-9.
    [184]郭建平,刘维宁,雷黔湘,张艳军.北京地铁4号线钢轨异常波磨调查及整治措施[J].都市快轨交通,2011,24(3):10-13.
    [185]曾向荣,高汉臣,陈鹏,郑瑞武.城市轨道交通钢轨波磨成因的探讨[J].都市快轨交通,2011,24(3):14-16.
    [186]谷爱军,刘维宁,张厚贵,孙鑫.地铁扣件刚度和阻尼对钢轨异常波磨的影响[J].都市快轨交通,2011,24(3):17-21.
    [187]闫子权,谷爱军,黑勇进,孙鑫.轮对振动对产生钢轨异常波磨的影响[J].都市快轨交通,2011,24(3):22-25.
    [188]朱胜利,张宏亮,孙京建,刘峰,秦兰兰.轨道扣件及减振综合试验平台的研究与设计[J].都市快轨交通,2011,24(3):26-29.
    [189]R.W. Clough, J. Penzien. Dynamics of structures (Third Edition) [M]. USA:Computers & Structures, Inc.,2003.
    [190]吴成军.工程振动与控制[M].西安:西安交通大学出版社,2008.
    [191]赵均海,汪梦甫.弹性力学及有限元[M].湖北:武汉理工大学出版社,2008.
    [192]孙方遒.不同频率钢轨的振动特性研究[D].北京:北京交通大学,2009.
    [193]汪劲丰.桥梁结构分析方法及LUSAS软件实现(基础篇)[M].浙江:浙江大学出版社,2007.
    [194]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [195]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [196]W.M. Zhai, C.B. Cai, S.Z. Guo. Coupling model of vertical and lateral vehicle/track interactions [J]. Vehicle System Dynamics,1996,26(1):61-79.
    [197]翟婉明,韩卫军,蔡成标,王其昌.高速铁路板式轨道动力特性研究[M].铁道学报,1999,21(6):65-69.
    [198]S. Iwnicki. Handbook of railway vehicle dynamics [M]. Taylor & Francis Group, CRC Press,2006.
    [199]C. Esveld. Modern railway track (Second Edition) [M]. The Netherlands: MRT-Productions,2001.
    [200]R. Mindlin. Compliance of elastic bodies in contact [J]. Journal of Applied Mechanics, 1949,71:259-268.
    [201]D. Thompson. Railway noise and vibration [M]. UK:Oxford,2009.
    [202]云庆夏.进化算法[M].北京:冶金工业出版社,2000.
    [203]D. Lawrence. Handbook of genetic algorithms [M]. New York:Van Nostrand Remhold, 1991.
    [204]J.H. Holland. Adaptation in Natural and Artificial Systems [M]. USA:MIT Press,1975.
    [205]王小平,曹立明.遗传算法一理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [206]Z. Michalewicz (著),周家驹,何险锋(译).演化算法—遗传算法和数据编码的结合[M].北京:科学出版社,2000.
    [207]V.V. Toropov. Simulation approach to structural optimization [J]. Structural Optimization, 1989,1:37-46.
    [208]GN. Vanderplaats. Numerical optimization techniques for Engineering design [M]. New York:McGraw-Hill,1984.
    [209]V.L. Markine. Optimization of the dynamic behavior of mechanical systems [D]. The Netherlands:Delft University of Technology,1999.
    [210]V.V. Toropov, A.A. Filatov, A.A. Polynkin. Multiparameter structural optimization using FEM and Multipoint Explicit Approximations [J]. Structural Optimization,1993,6:7-14.
    [211]G. Box, N. Draper. Emperical model-building and response surfaces [M]. New York:John Wiley & Sons,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700